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Abstract

We study the impact of outright (i.e., permanent) Open Market Operations (POMOs) by the

Federal Reserve Bank of New York (FRBNY) on the microstructure of the secondary U.S. Trea-

sury market. POMOs are trades in U.S. Treasury securities aimed at accomplishing the Federal

Reserve’s target level of the federal funds rate. Our analysis is motivated by a parsimonious

model of speculative trading in the presence of a stylized Central Bank targeting the price of the

traded asset. Contrary to previous studies of government intervention in financial markets, we

show that such trading activity improves equilibrium market liquidity, and that the magnitude

of this effect is sensitive to the market’s information environment. We test these implications

by analyzing a novel sample of intraday U.S. Treasury bond price quotes (from BrokerTec) and

a proprietary dataset of all POMOs conducted by the FRBNY between 2001 and 2007. Our

evidence suggests that i) bid-ask spreads of on-the-run Treasury securities decline on days when

POMOs are executed; and ii) POMOs’ positive liquidity externalities are increasing in proxies

for information heterogeneity among speculators, fundamental volatility, and policy uncertainty,

consistent with our model.

JEL classification: E44; G14

Keywords: Treasury Bond Markets; Open Market Operations; Central Bank; Strategic Trad-
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1 Introduction

The aggressive response of the Federal Reserve and the European Central Bank to the economic

turmoil of the last few years suggests that monetary authorities around the world are likely to

play a much more active role in financial markets than they did in the past. As the ensuing

intense academic and political debate shows (e.g., Jones, 2008; Boehmer et al., 2009a, b), such

a role raises pressing questions related not only to its motives and effectiveness but also to its

implications (or externalities) for the “quality” of the process of price formation in the affected

markets – e.g., investors’ ability to trade promptly and with minimal price impact and the

extent to which information is incorporated into prices. Answers to these questions are relevant

not only to academics but also to policy-makers, professional investors, and risk managers.

Motivated by this debate, this paper investigates, both theoretically and empirically, the im-

plications of the presence of an active manipulator – like the Central Bank – in a financial

market for that market’s microstructure. We do so by studying one market in which monetary

authorities have long been active, the secondary market for U.S. government bonds. U.S. Trea-

sury securities, traditionally seen as a “safe haven,” are widely held and traded by domestic and

foreign investors. The secondary market for these securities is among the largest, most liquid

financial markets. There the Federal Reserve, through its New York branch, routinely buys or

sells Treasury securities on an outright basis – with trades known as Permanent Open Market

Operations (POMOs) – to add or drain the amount of reserves available in the banking system

toward a target level consistent with the federal funds target rate set by the Federal Open Mar-

ket Committee (FOMC). The frequency and magnitude of these trades are significant: Between

January 2001 and December 2007, the Federal Reserve Bank of New York (FRBNY) executed

POMOs nearly once every eight working days (see Figure 3), for an average daily principal

amount of $1.11 billion. Importantly, while the FOMC’s rate decisions are public and informa-

tive about its current and planned stance of monetary policy, the Federal Reserve’s targeted level

of reserves has been secret and uninformative about that stance since the mid-1990s (Akhtar,

1997).1 This constitutes a crucial difference between OMOs and government interventions in

currency markets, the latter being typically deemed informative about economic policy or fun-

damentals in an environment rife with frictions and imperfections (e.g., Sarno and Taylor, 2001;

Payne and Vitale, 2003; Dominguez, 2006).

To guide our analysis of the impact of POMOs on the Treasury market, we develop a model

of trading based on Kyle (1985) and Foster and Viswanathan (1996). This model aims to

1See also the FRBNY’s website at http://www.newyorkfed.org/markets/pomo/display/index.cfm.
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capture parsimoniously an important feature of that market – one recently highlighted by

several empirical studies (e.g., Brandt and Kavajecz, 2004; Green, 2004; Pasquariello and Vega,

2007, 2009) – namely the informational role of trading in Treasury securities for their process

of price formation. In the model’s basic setting, strategic trading in a risky asset by privately,

heterogeneously informed speculators leads uninformed market-makers (MMs) to worsen that

asset’s equilibrium market liquidity. More valuable or diverse information among speculators

magnifies this effect by making their trading activity more cautious and MMs more vulnerable

to adverse selection.

The introduction of a stylized Central Bank consistent with the nature of the Federal Re-

serve’s POMOs (as described above) in this setting significantly alters equilibriummarket quality.

We model the Federal Reserve as an informed manipulator facing a trade-off between policy mo-

tives (a secret and uninformative price target for the risky asset) and the expected cost of its

intervention, in the spirit of Stein (1989), Bhattacharya and Weller (1997), Vitale (1999), and

Pasquariello (2010). In particular, the price target is a modelling device for the FRBNY’s objec-

tive of targeting the supply of nonborrowed reserves by trading in Treasury securities in a market

where demand for these securities is elastic.2 We then show that allowing such a Central Bank to

trade alongside noise traders and speculators improves equilibrium market liquidity. Intuitively,

the presence of the Central Bank ameliorates adverse selection concerns for the MMs, not only

because a portion of its trading activity is uninformative about fundamentals but also because

that activity induces speculators to trade less cautiously on their private signals. This theoretical

insight differs markedly from those in the aforementioned literature on the microstructure of gov-

ernment intervention in currency markets.3 In many of those studies (e.g., Bossaerts and Hillion,

1991; Vitale, 1999; Naranjo and Nimalendran, 2000), the Central Bank is typically assumed

to act as the only informed agent. Thus, its presence generally leads to deteriorating market

liquidity.4 Other studies (e.g., Evans and Lyons, 2005; Chari, 2007; Pasquariello, 2010) postu-

2E.g., see Krishnamurthy (2002), Greenwood and Vayanos (2010), and Krishnamurthy and Vissing-Jorgensen

(2010). We discuss this issue further in Sections 2.2 and 3.1.
3See the surveys in Lyons (2001) and Neely (2005).
4Similar implications ensue from Oded (2009), who models firms’ open-market stock repurchase activity.

Bond and Goldstein (2010) show that the introduction of an informed government attempting to reduce a firm’s

fundamental volatility in a Grossman and Stiglitz (1980) model populated by heterogeneously informed speculators

lowers equilibrium price informativeness of that firm’s stock. Pastor and Veronesi (2010) find that, in a general

equilibrium model where a government has both economic and non-economic motives, policy changes with more

uncertain impact lead to greater stock return volatility. Ulrich (2010) explores the implications of Knightian

uncertainty about FOMC interventions in the business cycle for the slope of the yield curve and bond risk

premiums.
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late that uninformative government intervention worsens market liquidity because of inventory

management considerations, absent from our model by construction.

As interestingly (and novel to the literature), we also show that the magnitude of the improve-

ment in market liquidity stemming from the Central Bank’s trading activity is sensitive to the

information environment of the market. In particular, this effect is greater the more volatile are

the economy’s fundamentals and the more heterogeneous are speculators’ private signals about

them. As we discussed above, either circumstance worsens market liquidity – i.e., increases the

price impact of any trade, including the Central Bank’s – yet less so when the MMs perceive the

threat of adverse selection as less serious because the Central Bank is intervening. Accordingly,

we show that greater uncertainty among market participants about the Central Bank’s policy

magnifies its trades’ positive information externalities. Greater such uncertainty both makes it

more difficult for the MMs to learn about the uninformative policy target from the order flow and

alleviates their perceived adverse selection from trading with the privately informed speculators.

We assess the empirical relevance of our model using a comprehensive, recently available sam-

ple of intraday price formation in the secondary U.S. Treasury bond market from BrokerTec –

the electronic platform where the majority of such trading migrated since its inception (Mizrach

and Neely, 2006, 2007; Fleming and Mizrach, 2009)5 – and a proprietary dataset of all POMOs

conducted by the FRBNY between January 2001 and December 2007. POMOs are typically

aimed at specific maturity segments of the yield curve, rather than at specific securities. Thus,

we focus on the most liquid Treasury securities in those segments – on-the-run (i.e., most re-

cently issued, or benchmark) two-year, three-year, five-year, and ten-year Treasury notes, and

thirty-year Treasury bonds.

Our empirical analysis provides strong support for our model’s main predictions. First,

univariate and multivariate tests show that bid-ask price spreads for notes and bonds nearly

uniformly decline (i.e., their liquidity improves) from near-term levels, both on days when the

FRBNY executed POMOs in the corresponding maturity bracket and on days when any POMO

occurred. The latter may be due the relatively high degree of substitutability (and ensuing

cross-elasticity) among Treasury securities (e.g., Cohen, 1999; D’Amico and King, 2009, 2010;

Greenwood and Vayanos, 2010). Estimated liquidity improvements are both economically and

statistically significant. For instance, on any-maturity POMO days quoted bid-ask spreads are

on average 7% (for three-year notes) to 16% (for five-year notes) lower than their sample means,

5For instance, Mizrach and Neely (2006) report that 61% of trading volume in on-the-run Treasury securities

in 2004 occurred in BrokerTec, with eSpeed – a competing platform launched by Cantor Fitzgerald – accounting

for the remaining 39%. Most trading in off-the-run Treasury securities still occurs through voice-assisted brokers

(and is recorded by GovPX).
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and 25% (for thirty-year bonds) to 46% (for two-year notes) lower than the sample standard

deviation of their daily changes.

This evidence is unlikely to stem from POMOs’ impact on reserve market conditions, funding

liquidity (e.g., Brunnermeier and Pedersen, 2009), search costs (e.g., Vayanos and Weill, 2008),

or the aforementioned migration to electronic trading for i) it is robust to controlling for various

calendar and bond fixed effects; ii) it is obtained over a sample period when the FRBNY neither

sold Treasury security nor traded in “scarce” ones; iii) it is unaffected by extending our sample to

the financial crisis of 2008 and 2009, i.e., despite the crisis’ implications for liquidity provision and

the nature of the FRBNY’s intervention activity in the Treasury market; and iv) it is reproduced

over a partly overlapping sample of quotes on the previously dominating, voice-brokered GovPX

platform. Importantly, since intraday bid-ask spreads in the Treasury market do not affect the

FRBNY’s stated reserve policy, its POMOs are likely to be exogenous to their event-day levels

and dynamics.

Second, our analysis also reveals that the magnitude of POMOs’ positive liquidity externalities

is related to the informational role of trading in the Treasury market, uniquely consistent with

our model. In particular, we find that bid-ask spreads decline significantly more i) the worse is

Treasury market liquidity, i.e., especially in the earlier portion of the sample (2001-2004); ii) the

greater is marketwide dispersion of beliefs about U.S. macroeconomic fundamentals – measured

by the standard deviation of professional forecasts of macroeconomic news releases; iii) the

greater is marketwide uncertainty surrounding U.S. monetary policy – measured by Eurodollar

implied volatility; and iv) the greater is marketwide uncertainty surrounding POMOs’ policy

objectives – measured by federal funds rate volatility.

OMOs have received surprisingly little attention in the literature. In the only published

empirical study on the topic we are aware of, Harvey and Huang (2002) find that the FRBNY’s

OMOs between 1982 and 1988 – when those trades were still deemed informative about the

Federal Reserve’s monetary policy stance – are, on average, accompanied by higher intraday

T-Bill, Eurodollar, and T-Bond futures return volatility. Harvey and Huang (2002) conjecture

that such increase may be attributed to the effect of OMOs on market participants’ expectations.

This evidence is consistent with that from several studies of the impact of potentially informative

Central Bank interventions on the microstructure of currency markets (e.g., Dominguez, 2003,

2006; Pasquariello, 2007b). As mentioned above, the focus of our study is on the impact of

uninformative Central Bank trades on the microstructure of fixed income markets in the presence

of strategic, informed speculation.6

6More recently, when examining the trading activity in two-year and five-year on-the-run Treasury notes

4



We proceed as follows. In Section 2, we construct a stylized model of trading in the presence

of an active Central Bank to guide our empirical analysis. In Section 3, we describe the data. In

Section 4, we present the empirical results. We conclude in Section 5.

2 A Model of POMOs

The objective of this study is to analyze the impact of permanent Open Market Operations

(POMOs) by the Federal Reserve on the liquidity of the secondary U.S. Treasury bond market.

Trading in this market occurs in an interdealer over-the-counter setting in which primary and non-

primary dealers act as market-makers, trading with customers on their own accounts and among

themselves via interdealer brokers.7 In this section we develop the simplest stylized representation

of the process of price formation in the Treasury bond market apt for our objective. First, we

describe a parsimonious model of trading in Treasury securities based on Kyle (1985), and derive

closed-form solutions for the equilibrium depth as a function of the information environment of

the market. Then, we enrich the model by introducing a Central Bank attempting to achieve

a price target while accounting for the cost of the intervention and consider the properties of

the ensuing equilibrium. We test for the statistical and economic significance of our theoretical

argument in the remainder of the paper. All proofs are in the Appendix.

2.1 The Basic Model

The basic model is a two-date, one-period economy in which a single risky asset is exchanged.

Trading occurs only at the end of the first period (t = 1), after which the payoff of the risky asset

reported by voice-assisted brokers on GovPX in 2000, Sokolov (2009) finds that temporary OMOs (TOMOs)

executed by the FRBNY via overnight – but not longer-term – repo (i.e., sale and repurchase) and reverse repo

(i.e., purchase and resale) auctions are accompanied by higher half-hour bond return volatility and wider bid-ask

spreads – yet only during the half-hour interval when these auctions take place. Intraday time intervals may

lead to underestimate the informational role of trading in the secondary U.S. Treasury bond market (e.g., see

Pasquariello and Vega, 2007). However, TOMOs’ nearly daily frequency of occurrence since the late-1990s makes

identification of their impact on Treasury market liquidity over longer horizons problematic. Further, GovPX

trading volume and share of that market significantly declined after 1999, as trading activity migrated to the

fully electronic platforms eSpeed and BrokerTec (e.g., see Mizrach and Neely, 2006, 2007; Fleming and Mizrach,

2009). We discuss these issues in greater detail in Sections 3 and 4. Inoue (1999) finds that informative POMOs

by the Bank of Japan are accompanied by higher intraday trading volume and price volatility in the secondary

market for ten-year on-the-run Japanese government bonds.
7For more details on the microstructure of the U.S. Treasury market, see Fabozzi and Fleming (2004) and

Mizrach and Neely (2007).

5



– a normally distributed random variable v with mean p0 and variance σ2v – is realized. The

economy is populated by three types of risk-neutral traders: A discrete number (M) of informed,

risk-neutral traders (henceforth speculators), liquidity traders, and perfectly competitive market-

makers (MMs) in the risky asset. All traders know the structure of the economy and the decision

process leading to order flow and prices.

At time t = 0 there is neither information asymmetry about v nor trading, and the price of the

risky asset is p0. Recent studies suggest that there may be private, heterogeneous information (or

interpretation of public information) about the determinants of the future resale value of Treasury

securities.8 In particular, Brandt and Kavajecz (2004), Green (2004), and Pasquariello and Vega

(2007, 2009) provide strong evidence of the informational role of trading in the process of price

formation in the secondary market for Treasury securities. Accordingly, sometime between t = 0

and t = 1, we endow each speculator m with a private and noisy signal of v, Sv (m). We assume

that each signal Sv (m) is drawn from a normal distribution with mean p0 and variance σ2s and

that, for any two speculators m and j, cov [Sv (m) , Sv (j)] = cov [v, Sv (m)] = σ2v. We further

parametrize the dispersion of speculators’ private information by imposing that σ2s =
1
ρ
σ2v and

ρ ∈ (0, 1).9 These assumptions imply that each speculator’s information advantage about v at
t = 1, before trading with the MMs, is given by δv (m) ≡ E [v|Sv (m)] − p0 = ρ [Sv (m)− p0],
and that E [δv (j) |δv (m)] = ρδv (m). The parameter ρ can be interpreted as the correlation

between any two information endowments δv (m) and δv (j): The lower (higher) is ρ, the more

(less) heterogeneous – i.e., the less (more) correlated and, of course, precise – is speculators’

private information about v.

At time t = 1, both liquidity traders and speculators submit their orders to the MMs before

the equilibrium price p1 has been set. We define the market order of each speculator m as x (m),

such that her profit is given by π (m) = (v − p1)x (m). Liquidity traders generate a random,
normally distributed demand z, with mean zero and variance σ2z. For simplicity, we assume that

z is independent from all other random variables. The uninformed MMs observe the ensuing

aggregate order flow ω1 =
PM

m=1 x (m) + z and then set the market-clearing price p1 = p1 (ω1).

8For instance, Brandt and Kavajecz (2004) observe that sophisticated Treasury market participants may base

their subjective valuations of the traded securities on their own “model for how the yield curve relates to economic

fundamentals and about the current state of the economy given past public information releases. Some individuals

or institutions may even have limited private information in the more traditional sense (e.g., a hedge fund with

an ex-member of the Federal Reserve Board) [p. 2624].” See also Berger et al. (2009).
9The analysis that follows yields similar implications, albeit at the cost of greater analytical complexity, if based

on more general information structures – e.g., cov [v, Sv (m)] 6= cov [Sv (m) , Sv (j)] and cov [v, Sv (m)] 6= σ2v (see

Foster and Viswanathan, 1996; Pasquariello, 2007a; Pasquariello and Vega, 2007; Albuquerque and Vega, 2009).
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Consistently with Kyle (1985), we define a Bayesian Nash equilibrium of this economy as a set

of M + 1 functions x (m) (·) and p1 (·) such that the following two conditions hold:

1. Utility maximization: x (m) (δv (m)) = argmaxE [π (m) |δv (m)];

2. Semi-strong market efficiency: p1 (ω1) = E (v|ω1).10

The following proposition characterizes the unique linear, rational expectations equilibrium

for this economy satisfying Conditions 1 and 2.

Proposition 1 There exists a unique linear equilibrium given by the price function

p1 = p0 + λω1 (1)

and by each speculator m’s demand strategy

x (m) =
σz

σv
√
Mρ

δv (k) , (2)

where

λ =
σv
√
Mρ

σz [2 + (M − 1) ρ]
> 0. (3)

In equilibrium, imperfectly competitive speculators, despite being risk-neutral, trade on their

private information cautiously (|x (m)| < ∞) to limit dissipating their informational advan-
tage with their trades. Thus, speculators’ optimal trading strategies depend both on their

information endowments about the traded asset’s payoff v (δv (k)) and market liquidity (λ):

x (m) = 1
λ[2+(M−1)ρ]δv (k). As in Kyle (1985), λ reflects MMs’ attempt to be compensated for

the losses they anticipate from trading with speculators, as it affects their profits from liquid-

ity trading (z). As such, λ is greater the more uncertain is the traded asset’s payoff v (higher

σ2v), for the greater is speculators’ information advantage and the more vulnerable MMs are to

adverse selection. Importantly, x (m) and λ also depend on ρ, the correlation among specula-

tors’ information endowments. Intuitively, these speculators, being imperfectly competitive, act

noncooperatively to exploit their private information. When such information is more heteroge-

neous (ρ closer to zero), each speculator perceives to have greater monopoly power on her signal,

because at least part of it is perceived to be known exclusively to her. Hence, each speculator

trades more cautiously – i.e., her market order is lower: ∂|x(m)|
∂ρ

= σz
2σvρ

√
Mρ
|δv (k)| > 0 – to

reveal less of her information endowment. Lower trading aggressiveness makes the aggregate

10Equivalently, competition is assumed to force MMs’ expected profits to zero.
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order flow less informative and the adverse selection of MMs more severe, worsening equilibrium

market liquidity (higher λ). The following corollary summarizes these basic properties of λ of

Eq. (3).

Corollary 1 Equilibrium market liquidity is decreasing in σ2v and ρ.

Pasquariello and Vega (2007, 2009) find strong support for the theoretical predictions of our

model of informed and strategic order flow for equilibrium liquidity in the U.S. Treasury market

(see also Fleming, 2003; Brandt and Kavajecz, 2004; Green, 2004; Li et al., 2009).

2.2 Central Bank Intervention

The Federal Reserve routinely intervenes in the secondary U.S. Treasury market via Open Market

Operations (OMOs) to implement its monetary policy.11 OMOs are trades in previously issued

U.S. Treasury securities executed by the Open Market Desk (“the desk”) at the Federal Reserve

Bank of New York (FRBNY), on behalf of the entire Federal Reserve System, to accomplish

the target level of the federal funds rate set by the Federal Open Market Committee (FOMC).

The federal funds rate is the rate clearing the federal funds market, the market where financial

institutions trade reserves – non-interest bearing deposits held by those institutions at the

Federal Reserve – on a daily basis (e.g., see Furfine, 1999). Thus, if the federal funds rate

is above (below) the target level, the FRBNY may expand (contract) the aggregate supply of

nonborrowed reserves – i.e., those not originating from the Federal Reserve’s discount window

(which is meant as a source of last resort) – in the monetary system to bring that rate toward

its target by buying (selling) government bonds. If the FRBNY perceives the observed deviation

of the federal funds rate from its target level to be persistent, it may affect nonborrowed reserves

through outright (or permanent) trades of government bonds (POMOs). If the deviation is

instead expected to be temporary, the FRBNY may enter repurchasing agreements (TOMOs) by

which it either buys (repos) or sells (reverse repos or matched-sale purchases) government bonds

with the agreement to an equivalent transaction of the opposite sign at a specified price and on

a specified later date (typically one trading day later).12 Accordingly, TOMOs occur much more

11To that end, the Federal Reserve may also change its reserve requirements on the checkable deposits of

commercial banks and thrift institutions and/or the discount rate for borrowed reserves from its discount win-

dow. Akhtar (1997), Harvey and Huang (2002), and Afonso et al. (2010) provide detailed discussions of

U.S. monetary policy and implementation. Further information is also available on the FRBNY website at

http://www.newyorkfed.org/markets/openmarket.html.
12For the same purpose, the FRBNY less often trades in agency debt (i.e., issued by Fannie Mae, Freddie Mac,

or Federal Home Loan Banks) and agency mortgage-backed securities (i.e., guaranteed by Fannie Mae, Freddie
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frequently (nearly every trading day) than POMOs.

Importantly, since February 1994 the FOMC has made its monetary policy decisions increas-

ingly transparent – e.g., by pre-announcing its intentions and disclosing the federal funds target

– therefore significantly reducing OMOs’ potential informativeness about its future monetary

policy stance over our sample period (Akhtar, 1997; Harvey and Huang, 2002).13 Yet, while the

FOMC’s target federal funds rate is publicly announced to all market participants, the actions

by the trading desk at the FRBNY are all but “mechanical” (Akhtar, 1997, p. 34). Given that

target rate, timing, sign, and magnitude of FRBNY trades along the yield curve are driven by

nonborrowed reserve paths (or reserve targets) based on its projections of current and future

reserve excesses or shortages – as well as by its assessment of current and future U.S. Treasury

market conditions – in an environment in which those reserve imbalances are subject to many

factors outside of the Central Bank’s control (e.g., see Harvey and Huang, 2002). This implies

that at any point in time there may be considerable uncertainty among market participants as

to the nature of the trading activity by the FRBNY in the secondary U.S. Treasury market.14

In this study we intend to analyze the process of price formation in that market in the

presence of outright trades (i.e., POMOs) by the FRBNY. To that purpose, we amend the basic

one-shot model of trading of Section 2.1 to allow for the presence of a stylized Central Bank

alongside speculators and liquidity traders. As such, this setting is inadequate at capturing

TOMOs’ transitory nature and significantly higher recurrence. In particular, we model the main

features of FRBNY’s outright intervention policy in a parsimonious fashion by assuming that (i)

sometime between t = 0 and t = 1, the Central Bank is given a secret price target pT for the

Mac, or Ginnie Mae). The FRBNY also executes customer-related outright trades, repos, and reverse repos

directly with foreign official accounts, usually to satisfy very small and/or temporary reserve imbalances. As

such, these customer transactions constitute a much less important tool of the Federal Reserve’s monetary policy

than their standard counterparts, and have only occasionally been arranged since December 1996 (see Akhtar,

1997).
13For instance, Akhtar (1997, p. 46) observes that the disclosure procedures initiated by the FOMC in early

1994 and formalized in early 1995 “have essentially freed the [FRBNY] from the risk that its normal technical

or defensive operations would be misinterpreted as policy moves. Open market operations no longer convey any

new information about changes in the stance of monetary policy. In implementing the directive, the [FRBNY]

carries out a policy that is already known to financial markets and the public at large, and is no longer concerned

about using a particular type of operation to signal a change in policy. Of course, market participants speculate,

just as they always did, about possible future policy moves, especially in the period immediately leading up to

the FOMC meetings. But, in general, they no longer closely watch day-to-day open market operations to detect

policy signals.”
14This uncertainty persists even when the Federal Reserve explicitly announces its intentions to execute OMOs

in the near future. We discuss these rare circumstances in Section 3.2.
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traded asset, drawn from a normal distribution with mean pT and variance σ
2
T ; and (ii) at time

t = 1, before the equilibrium price p1 has been set, the Central Bank submits to the MMs an

outright market order xCB minimizing the expected value of the following separable loss function:

L = γ (p1 − pT )2 + (1− γ) (p1 − v)xCB, (4)

where γ ∈ (0, 1) is common knowledge. The specification of Eq. (4) is similar in spirit to Stein
(1989), Bhattacharya and Weller (1997), Vitale (1999), and Pasquariello (2010).15 The first

component captures the FRBNY’s policy motives in its trading activity by the squared distance

between the traded asset’s equilibrium price p1 and the target pT . The price target captures

the desk’s efforts at targeting the supply of nonborrowed reserves – via outright purchases or

sales of Treasury securities affecting dealers’ deposits at the Federal Reserve – while facing an

elastic demand for these securities (e.g., Krishnamurthy, 2002; Greenwood and Vayanos, 2010;

Krishnamurthy and Vissing-Jorgensen, 2010). The second component captures the cost of the

intervention as any deviation from purely speculative trading motives. Finally, the ratio d ≡ γ
1−γ

captures the relative degree of FRBNY’s commitment to drive the traded asset’s equilibrium

price close to its target.

The FRBNY is likely to have first-hand, privileged knowledge of macroeconomic fundamen-

tals. Thus, we assume that the Central Bank is also given a private signal of the risky as-

set’s payoff v, SCB – a normally distributed variable with mean p0 and variance σ2CB =
1
ψ
σ2v,

where the precision parameter ψ ∈ (0, 1) and (as for speculators’ private signals in Section 2.1)
cov [Sv (m) , SCB] = cov (v, SCB) = σ2v. Nonetheless, as mentioned before, since early 1994 the

FOMC no longer employs POMOs to communicate changes in its stance of monetary policy

to financial markets. Accordingly, we further impose that the price target pT is uninformative

about v, i.e., that cov (v, pT ) = cov [Sv (m) , pT ] = cov (SCB, pT ) = 0. Both secrecy and uninfor-

mativeness of pT are meant to capture the unanticipated nature of FRBNY trades in government

bonds in the wake of informationally rich FOMC rate decisions. With knowledge of Eq. (4),

rational MMs would account for any trading activity driven by a non-secret, uninformative price

target pT , thus making the FRBNY’s efforts at targeting the equilibrium price p1 ineffective

(Vitale, 1999). Credible, informative announcements about asset fundamentals (v), like those

by the FOMC, would immediately be incorporated into market participants’ expectations and

equilibrium prices. However, if asset fundamentals are given, as for the FRBNY desk since 1994,

15See also Kumar and Seppi (1992) and Hanson and Oprea (2009) for models of price manipulation in futures

and prediction markets, respectively. When studying interbank market freezes, Allen et al. (2009) model Central

Bank’s OMOs in long-term riskless assets as providing opportunities for financial institutions to hedge aggregate

and idiosyncratic liquidity shocks in the interbank market.
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no announcement about its uninformative target pT would be deemed credible.16 In our setting,

we can think of the Federal Reserve’s announced, informative FOMC policy decisions as translat-

ing into the commonly known distribution of the risky asset’s liquidation payoff v given at time

t = 0. This distribution is independent of the FRBNY’s subsequent trading activity in that asset

guided by its uninformative target pT . Thus, our assumptions about pT reflect the uncertainty

surrounding the FRBNY’s practical implementation of the announced informative FOMC pol-

icy in the marketplace (e.g., about the desk’s uninformative targets for nonborrowed reserves).

These assumptions also imply that the Central Bank’s information endowments about v and pT
at t = 1, before trading with the MMs, are given by δCB ≡ E (v|SCB)− p0 = ψ (SCB − p0) and
δT ≡ pT − pT , respectively.
As in Section 2.1, the MMs set the equilibrium price p1 at time t = 1 after observing the

aggregate order flow made of the market orders of liquidity traders, speculators, and the Central

Bank, ω1 = xCB+
PM

m=1 x (m)+z. Proposition 2 accomplishes the task of solving for the unique

linear Bayesian Nash equilibrium of this economy.

Proposition 2 There exists a unique linear equilibrium given by the price function

p1 = [p0 + 2dλCB (p0 − pT )] + λCBω1, (5)

by each speculator m’s demand strategy

x (m) =
2 (1 + dλCB)− ψ

λCB {2 [2 + (M − 1) ρ] (1 + dλCB)−Mψρ (1 + 2dλCB)}
δv (m) , (6)

and by the Central Bank’s demand strategy

xCB = 2d (pT − p0) +
d

1 + dλCB
δT (7)

+
[2 + (M − 1) ρ]−Mρ (1 + 2dλCB)

λCB {2 [2 + (M − 1) ρ] (1 + dλCB)−Mψρ (1 + 2dλCB)}
δCB,

where λCB is the unique positive real root of the sextic polynomial of Eq. (A-25) in the Appendix.

In equilibrium, each speculator m accounts not only for the potentially competing trading

activity of the other speculators (as in the equilibrium of Proposition 1) but also for the trading

activity of the Central Bank when setting her cautious optimal demand strategy x (m) to exploit

her information advantage δv (m). As such, x (m) of Eq. (6) also depends on the commonly

known parameters controlling the government’s intervention policy – the quality of its private

16For more on the economics of disclosing public information as an information choice problem see, e.g., Stein

(1989), Veldkamp (2009, Chapter 5), and Bond and Goldstein (2010).
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information (ψ), the uncertainty surrounding its price target (σ2T ), and its commitment to it

(d). Similarly, the Central Bank accounts for the information environment of the market –

the number of speculators (M) and the heterogeneity of their private information (ρ) – when

devising its optimal trading strategy xCB. This strategy, as described by Eq. (7), is made of three

terms. The first one depends on the expected deviation of the price target from the equilibrium

price in absence of government intervention, and is fully anticipated by the MMs when setting

the market-clearing price p1 of Eq. (5). The second one depends on the portion of that target

that is known exclusively to the Central Bank, δT ; ceteris paribus, the more liquid is the market

(the lower is λCB), the more aggressively the Central Bank trades on δT to push the equilibrium

price p1 toward the privately known target pT – the more so the more important is pT in its loss

function (the higher is d). The third one depends on the Central Bank’s attempt at minimizing

the expected cost of the intervention given its private fundamental information δCB; as such, it

may either amplify or dampen its magnitude.

According to Abel’s Impossibility Theorem, the sixth degree polynomial yielding λCB cannot

be solved using rational operations and finite root extractions. Therefore, we find its unique

positive real root using the three-stage algorithm proposed by Jenkins and Traub (1970a, b) and

characterize the properties of the resulting equilibrium of Proposition 2 by means of a numerical

example rather than formal comparative statics. To that purpose, we set σ2v = σ2z = σ2T = 1,

ρ = 0.5, ψ = 0.5, γ = 0.5, and M = 500. We then plot the ensuing difference between

equilibrium price impact in the presence and in the absence of the stylized Central Bank of Eq.

(4) – ∆λ ≡ λCB − λ = λCB − σv
√
Mρ

σz [2+(M−1)ρ] – as a function of either γ, σ2T , ρ, or σ
2
v, in Figures

1a to 1d, respectively (continuous lines).

First, the government’s attempt at manipulating the equilibrium price p1 improves market

liquidity: ∆λ < 0 in Figure 1. Intuitively, the Central Bank’s optimal intervention strat-

egy stems from the resolution of a trade-off between achieving a secret, uninformative tar-

get (pT ) and the cost of deviating from informationally optimal, profit-maximizing trading

(xCB = 2−ρ
λCB{2[2+(M−1)ρ]−Mψρ}δCB when γ = 0). The former leads the Central Bank to trade

more (or less) than it otherwise would given the latter to distort the price in the direction of

its target, regardless of its private signal (SCB). Hence, a portion of its trading activity in Eq.

(7) is uninformative about fundamentals (v). Further uninformative trading in the order flow

also induces the speculators to trade more aggressively on their private signals.17 Both in turn

imply that the MMs perceive the threat of adverse selection as less serious than in the absence

17I.e., note from Propositions 1 and 2 that x (m) of Eqs. (2) and (6) can be rewritten as x (m) =

B1ρ [Sv (m)− p0]; it can then be shown that ∆B1ρ ≡ ρ[2(1+dλCB)−ψ]
λCB{2[2+(M−1)ρ](1+dλCB)−Mψρ(1+2dλCB)} −

ρσz
σv
√
Mρ

> 0.
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of the Central Bank, so making the market more liquid. Along those lines, equilibrium market

liquidity is better (and∆λ is more negative) the greater is either the Central Bank’s commitment

to achieve its price target pT (i.e., for higher γ in Figure 1a) or the uncertainty surrounding that

target (i.e., for higher σ2T in Figure 1b), since in both circumstances the greater is the perceived

intensity of uninformative government trading in the aggregate order flow.18

Second, the extent of this improvement in market liquidity is sensitive to the information

environment of the market. In particular, |∆λ| is increasing in the heterogeneity of speculators’
signals (i.e., for lower ρ in Figure 1c) and in the economy’s fundamental uncertainty (i.e., for

higher σ2v in Figure 1d). As discussed in Section 2.1, less correlated (ρ closer to zero) or more

valuable (higher σ2v) private information enhances speculators’ incentives to behave cautiously

when trading.19 This worsens market liquidity regardless of whether the Central Bank is inter-

vening or not, yet less so when it is doing so, i.e., when adverse selection is already less severe.

Thus, the liquidity differential increases. The following remark summarizes the aforementioned

implications of our numerical example.

Remark 1 There exists a nonempty set of exogenous parameter values such that, in the presence

of a Central Bank, ∆λ is negative and |∆λ| is increasing in γ, σ2T , and σ2v, and decreasing in ρ.

3 Data Description

We test the implications of the model of Section 2 in a comprehensive sample of intraday price

formation in the secondary U.S. Treasury bond market, and of open market operations executed

by the Federal Reserve Bank of New York.

3.1 Bond Market Data

We use intraday, interdealer U.S. Treasury bond price quotes from BrokerTec for the most re-

cently issued (i.e., benchmark, or on-the-run) two-year, three-year, five-year, and ten-year Trea-

sury notes, and thirty-year Treasury bonds between January 2, 2001 and December 31, 2007.

Our sample period does not encompass the financial turmoil stemming from the collapse of Bear

18It can also be shown that the efforts of the Central Bank are successful at driving the market-clearing price p1
toward its uninformative target pT in the equilibrium of Proposition 2, if we define the effectiveness of government

intervention in our economy to be the unconditional covariance between p1 and pT : cov (p1, pT ) = dλCB
1+dλCB

σ2T > 0.

Intuitively, the secrecy surrounding the Central Bank’s policy (σ2T > 0) prevents the MMs from fully accounting

for the government intervention when setting the equilibrium price after observing the aggregate order flow ω1.
19E.g., unreported analysis shows that |∆B1ρ| is increasing in ρ.
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Sterns and Lehman Brothers in 2008 and 2009, as well as the accompanying open market oper-

ations by the FRBNY. Improving marketwide liquidity provision may be an important concern

behind the FRBNY’s trading activity in the secondary market for Treasury securities during

times of crisis and market stress. Our model is not designed to capture those circumstances

nor the unique nature of these trades.20 Unreported analysis shows our inference to be broadly

unaffected by this exclusion. Further, our sample period allows for the widest coverage of price

formation at the most relevant segments of the yield curve.21 We focus on on-the-run issues

because those securities display the greatest liquidity and informed trading (e.g., Fleming, 1997;

Brandt and Kavajecz, 2004; Goldreich et al., 2005; Pasquariello and Vega, 2007). Trading in

more seasoned (i.e., off-the-run) Treasury securities is scarce, and their liquidity more difficult

to assess (Fabozzi and Fleming, 2004; Pasquariello and Vega, 2009).

Since the early 2000s, interdealer trading in benchmark Treasury securities has migrated from

voce-assisted brokers (whose data are consolidated by GovPX) to either of two fully electronic

trading platforms, BrokerTec (our data source) and eSpeed. BrokerTec accounts for nearly two-

thirds of such trading activity (Mizrach and Neely, 2006). Fleming and Mizrach (2009) find

that liquidity and trading volume in BrokerTec are significantly greater than what reported in

earlier studies of the secondary Treasury bond market based on GovPX data. Within BrokerTec,

brokers provide electronic screens displaying, for each security (i), the best bid (Bi) and ask

(Ai) prices and accompanying quantities; traders either enter limit orders or hit these quotes

anonymously.22 Our sample includes every quote posted during “New York trading hours,”

20For instance, and contrary to its established modus operandi (see Section 3.2), the Federal Reserve announced

its intention to execute POMOs (and some details about their characteristics) in advance at the March 2009

FOMC meeting, when it directed the desk to purchase up to $300 billion of long-term Treasury securities over

the subsequent six months. The desk executed this policy program – known as Large-Scale Asset Purchases

(LSAP) or “quantitative easing” – over several trading days between March 25 and October 29, 2009. In those

circumstances, the desk first announced the broad maturity segment it targeted and the days in which it was

planning to trade – but not the list of securities and par amounts to be auctioned – about two weeks in advance

(D’Amico and King, 2009, 2010). Afonso et al. (2010) discuss the significant impact of the financial crisis of 2008

on the federal funds market. Hu et al. (2010) provide evidence of severe dislocations in the U.S. Treasury market

during crisis periods.
21For example, coverage of three-year and ten-year notes, as well as thirty-year bonds, in our BrokerTec database

significantly deteriorates after 2007.
22BrokerTec and eSpeed have also retained the expanded limit order protocol (e.g., allowing workups and iceberg

orders) previously available with voice-assisted brokers. See Boni and Leach (2004), Mizrach and Neely (2006),

Dungey et al. (2009), and Fleming and Mizrach (2009) for more detailed investigations of these electronic trading

procedures.
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from 7:30 a.m. (“open”) to 5:00 p.m. (“close”) Eastern Time (ET).23 To eliminate interdealer

brokers’ posting errors, we filter all quotes within this interval following the procedure described

in Fleming (2003).24 Lastly, we augment the BrokerTec database with information on important

fundamental characteristics (daily modified duration, Di,t, and convexity, Ci,t) of all notes and

bonds in our sample (from Morgan Markets).

3.1.1 Measuring Treasury Market Liquidity

The model of Section 2 yields implications of the occurrence of POMOs for the liquidity of the

secondary U.S. Treasury bond market. These implications stem from the informational role of

trading – in particular, from the presence of privately, heterogeneously informed speculators –

in the Treasury market for its liquidity. To better capture such role, we focus our analysis on

daily measures of market liquidity for each security in our sample. Since the econometrician does

not observe the precise timing and extent of informed speculation throughout the day, narrowing

the estimation window may lead to misestimating its effects on market liquidity in the presence

of government intervention. In addition, non-informational microstructure frictions (e.g., bid-ask

bounce, quote clustering, price staleness, inventory effects) affecting estimates of intraday market

liquidity generally become immaterial over longer horizons (Hasbrouck, 2007).

In the context of our model (based on Kyle, 1985), market liquidity for a traded asset i

is defined as the marginal impact of unexpected aggregate order flow on its equilibrium price,

λi. When transaction-level data is available, this variable is typically estimated as the slope

λi,t of the regression of intraday yield or price changes on the unexpected portion of intraday

aggregate net volume. However, direct estimation of λi,t suffers from several shortcomings. First,

the occasional scarcity of trades (but not of posted bid and ask quotes) at certain maturities

may make the estimation of λi,t at the daily frequency problematic. Even when possible, this

estimation requires the econometrician i) to model expected intraday aggregate order flow, as well

as ii) to explicitly control for the effect of the aforementioned non-informational microstructure

frictions on its dynamics (e.g., Green, 2004; Brandt and Kavajecz, 2004; Pasquariello and Vega,

2007). Thus, any ensuing inference may be subject to both misspecification and biases stemming

from measurement errors in the dependent variable (e.g., Greene, 1997).

In light of these considerations, in this paper we measure each benchmark Treasury security’s

23Although trading takes place nearly continuously during the week, 95% of trading volume occurs during those

hours (e.g., Fleming, 1997). Outside that interval, fluctuations in bond prices are likely due to illiquidity.
24We also eliminate federal holidays, days in which BrokerTec recorded unusually low trading activity, and the

days immediately following the terrorist attack to the World Trade Center (September 11 to September 21, 2001)

because of the accompanying significant illiquidity in the Treasury market (e.g., Hu et al., 2010).

15



liquidity with the daily (i.e., from open to close) average of its quoted absolute price bid-ask

spread, Si,t. On-the-run spreads are virtually without measurement error. Further, there is an

extensive literature relating their magnitude and dynamics to the informational role of trading

(see O’Hara, 1995, for a review). Lastly, when comparing several alternative measures of liquidity

in the U.S. Treasury market, Fleming (2003) finds that the quoted bid-ask spread is the most

highly correlated with both direct estimates of price impact and well-known episodes of poor

liquidity in that market.25 The inference that follows is robust i) to replacing Si,t with average

daily percentage bid-ask price spreads, as well as ii) to computing Si,t over the ninety-minute

intraday interval during which the FRBNY typically executes its POMOs – 10:00 a.m. to 11:30

a.m. (see Section 3.2 below). Panel A of Table 1 reports summary statistics for the following

variables: Average daily quoted bid-ask spread (Si,t) and daily trading volume (Vi,t) for each of

the benchmark Treasury security in our sample. Consistent with market conventions (e.g., see

Fleming, 2003), Treasury notes and bond prices are in points, i.e., are expressed as a percentage

of par multiplied by 100.26 Thus, bid-ask spreads are in basis points (bps), i.e., are further

multiplied by 100.27 We also plot the corresponding time series of Si,t in Figure 2.

The secondary market for on-the-run Treasury notes and bonds is extremely liquid. Average

trading volumes are high and quoted bid-ask spreads are small; both are close to what reported in

other studies (e.g., Fleming, 2003; Fleming and Mizrach, 2009, among others). Not surprisingly,

bid-ask spreads display large positive first-order autocorrelation (ρ (1) > 0). Notably, Figure 2

suggests that bid-ask spreads are wider in the earlier portion of the sample (2001-2004), before

sharply declining afterwards (2005-2007). Corresponding summary statistics (in Panels B and C

of Table 1, respectively) confirm this pattern in Treasury bond market liquidity. We discuss and

address its implications for our analysis in Section 4.1. Data for three-year notes has significant

gaps in BrokerTec market coverage, restricting our analysis of that maturity segment to the

sub-sample 2003-2007. Figure 3 also reveals occasional gaps in coverage for ten-year notes and

thirty-year bonds. Bid-ask spreads for Treasury securities are decreasing (and their liquidity is

25See also Chordia et al. (2005) and Goldreich et al. (2005). The above considerations also preclude us from

pursuing any of the techniques available in the literature to separate the portion of the bid-ask spread due to

adverse selection from those due to order processing costs or inventory control (e.g., Stoll, 1989; George et al.,

1991). In any case, execution costs are likely to be stable over time, hence to cancel out when computing bid-ask

spread changes, as we do in the analysis that follows
26One point is one percent of par. In BrokerTec, prices of notes and bonds are instead quoted in 32nds of a

point; the tick size is one quarter of a 32nd for two-year, three-year, and five-year notes, and one half of a 32nd

for ten-year notes and thirty-year bonds. However, the BrokerTec database reports all prices in 256ths of a point.
27One basis point is one percent of one point.
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generally increasing) with their maturity.28 Two-year Treasury notes are characterized by the

highest average daily trading volume ($21 billion) and the smallest average spread, 1.096 bps

(i.e., 1.096 percent of one point). The latter implies an average roundtrip cost of about $22, 000

for trading $200 million par notional of these notes, an amount routinely available on BrokerTec

at the best bid and ask prices (Fleming and Mizrach, 2009). BrokerTec bid-ask spreads for

thirty-year Treasury bonds are not only the highest among the securities in our sample (8.322

bps, or $166, 440 per $200 million face value), but also higher than those typically observed in the

eSpeed platform (e.g., Mizrach and Neely, 2006). This may reflect the historical dominance of

Cantor Fitzgerald – eSpeed’s founder – in interdealer trading at the “long end” of the Treasury

yield curve.

3.2 Permanent Open Market Operations

We use a proprietary database of all permanent (outright) open market operations (POMOs)

executed by the Federal Reserve Bank of New York (FRBNY) between January 2, 2001 and De-

cember 31, 2007. As discussed in Section 2.2, the desk at the FRBNY trades Treasury securities

on behalf of the Federal Reserve System in response to perceived persistent deviations of the

aggregate level of nonborrowed reserves in the monetary system from a secret target consistent

with the publicly known target level of the federal funds rate.

POMOs are executed by the desk through an auction with primary dealers usually taking

place between 10:00 a.m. and 11:30 a.m. (Akhtar, 1997; Harvey and Huang, 2002; D’Amico and

King, 2009, 2010). This process is made of multiple steps. Around 10:00 a.m., the desk announces

a list of eligible Treasury securities (i.e., of CUSIPs) for the auction. This list typically includes

all securities within a specific maturity segment targeted by the desk, with the exception of the

cheapest-to-deliver in the futures market and any highly scarce (i.e., on special) security in the

repo market. Market participants do not learn about the total amounts auctioned, the targeted

segment of the yield curve, and the individual securities of interest to the FRBNY until the daily

auction list is announced. The auction closes between 11 a.m. and 11:30 a.m. Within a few

minutes afterwards, the desk selects among the submitted bids using a proprietary algorithm

and publishes the auction results. Following these trades, the reserve accounts of the desk’s

counterparties (the dealers’ banks) at the FRBNY are credited or debited accordingly, thus

permanently altering the aggregate supply of nonborrowed reserves in the monetary system.

Our database contains salient information on the desk’s POMOs: Their dates, actual secu-

28Proportional bid-ask spreads display the same pattern, since on-the-run bond prices at all maturities (except

at the very long end of the yield curve) tend to be relatively close to par over our sample period.
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rities traded (CUSIPs), descriptions (coupon rate and maturity), and par amounts accepted at

the auction. In order to capture the desk’s stated focus on broad maturity segments (rather

than on specific securities), we group all auctioned securities based on their remaining maturity

into five brackets centered around the maturities of the on-the-run securities available in the

BrokerTec database: Two-year, three-year, five-year, ten-year, and thirty-year POMOs.29 The

scarce liquidity of most off-the-run issues precludes a security-level analysis of price formation in

the presence of POMOs. Our inference is likely only weakened by this aggregation, and is robust

to alternative bracket definitions.

Table 2 contains summary statistics of POMOs for each maturity bracket, as well as for

every intervention day (labeled Total), over three partitions of our sample: 2001-2007 (Panel

A), 2001-2004 (Panel B), and 2005-2007 (Panel C). The FRBNY’s desk executed POMOs in 217

days between 2001 and 2007. When doing so, the desk traded an average of about 28 different

securities on any single day in which it intervened. As mentioned above, this suggests that

POMOs do not target (nor appear to significantly affect the supply of) any particular security

within a maturity bracket. POMOs occur most frequently at the shortest, most liquid segments

of the yield curve, the two-year to five-year maturities. As Table 2 shows, occasionally the

desk trades securities in more than one maturity bracket. Daily total par amounts accepted

(POMOi,t) average between $343 million for ten-year bonds and $1.152 billion for three-year

notes. While sizeable, these amounts are significantly lower than sample average daily trading

volume not only in the whole secondary U.S. Treasury market ($469 billion)30 but also in the

on-the-run Treasury securities in our dataset (see Vi,t in Table 1). Figure 3 plots the daily total

par amount of the FRBNY’s POMOs (POMOt, solid column), the end-of-day federal funds rate

(dotted line), and the corresponding target rate set by the FOMC (solid line) over our sample

period. POMOs appear to cluster in time – especially during the earlier, less liquid, and more

volatile interval 2001-2004 (see Panel B of Tables 1 and 2) – yet still occur in every year of the

sample. Interestingly, the desk executed exclusively purchases (POMOt, POMOi,t > 0) between

2001 and 2007, both in aggregate (Figure 4) and in each of the maturity brackets (Table 2). This

29Specifically, as in D’Amico and King (2009, 2010), we label a FRBNY transaction as i) a two-year POMO if the

remaining maturity of the traded security is between zero and four years; ii) a three-year POMO if the remaining

maturity of the traded security is between one and five years; iii) a five-year POMO if the remaining maturity of

the traded security is between three and seven years; iv) a ten-year POMO if the remaining maturity of the traded

security is between eight and twelve years; and v) a thirty-year POMO if the remaining maturity of the traded

security is greater than twelve years. Some brackets are partially overlapping because of the high substitutability

of some bonds across maturities. The inference that follows is unaffected by employing non-overlapping brackets.
30This average is computed from trading volume data reported by primary dealers to the FRBNY and available

at http://www.newyorkfed.org/markets/gsds/search.cfm.
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implies that during that time the FRBNY has often been expecting nonborrowed reserves to

hover persistently below their secret target.

4 Empirical Analysis

The model of Section 2 generates several implications for the impact of POMOs on the process

of price formation in the secondary market for U.S. Treasury securities. In this section we assess

the empirical relevance of our model within the comprehensive sample of trading activity in that

market described in Section 3. We proceed in two steps. First, we test the main equilibrium

implication of our model, i.e., that outright interventions by the FRBNY improve equilibrium

market liquidity. Second, we assess whether this effect can be attributed to the informational

role of trading, as uniquely postulated by our model.

4.1 POMOs and Market Liquidity

The main prediction of our stylized model of trading is that outright trades by the FRBNY

(POMOs) lower the equilibrium price impact of order flow (∆λ ≡ λCB − λ < 0, Remark 1).

Intuitively, this outcome stems from uninformative POMOs alleviating adverse selection risk for

the MMs. As discussed in Section 3.1.1, in this paper we capture a Treasury security’s daily

market liquidity with that security’s average bid-ask price spread, Si,t. Accordingly, our model

predicts a tighter bid-ask spread (i.e., a lower Si,t) for the targeted maturity bracket in days

when POMOs occur.

To test this prediction, we start by defining liquidity changes on any POMO day as ∆SBi,t ≡
Si,t− SBi,t, the difference between the average bid-ask price spread on that day and a benchmark
pre-intervention level, SBi,t. POMOs often cluster in time (e.g., see Figure 4). Thus, we attempt

to mitigate any ensuing bias by computing SBi,t as the average bid-ask price spread over the most

recent previous 22 trading days when no POMO occurred (e.g., Pasquariello, 2007b). Alternative

intervals lead to similar inference. Consistent with trend for Si,t displayed in Figure 3, so-defined

daily spread changes are also on average negative over our sample period (see Table 1). We

then compute averages of these differences for each on-the-run Treasury note and bond in our

BrokerTec sample i) over the days when POMOs occurred in the corresponding maturity bracket

(i.e., when the event dummy ICBi,t = 1); as well as ii) over the days when any POMO occurred

(i.e., when the event dummy ICBt = 1). The latter effects may stem from the relatively high

substitutability of on-the-run Treasury securities (e.g., Cohen, 1999; D’Amico and King, 2009,
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2010; Greenwood and Vayanos, 2010). We report these averages, labeled ∆SBi,t, in Table 3.
31

Consistent with our model, mean daily bid-ask spreads decline on both same-maturity and

any-maturity POMO days. These univariate tests may have low power because of the relative

paucity of POMO days over our sample period (see Table 2). Nevertheless, estimates for ∆SBi,t
in Table 3 are always negative, much larger than their corresponding sample-wide means (in

Table 1), and both statistically and economically significant at nearly every maturity.32. For

instance, total roundtrip costs per daily trading volume in five-year Treasury notes (Vi,t, in Table

1) decline on average by more than $400, 000 (∆SBi,t = (−0.240/10, 000)× $17.6 billion) – i.e.,

by nearly 42% of the sample-wide standard deviation of ∆SBi,t (0.580, in Table 1) – on days

when the desk is trading these securities. Table 3 also provides strong evidence of liquidity

spillovers in correspondence with any outright trade by the FRBNY: ∆SBi,t < 0 for all on-the-run

maturities, regardless of the segment of the yield curve targeted by the desk, and by 7% to 16%

of the corresponding sample-wide mean bid-ask spread in Table 1. As discussed in Section 3.2,

these estimates are obtained from on-the-run Treasury securities in the targeted segments, rather

than from the actual securities being traded by the desk, because of the often scarce liquidity of

the latter. Thus, they are likely to underestimate the true extent of the impact of POMOs on

Treasury market liquidity.

Improvements in Treasury market liquidity in proximity of POMOs may be due to changes

in bond characteristics and calendar effects unrelated to FRBNY interventions. For instance,

changes in Treasury securities’ sensitivity to yield dynamics (as proxied by modified duration,

Di,t, and convexity, Ci,t) may affect their perceived riskiness to dealers and investors (e.g., Stre-

bulaev, 2002; Goldreich et al., 2005; Pasquariello and Vega, 2009). Bid-ask spreads and trading

activity also display weekly seasonality and time trends (e.g., Fleming, 1997, 2003; Pasquariello

and Vega, 2007). In particular, bid-ask spreads on the BrokerTec platform have considerably

tightened – and trading volume has likewise increased – over our sample period, especially

from 2005 onward. These effects may either enhance or obfuscate the impact of POMOs on the

process of price formation in the Treasury bond market. We assess the robustness of our univari-

ate inference to these considerations by specifying the following multivariate model of bid-ask

price spread changes for both same-maturity (ICBi,t = 1) and any-maturity POMOs (ICBt = 1):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + εi,t, (8)

31The occasional gaps in BrokerTec coverage and the quote filtering procedures described in Section 3.1 result

in a loss of some event days in the merged BrokerTec/POMO sample, especially for three-year notes.
32Thirty-year Treasury bonds represent the sole exception. As mentioned in Section 3.1, price formation in

those securities likely occurs in the more liquid eSpeed platform.
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where ∆SBi,t is computed over every day of our sample, Calendart is a vector of day-of-the-week,

month, and year dummies, ∆DB
i,t ≡ Di,t −DB

i,t, ∆C
B
i,t ≡ Ci,t − CBi,t, and DB

i,t and C
B
i,t are average

modified duration and convexity over the most recent previous 22 trading days when no POMO

occurred, respectively. Eq. (8) allows us to compare bid-ask price spread changes on POMO

days to such changes in every other trading day over our sample period – rather than among

POMO days alone, as in the univariate tests for ∆SBi,t. The inclusion of calendar fixed effects

and bond characteristics in Eq. (8) only weakens our inference.33

We estimate these regressions for each on-the-run maturity in our database separately by

Ordinary Least Squares (OLS). We evaluate the statistical significance of the coefficients’ esti-

mates, reported in Table 3, with Newey-West standard errors to correct for heteroskedasticity

and serial correlation. The results in Table 3 provide further, strong support for our model’s

main prediction. Consistent with the prior univariate evidence, bid-ask spreads tend to decline

(i.e., αi,CB < 0 in Eq. (8)) both when same-maturity and any-maturity POMOs occur. This

decline is often both statistically and economically significant – e.g., amounting on average to

more than 8% (27%) of the corresponding sample mean spread (standard deviation of spread

change) in Table 1 – with the exception of three-year notes, whose coverage in our sample is

less than complete.

We also consider whether our inference may be attributed to sample-specific issues. As dis-

cussed in Section 3.1, bid-ask spreads are much wider (and more volatile) during the earlier

portion of our sample, 2001-2004. That period encompasses both significant economic and finan-

cial uncertainty – e.g., the bursting of the Internet bubble, the events of 9/11, the short NBER

recession in the Fall of 2001, and accompanying changes in the Federal Reserve’s monetary policy

(see Figure 3) – as well as the migration of most trading in on-the-run Treasury securities from

the voice-brokered GovPX platform to two electronic platforms – BrokerTec and eSpeed. We

assess the effect of these circumstances on our inference in two ways. First, we estimate both

∆SBi,t and αi,CB separately within either the earlier, high-spread subsample (2001-2004, in Panel

A of Table 4) or the later, low-spread one (2005-2007, in Panel B of Table 4). According to our

model, the worse is market liquidity the greater is its improvement in correspondence with unin-

formative government interventions, for the more severe adverse selection risk may have been in

their absence (e.g., see Section 2.3). Consistently, this analysis indicates that much of the decline

in bid-ask spreads described above is concentrated in the earlier (low-liquidity) subsample, less

33The time series Si,t are made of several different on-the-run securities stacked on each other over the sample

period (as in Brandt and Kavajecz, 2004; Green, 2004; Pasquariello and Vega, 2007, 2009). Unreported analysis

shows our inference to be insensitive to the inclusion of security fixed effects in Eq. (8).
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so in the later (high-liquidity) one. Thus, this evidence provides further support for our model.34

Second, we extend our analysis to all available GovPX data within our sample period. This data

includes price midquotes and bid-ask spreads for two-year, three-year, five-year, and ten-year

notes between 2001 and 2004. Voice-brokered trading in on-the-run securities virtually ceases

afterward. We then estimate both ∆SBi,t and αi,CB within this dataset. These estimates (in Panel

C of Table 4) are similar in sign, magnitude, and significance to those from our BrokerTec sam-

ple. This suggests that our inference cannot be attributed to the gradual migration of trading

activity in on-the-run Treasury securities from GovPX to BrokerTec.

The estimated improvement in Treasury market liquidity accompanying POMOs is unlikely

to stem from inventory considerations. The role of inventory management is often invoked in

the literature (surveyed in the Introduction) studying Central Bank interventions in currency

markets. According to these studies, government interventions, regardless of their information

content, may hinder dealers’ ability to provide liquidity to other market participants – e.g.,

because of inventory targets, stringent capital constraints, “hot potato” effects, or limited risk-

bearing capacity. This may ultimately lead to wider bid-ask spreads, contrary to the evidence in

Tables 3 and 4. Inventory considerations may also lead to asymmetric supply effects of POMOs

on market liquidity. For instance, the desk’s outright sales (purchases) of notes and bonds –

POMOi,t > 0 (POMOi,t < 0) – may decrease (increase) on-the-run bid-ask spreads by lowering

(magnifying) dealers’ search costs for sought-after Treasury securities (e.g., Vayanos and Weill,

2008; D’Amico and King, 2009, 2010). However, the desk not only did not sell any Treasury

security over our sample period, but also explicitly avoids trading in what the market perceives

as “scarce” securities (see Section 3.2).

Alternatively, POMOs may affect liquidity provision in the Treasury bond market by alter-

ing reserve market conditions for participating dealers and financial institutions, even if those

trades had no discernible impact on the informational role of trading in that market (as instead

postulated by our model).35 In particular, POMO purchases (sales) may ease (tighten) market-

makers’ liquidity provision by increasing (decreasing) the availability of credit and capital – i.e.,

dealers’ funding liquidity – ultimately leading to tighter (wider) bid-ask spreads in the Treasury

market (e.g., Brunnermeier and Pedersen, 2009). This channel is likely to play a prominent role

in correspondence with significant episodes of market turmoil, when credit and capital may be

scarce. Yet, this is unlikely to have been the case over our sample period 2001-2007. By design,

our sample ends prior to the financial crisis following the collapse of Bear Sterns and Lehman

34We explore in greater detail the role of fundamental uncertainty for our inference in Section 4.2.3.
35For instance, Brunetti et al. (2011) report that TOMOs by the European Central Bank generally improve

the liquidity of the e-MID, the electronic interbank market for Euro-denominated unsecured deposits and loans.
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Brothers in 2008. As such, it does not include the accompanying extraordinary trading activity

by the FRBNY in the Treasury market – e.g., a few large sales in the Spring of 2008 and several

sizable purchases afterwards – discussed in Section 3.1. Unreported evidence shows that i) our

inference is either unaffected or only weakened by the inclusion of this crisis period and that

activity;36 ii) both those POMO purchases and sales are accompanied on average by tighter bid-

ask spreads, especially within the ninety-minute intraday interval surrounding POMO auctions

(see Sections 3.1 and 3.2); and iii) in those circumstances, F -tests nearly always fail to reject

the null hypothesis that the estimated impact of FRBNY trades on bid ask spreads is the same

for both sets of POMOs. We conclude that Treasury market liquidity improves in the wake of

their occurrence regardless of their impact on dealers’ inventories, on the relative supply of the

traded securities, or on reserve market conditions for liquidity providers.

4.2 POMOs and the Informational Role of Trading

The evidence in Tables 3 and 4 provides strong support for our model’s main implication: POMOs

executed by the FRBNY’s desk in the secondary market for Treasury securities meaningfully im-

prove Treasury market liquidity – i.e., on average lowering daily bid-ask price spreads across all

segments of the yield curve – especially when such liquidity is lower. As discussed in Section 4.1,

this effect is unlikely to be systematically explained by inventory management or liquidity provi-

sion considerations. Our model attributes these effects to the impact of government intervention

on the Treasury market’s information environment. In this section, we assess more directly this

basic, novel premise of our theory by testing its unique predictions for market liquidity (also in

Remark 1) stemming from the informational role of trading in that market.

4.2.1 Information Heterogeneity

The first prediction from Remark 1 states that, ceteris paribus, greater information heterogeneity

among speculators (i.e., lower ρ) magnifies the positive liquidity externalities of government in-

tervention (i.e., a more negative ∆λ, as in Figure 1c). Intuitively, more heterogeneously informed

speculators trade more cautiously to protect their perceived private information monopoly. The

ensuing greater adverse selection risk for the MMs worsens market liquidity, i.e., increases the

equilibrium price impact of aggregate order flow. In those circumstances, Central Bank’s trades

36Specifically, we augment our sample with bond and intervention data between January 1, 2008 and March

24, 2009, i.e., until the last trading day before the FRBNY began executing its LSAP policy described in Section

3.1. Consistently, Brunetti et al. (2011) find that TOMOs by the European Central Bank either fail to improve

or worsen the liquidity of the interbank Euro deposit market during the aforementioned crisis period.
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attempting to push the equilibrium price toward its secret, informative policy target more sig-

nificantly mitigate the more severe threat of adverse selection in market-making.

Testing for this prediction requires measurement of ρ, the heterogeneity of private information

about fundamentals among sophisticated Treasury market participants. Marketwide information

heterogeneity is commonly proxied by the standard deviation across professional forecasts of

economic variables (e.g., Diether et al., 2002; Green, 2004; Pasquariello and Vega, 2007, 2009;

Kallberg and Pasquariello, 2008; Yu, 2009). To that purpose, in this paper we employ the quar-

terly analyst forecasts of U.S. macroeconomic announcements collected by the Federal Reserve

Bank of Philadelphia in its Survey of Professional Forecasters (SPF). The SPF, initiated in 1968

by the American Statistical Association and the National Bureau of Economic Research, is the

only such survey continuously available over our sample period, and is commonly used in em-

pirical research on the formation of macroeconomic expectations.37 For each quarter q, the SPF

database contains individual analyst forecasts for several macroeconomic announcements and at

several future horizons. We focus on next-quarter forecasts for arguably the most important of

them: Unemployment, Non Farm Payroll, Nominal GDP, CPI, Industrial Production, and Hous-

ing Starts (e.g., Pasquariello and Vega, 2007; Brenner et al., 2009). We define the dispersion

of beliefs among speculators for each macroeconomic variable p in quarter q as the standard

deviation of its forecasts in that quarter, SDFp,q. We then compute the aggregate degree of

information heterogeneity about macroeconomic fundamentals in quarter q, SSDFq, as a simple

average of all standardized forecast dispersions in that quarters (see Figure 4a).38

As in Section 4.1, we assess the impact of marketwide information heterogeneity on POMOs’

positive liquidity externalities via two parsimonious empirical strategies. First, we estimate the

slope coefficients of univariate regressions of average bid-ask spread changes (∆SBi,t) over (same-

maturity or any-maturity) POMO days alone (ICBi,t = 1 or ICBt = 1) on the contemporaneous

realizations of SSDFq. For ease of interpretation, we then use the resulting OLS estimates (axi,CB)

to compute differences (in bps) between ∆SBi,t in POMO days during quarters when marketwide

information heterogeneity was either historically high (low ρ) – i.e., for SSDFq ≥ SSDF 70
th

q ,

the top 70th percentile of its empirical distribution – or historically low (high ρ) – i.e., for

SSDFq ≤ SSDF 30
th

q , the bottom 30th percentile of its empirical distribution. We report these

37Croushore (1993) provides a detailed description of the SPF database. An equally popular survey of profes-

sional forecasts of U.S. macroeconomic announcements administered by the International Money Market Services

Inc. (MMS) has been discontinued in 2003.
38Normalization is necessary because units of measurement differ across macroeconomic variables. We also shift

the mean of SSDFq by a factor of five to ensure that SSDFq is always positive. Importantly, SSDFq and the

other information proxies described below are virtually uncorrelated.
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differences in Table 5, labeled as ∆∆SB,xi,t = axi,CB

³
X70th

t −X30th

t

´
for Xt = SSDFq.

Second, we amend the multivariate regression models of Eq. (8) to include the cross-products

of same-maturity and any-maturity POMO dummies (ICBi,t and ICBt ), as follows:

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + αxi,CBI

CB
i,t Xt + εi,t, (9)

where Xt = SSDFq. Eq. (9) attempts to capture any state dependency (from Xt) in bid-

ask spread changes on POMO days with respect to changes over the whole sample period, while

accounting for calendar effects, time-varying changes in important bond characteristics, and time

trends in Xt.39 As above, we compute differences (in bps) between OLS estimates of the impact

of POMOs on bid-ask spread changes in days characterized by historically high information

heterogeneity – i.e., for X70th

t = SSDF 70
th

q – and those same estimates in days characterized

by historically low information heterogeneity – i.e., for X30th

t = SSDF 30
th

q . We report these

differences in Table 5, labeled as ∆αxi,CB = αxi,CB

³
X70th

t −X30th

t

´
for Xt = SSDFq. Importantly,

in this section we only report means and regression coefficients estimated over the full BrokerTec

sample period 2001-2007. As Figure 4 illustrates, neither SSDFq nor the additional information

proxies defined below display enough variation over either of the two subperiods 2001-2004 and

2005-2007 analyzed in Section 4.1. Nevertheless, this additional evidence (available on request)

broadly confirms our inference, especially in the earlier, low-liquidity subsample (as our model

implies).

Consistent with Remark 1, estimated spread change differentials are most often negative and

statistically significant – i.e.,∆∆SB,xi,t < 0 and∆αxi,CB < 0– in correspondence with both same-

maturity (ICBi,t = 1) and any-maturity POMOs (ICBt = 1), for both on-the-run Treasury notes and

bonds. For instance, Table 5 shows that on average, bid-ask spreads for two-year, five-year, and

ten-year Treasury notes on any-maturity POMO days when our proxy for marketwide dispersion

of beliefs SSDFq is high decline by roughly 106% (of the baseline effect in Table 3) more – or

about 0.184 bps more – than when SSDFq is low (i.e., mean significant ∆αxi,CB/αi,CB = 1.06).

Table 5 further indicates that, in correspondence with government intervention at the long-end

of the yield curve, bid-ask spreads for thirty-year Treasury bonds when SSDFq is high are no

39Eq. (9) does not allow for Xt to affect ∆SBi,t ≡ Si,t − SBi,t on non-POMO days. According to our basic

model (see Proposition 1, in Section 2.1) and extant empirical evidence (e.g., Pasquariello and Vega, 2007), the

information environment of the U.S. Treasury market (e.g., information heterogeneity ρ or fundamental volatility

σ2v) may affect its equilibrium liquidity (λ of Eq. (3)) even in absence of Central Bank interventions. However, our

low-frequency information measures Xt are likely to impact both Si,t and SBi,t; thus, the effects of those measures

on market liquidity are likely to cancel out in ∆SBi,t. Consistently, unreported analysis reveals ∆S
B
i,t to be largely

insensitive to our proxies Xt and our inference to be unaffected by their inclusion in Eq. (9).
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less than 1.5 bps lower than when SSDFq is low (i.e., ∆∆SB,xi,t = −1.550 and ∆αxi,CB = −1.589).
This evidence suggests that government interventions have a greater impact on the process of

price formation in the secondary market for Treasury securities when information heterogeneity

among speculators is high, as postulated by our model.

4.2.2 Fundamental Uncertainty

The second prediction from Remark 1 states that, ceteris paribus, greater uncertainty about the

traded asset’s payoff (i.e., higher σ2v) amplifies the impact of government intervention on market

liquidity – i.e., leads to higher |∆λ| (Figure 1d). Greater fundamental uncertainty worsens
equilibrium market liquidity, for it makes speculators’ private information more valuable and the

accompanying adverse selection risk for the MMs more severe. As discussed above, this enhances

the positive liquidity externalities of Central Bank’s trades.

To evaluate these implications of our model, we proxy for σ2v with EURV OLm (plotted

in Figure 4b), the monthly average (to smooth daily variability) of daily Eurodollar implied

volatility from Bloomberg. EURV OLm is commonly used as a measure of market participants’

perceived uncertainty surrounding U.S. monetary policy (e.g., Pasquariello and Vega, 2009). We

then run the univariate and multivariate tests for spread change differentials described in Section

4.2.1 – by estimating ∆∆SB,xi,t for the former and ∆αxi,CB for the latter – after imposing that

Xt = EURV OLm. We report these estimates in Table 6.

Consistent with Remark 1, both∆∆SB,xi,t and∆αxi,CB are always negative, but are statistically

significant only at the mid—section of the yield curve. In those circumstances, bid-ask spreads

tighten much more pronouncedly on POMO days characterized by higher fundamental uncer-

tainty – e.g., by no less than 100% of the baseline decline in spread reported in Table 3. For

example, Table 6 shows that during same-maturity POMO days when SSDFq is historically high,

the bid-ask spreads for ten-year Treasury notes decline by 0.318 bps more (∆αxi,CB = −0.318)
than when SSDFq is low. This effect is economically significant, for it amounts to roughly 35%

of the sample-wide standard deviation of ∆SBi,t in Table 1. This evidence suggests that govern-

ment interventions are accompanied by a greater improvement in Treasury market liquidity when

fundamental uncertainty is higher, as implied by our model.

4.2.3 Policy Uncertainty

The last prediction from Remark 1 states that, ceteris paribus, greater uncertainty about the

Central Bank’s uninformative price target pT among market participants (i.e., higher σ2T ) en-

hances the improvement in equilibrium market liquidity accompanying its trades (∆λ, as in
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Figure 1b). Greater policy uncertainty complicates the MMs’ attempt at accounting for the

extent of uninformative government intervention in the aggregate order flow before setting the

equilibrium price p1. Yet, it also lowers their perceived adverse selection risk from trading with

privately informed speculators.

As discussed in Sections 2.2 and 3.2, the FRBNY’s desk targets the aggregate level of non-

borrowed reserves available in the banking system via uninformative POMOs to ensure that the

federal funds rate is “consistent” with a public and informative target rate set by the FOMC.40

Thus, uncertainty among market participants about the FRBNY’s secret and uninformative

reserve target for POMOs may manifest itself in the federal funds market. Accordingly, we mea-

sure marketwide policy uncertainty surrounding the desk’s POMOs with FEDV OLm (plotted

in Figure 4c), the monthly average (to smooth daily variability) of daily standard deviation of

the federal funds rate, from the FRBNY.41 We then assess the sensitivity of spread changes in

correspondence with POMOs to FEDV OLm by means of the univariate and multivariate tests

of Section 4.2.1.

Both sets of tests, in Table 7, provide further support for our model. As postulated by

Remark 1, once again ∆∆SB,xi,t < 0 and ∆αxi,CB < 0 for most maturities and in correspondence

with both same-maturity (ICBi,t = 1) and any-maturity POMOs (ICBt = 1). Hence, these estimates

suggest that liquidity improves more pronouncedly on POMO days when uncertainty about the

desk’s motives (proxied by FEDV OLm) is historically high. This effect is especially strong

for thirty-year Treasury bonds, whose bid-ask price spread on same-maturity POMO days when

FEDV OLm is large (i.e., at or above the 70th percentile of its empirical distribution) is about 1.8

bps (or 22% of its sample mean in Table 1) lower than when FEDV OLm is small (i.e., at or below

the 30th percentile of its empirical distribution). Table 7 also shows that, when negative and

statistically significant, the estimated cross-product coefficients ∆αxi,CB for all other maturities

are between 29% and 65% higher than the baseline estimated bid-ask spread decline αi,CB (from

Eq. (8)) in Table 3.

In short, the evidence in Tables 5 to 7 indicates that the informational role of trading im-

portantly affects the impact of government interventions on the process of price formation in the

secondary market for Treasury securities, as predicated by our model.

40For example, the website of the FRBNY (http://www.newyorkfed.org/markets/pomo_landing.html) states

that “[p]urchases or sales of Treasury securities on an outright basis have been used historically as a tool to

manage the supply of bank reserves to maintain conditions in the market for reserves consistent with the federal

funds target rate set by the [FOMC].”
41This data is available at http://www.newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm.
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5 Conclusions

The many severe episodes of financial turmoil affecting the global economy in the past decade

have led to increasing calls for greater, more direct involvement of governments and monetary

authorities in the process of price formation in financial markets. The objective of this study is

to shed light on the implications of this involvement for financial market quality.

To that purpose, we investigate the impact of permanent Open Market Operations (POMOs)

by the Federal Reserve Bank of New York (FRBNY) – on behalf of the Federal Reserve System

– on the microstructure of the secondary U.S. Treasury bond market. POMOs are trades in

previously issued U.S. Treasury securities to ensure that the aggregate supply of nonborrowed

reserves in the monetary system does not persistently deviate from a secret, uninformative tar-

get consistent with the federal funds target rate set by the Federal Open Market Committee

(FOMC). To guide our analysis, we construct a model of trading in the Treasury market in

which – consistent with much recent empirical evidence (e.g., Brand and Kavajecz, 2004; Green,

2004; Pasquariello and Vega, 2007, 2009) – the presence of strategic, heterogeneously informed

speculators enhances adverse selection risk for uninformed market-makers (MMs). In this basic

setting, we introduce a stylized Central Bank facing a trade-off between a policy goal – achieving

a secret, uninformative price target – and its expected cost. The main novel insight of our model

is twofold. First, the Central Bank’s equilibrium trading activity improves equilibrium market

liquidity for it alleviates MMs’ adverse selection concerns from facing the aggregate order flow

(thanks to the uninformativeness of its secret target). Second, the extent of this improvement is

sensitive to the informational role of trading.

Our subsequent empirical analysis of a comprehensive sample of investors’ and the FRBNY’s

trading activity in the secondary U.S. Treasury market between 2001 and 2007 provides strong,

robust support for these insights. In particular, our evidence shows that i) bid-ask spreads of

on-the-run Treasury notes and bonds decline on days when the FRBNY executes POMOs; and

ii) the estimated magnitude of this decline on POMO days is greater when Treasury market

liquidity is lower, as well as increasing in measures of volatility of U.S. economy’s fundamentals,

marketwide dispersion of beliefs about them, and uncertainty about the FRBNY’s policy goals,

as implied by our model.

Overall, these findings indicate that the externalities of government intervention in financial

markets for their process of price formation may be economically and statistically significant, as

well as crucially related to the targeted markets’ information environment. We believe these are

important contributions to current and future research on official trading activity and market

manipulation.
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6 Appendix

Proof of Proposition 1. The proof is by construction: We first conjecture general linear

functions for the pricing rule and speculators’ demands; we then solve for their parameters

satisfying Conditions 1 and 2; finally, we show that these parameters and functions represent a

rational expectations equilibrium. We start by guessing that equilibrium p1 and x (m) are given

by p1 = A0 + A1ω1 and x (m) = B0 + B1δv (m), respectively, where A1 > 0. Those expressions

and the definition of ω1 imply that, for each speculator m,

E [p1|δv (m)] = A0 +A1x (m) +A1B0 (M − 1) +A1B1 (M − 1) ρδv (m) . (A-1)

Using Eq. (A-1), the first order condition of the maximization of each speculator m’s expected

profit E [π (m) |δv (m)] with respect to x (m) is given by

p0 + δv (m)−A0 − (M + 1)A1B0 − 2A1B1δv (m)− (M − 1)A1,1B1,1ρδv (m) = 0. (A-2)

The second order condition is satisfied, since 2A1 > 0. For Eq. (A-2) to be true, it must be that

p0 −A0 = (M + 1)A1B0 (A-3)

2A1B1 = 1− (M − 1)A1B1ρ. (A-4)

The distributional assumptions of Section 2.1 imply that the order flow ω1 is normally dis-

tributed with mean E (ω1) =MB0 and variance var (ω1) =MB21ρσ
2
v [1 + (M − 1) ρ] +σ2z. Since

cov (v,ω1) =MB1ρσ
2
v, it ensues that

E (v|ω1) = p0 +
MB1ρσ

2
v

MB21ρσ
2
v [1 + (M − 1) ρ] + σ2z

(ω1 −MB0) . (A-5)

According to the definition of a Bayesian-Nash equilibrium in this economy (Section 2.1), p1 =

E (v|ω1). Therefore, our conjecture for p1 yields

A0 = p0 −MA1B0 (A-6)

A1 =
MB1ρσ

2
v

MB21ρσ
2
v [1 + (M − 1) ρ] + σ2z

. (A-7)

The expressions for A0, A1, B0, and B1 in Proposition 1 must solve the system made of Eqs.

(A-3), (A-4), (A-6), and (A-7) to represent a linear equilibrium. Defining A1B0 from Eq. (A-3)

and plugging it into Eq. (A-6) leads us to A0 = p0. Thus, it must be that B0 = 0 to satisfy Eq.

(A-3). We are left with the task of finding A1 and B1. Solving Eq. (A-4) for A1, we get

A1 =
1

B1 [2 + (M − 1) ρ]
. (A-8)
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It then follows from equating Eq. (A-8) to Eq. (A-7) that B21 =
σ2z

Mρσ2v
, i.e. that B1 = σz√

Mρσv
.

Substituting this expression back into Eq. (A-8) implies that A1 =
σv
√
Mρ

σz[2+(M−1)ρ] . Finally, we

observe that Proposition 1 is equivalent to a symmetric Cournot equilibrium with M specula-

tors. Therefore, the “backward reaction mapping” introduced by Novshek (1984) to find n-firm

Cournot equilibria proves that, given any linear pricing rule, the symmetric linear strategies

x (m) of Eq. (2) indeed represent the unique Bayesian Nash equilibrium of the Bayesian game

among speculators.

Proof of Corollary 1. The first part of the statement stems from the fact that ∂λ
∂σv

=
√
Mρ

σz [2+(M−1)ρ] > 0. Furthermore,
∂λ
∂ρ
= − σvM [(M−1)ρ−2]

2σz
√
Mρ[2+(M−1)ρ]2 < 0 except in the small region of {M, ρ}

where ρ ≤ 2
M−1 .

Proof of Proposition 2. The outline of the proof is similar to the one of the proof of

Proposition 1. We begin by conjecturing the following functional forms for the equilibrium price

and trading activity of speculators and the Central Bank: p1 = A0+A1ω1, x (m) = B0+B1δv (m),

and xCB = C0+C1δCB+C2δT , respectively, where A1 > 0. Those expressions and the definition

of ω1 imply that, for each speculator m and the Central Bank,

E [p1|δv (m)] = A0 +A1x (m) +A1B0 (M − 1) (A-9)

+A1B1 (M − 1) ρδv (m) +A1C0 +A1C1ψδv (m) ,

E [p1|δCB] = A0 +A1xCB +MA1B0 +MA1B1ρδCB, (A-10)

respectively. Eq. (A-9) leads to the following expression for the first order condition of the

maximization of each speculator m’s E [π (m) |δv (m)]:

p0 + δv (m)−A0 − 2A1X (m)− (M − 1)A1B0
− (M − 1)A1,1B1,1ρδv (m)−A1C0 −A1C1ψδv (m) = 0.

(A-11)

The second order condition is satisfied as −2A1 < 0. For Eq. (A-11) to be true, it must be that

p0 −A0 = (M + 1)A1B0 +A1C0, (A-12)

2A1B1 = 1− (M − 1)A1B1ρ−A1C1ψ. (A-13)

The distributional assumptions of Sections 2.1 and 2.2 imply that

minxCB E [L|δCB, δT ] = minxCB [γA21x2CB + 2γA21MB0xCB + 2γA21MB0ρδCBxCB
+2γA0A1xCB − 2γpTA1XCB + (1− γ)A0xCB + (1− γ)A1x

2
CB + (1− γ)MA1B0xCB

+(1− γ)MA1B1ρδCBxCB − (1− γ) p0xCB − (1− γ) δCBxCB] .

(A-14)
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The first order condition of this minimization is then given by

2γA21xCB + 2γA
2
1MB0 + 2γA

2
1MB0ρδCB + 2γA0A1 − 2γpTA1

+(1− γ)A0 + 2 (1− γ)A1xCB + (1− γ)MA1B0

+(1− γ)MA1B1ρδCB − (1− γ) p0 − (1− γ) δCB = 0.

(A-15)

The second order condition is also satisfied as 2γA21 + 2 (1− γ)A1 > 0. Eq. (A-15) and d ≡ γ
1−γ

imply that

p0 −A0 = 2A1C0 +MA1B0 + 2dA
2
1C0 + 2dA

2
1MB0 + 2dA0A1 − 2dpTA1, (A-16)

2A1C1 = 1−MA1B1ρ− 2dA21C1 − 2dA21MB1ρ, (A-17)

A1C2 = dA1 − dA21C2, (A-18)

for our conjectures to be true. It ensues from Eq. (A-18) that C2 = d
1+dA1

. We further observe

that those conjectures also imply that the order flow ω1 must be normally distributed with mean

E (ω1) =MB0 + C0 and variance

var (ω1) =MB
2
1ρσ

2
v [1 + (M − 1) ρ] + C21ψσ2v + 2MB1C1ψρσ2v + σ2z + C

2
2σ

2
T . (A-19)

Since cov (v,ω1) = MB1ρσ2v + C1ψσ
2
v and p1 = E (v|ω1) in equilibrium (Condition 2), it follows

that

p1 = p0 +
MB1ρσ

2
v + C1ψσ

2
v (ω1 −MB0 − C0)

MB21ρσ
2
v [1 + (M − 1) ρ] + C21ψσ2v + 2MB1C1ψρσ2v + σ2z + C

2
2σ

2
T

. (A-20)

Thus, our conjecture for p1 yields

A0 = p0 −MA1B0 −A1C0, (A-21)

A1 =
MB1ρσ

2
v + C1ψσ

2
v

MB21ρσ
2
v [1 + (M − 1) ρ] + C21ψσ2v + 2MB1C1ψρσ2v + σ2z + C

2
2σ

2
T

. (A-22)

The expressions for A0, A1, B0, B1, C0, and C1 in Proposition 2 must solve the system made

of Eqs. (A-12), (A-13), (A-16), (A-17), (A-21), and (A-22) to represent a linear equilibrium.

For both Eqs. (A-12) and A-21) to be true, it must be that B0 = 0. Defining A1C0 = p0 − A0
from Eq. (A-12) and plugging it into Eq. (A-16) leads us to A0 = p0 + 2dA1 (p0 − pT ) and
C0 = 2d (pT − p0). We are left with the task of finding A1, B1, and C1. Solving Eq. (A-13) for
B1 and Eq. (A-17) for C1 we get

B1 =
1−A1C1ψ

A1 [2 + (M − 1) ρ]
, (A-23)

C1 =
1−MA1B1ρ (1 + 2dA1)

2A1 (1 + dA1)
, (A-24)
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respectively. The system made of Eqs. (A-23) and (A-24) implies that B1 =
2(1+dA1)−ψ
A1f(A1)

and C1 =
[2+(M−1)ρ]−Mρ(1+2dA1)

A1f(A1)
, where f (A1) = 2 [2 + (M − 1) ρ] (1 + dA1) −Mψρ (1 + 2dA1). Next, we

replace the above expressions for B1 and C1 in Eq. (A-22) to get the following sextic polynomial

in A1,

g6A
6
1 + g5A

5
1 + g4A

4
1 + g3A

3
1 + g2A

2
1 + g1A1 + g0 = 0, (A-25)

where it is a straightforward but tedious exercise to show that, for the parameter restrictions in

Sections 2.1 and 2.2,

g0 = −σ2v
£
Mρ (2− ψ)2 + ψ (2− ρ)2

¤
< 0, (A-26)

g1 = −2σ2vd
©
Mρ

£
8− 6ψ − ψ2 (1− ρ)

¤
+ 2ψ (2− ρ)2

ª
< 0, (A-27)

g2 = σ2zMρ
£
Mρ (2− ψ)2 + 4 (2− ρ) (2− ψ)

¤
+ σ2Td

2 [Mρ (2− ψ) + 2 (2− ρ)]2

+σ2vd
2
©
Mρ

£
4Mρψ (1− ψ) + ψ2 (7− 4ρ) + 5ψ (4− ρ)− 24

¤
+ 5ψρ (4− ρ)− 20ψ

ª
,

(A-28)

g3 = 2σ
2
zdMρ {Mρ [8− ψ (10− 3ψ)] + 2 [16− 5ψ (2− ρ) + 8ρ]}

+2σ2vd
3
©
4M2ρ2ψ (1− ψ) + 2Mρ

£
ψ2 (1− ρ) + ψ (5− 2ρ)− 4

¤
− ψ (2− ρ)2

ª
+4σ2Td

3
©
M2ρ2 [2− ψ (3− ψ)] +Mρ [8− 3ψ (2− ρ)− 4ρ] + 2 (2− ρ)2

ª
,

(A-29)

g4 = 4σ
2
Td

4 [Mρ (1− ψ) + (2− ρ)]2 + 4σ2vd
4Mρ [Mρψ (1− ψ) + ψ (2− ρ)− 1]

+σ2zd
2
©
M2ρ2 [24 + ψ (13ψ − 36)] + 12Mρ [8− 3ψ (2− ρ)− 4ρ] + 24 (2− ρ)2

ª
> 0,

(A-30)

g5 = 4σ
2
zd
3
©
M2ρ2 [4− ψ (7− 3ψ)] +Mρ [16− 7ψ (2− ρ)− 8ρ] + 4 (2− ρ)2

ª
> 0, (A-31)

g6 = 4σ
2
zd
4 [Mρ (1− ψ) + (2− ρ)]2 > 0, (A-32)

and that either sign (g3) = sign (g2) = sign (g1), sign (g4) = sign (g3) = sign (g2), or sign (g4) =

sign (g3) and sign (g2) = sign (g1), i.e., that only one change of sign is possible while proceeding

from the lowest to the highest power. Descartes’ Rule then implies that the polynomial of

Eq. (A25) has only one positive real root satisfying the second order conditions for both the

speculators’ and the Central Bank’s optimization problems. This root, λCB, is therefore the

unique linear Bayesian Nash equilibrium of the amended economy of Section 2.2.
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Table 3. POMOs and Market Liquidity

This table reports means of daily bid-ask price spread changes ∆SBi,t ≡ Si,t − SBi,t (labeled ∆SBi,t, in bps)
for on-the-run Treasury notes and bonds (i) over days when POMOs occurred in the same maturity bracket

(ICBi,t = 1), and over days when any POMO occurred (ICBt = 1). Si,t is the average bid-ask price spread on

day t; SBi,t is the average bid-ask price spread over the most recent previous 22 trading days when no POMO

occurred. We also report OLS estimates of the following regression model (Eq. (8)):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + εi,t,

where Calendart is a vector of day-of-the-week, monthly, and year fixed effects,∆D
B
i,t ≡ Di,t−DB

i,t,∆C
B
i,t ≡

Ci,t − CBi,t, Di,t and Ci,t are the daily modified duration and convexity, and DB
i,t and C

B
i,t are their averages

over the most recent previous 22 trading days when no POMO occurred, respectively, for both same-maturity

(ICBi,t = 1) and any-maturity POMOs (ICBt = 1). Means and regression coefficients are estimated over the full

BrokerTec sample period (January 2, 2001 to December 31, 2007). Data for three-year notes is available only

between May 7, 2003 and December 7, 2007. N is the number of observations. R2a is the adjusted R
2. A ∗,

∗∗, or ∗∗∗ indicates statistical significance at the 10%, 5%, or 1% levels, respectively, using Newey-West standard

errors for αi,CB .

Same-maturity POMOs Any-maturity POMOs

Segment ∆SBi,t N αi,CB R2a N ∆SBi,t N αi,CB R2a N

Two-year -0.135∗∗∗ 157 -0.086∗∗∗ 9% 1,682 -0.130∗∗∗ 211 -0.089∗∗∗ 9% 1,682

Three-year -0.056∗∗ 58 0.010 11% 964 -0.087∗∗∗ 102 -0.023 11% 964

Five-year -0.240∗∗∗ 75 -0.140∗ 11% 1,686 -0.248∗∗∗ 210 -0.149∗∗∗ 12% 1,686

Ten-year -0.129 33 0.029 9% 1,563 -0.366∗∗∗ 196 -0.257∗∗∗ 10% 1,563

Thirty-year -0.643 28 -0.378 8% 1,516 -0.778∗∗∗ 200 -0.539∗∗ 7% 1,516
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Table 4. POMOs and Market Liquidity: Robustness

This table reports means of daily bid-ask price spread changes ∆SBi,t ≡ Si,t − SBi,t (labeled ∆SBi,t, in bps)
for on-the-run Treasury notes and bonds (i) over days when POMOs occurred in the same (ICBi,t = 1) or any

maturity bracket (ICBt = 1). We also report OLS estimates of the following regression model (Eq. (8)):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + εi,t,

as described in Table 3. Means and regression coefficients are estimated over i) the earlier BrokerTec subsample

(January 2, 2001 to December 31, 2004, in Panel A); ii) the later BrokerTec subsample (January 3, 2005 to

December 31, 2007, in Panel B); and iii) the full GovPX sample period (January 2, 2001 to December 31, 2004,

in Panel C). Data for three-year notes is available only between May 7, 2003 and December 7, 2007. N is the

number of observations. R2a is the adjusted R
2. A ∗, ∗∗, or ∗∗∗ indicates statistical significance at the 10%, 5%,

or 1% levels, respectively, using Newey-West standard errors for αi,CB.

Same-maturity POMOs Any-maturity POMOs

Segment ∆SBi,t N αi,CB R2a N ∆SBi,t N αi,CB R2a N

Panel A: BrokerTec, 01/2001-12/2004

Two-year -0.186∗∗∗ 114 -0.115∗∗∗ 13% 973 -0.184∗∗∗ 149 -0.126∗∗∗ 14% 973

Three-year -0.116∗∗ 24 0.030 21% 407 -0.183∗∗∗ 45 -0.027 21% 407

Five-year -0.365∗∗∗ 49 -0.211∗∗ 17% 977 -0.350∗∗∗ 148 -0.212∗∗∗ 17% 977

Ten-year -0.193 21 -0.043 15% 855 -0.533∗∗∗ 134 -0.377∗∗∗ 16% 855

Thirty-year -0.892 19 -0.430 11% 804 -1.096∗∗∗ 138 -0.671∗ 9% 804

Panel B: BrokerTec, 01/2005-12/2007

Two-year 0.000 43 0.000 14% 709 0.000 62 0.000 14% 709

Three-year -0.014∗∗∗ 34 -0.007 26% 557 -0.011∗∗∗ 57 -0.004 26% 557

Five-year -0.003 26 -0.002 26% 709 -0.003∗ 62 -0.003 26% 709

Ten-year -0.016∗∗ 12 -0.004 17% 708 -0.004 62 -0.002 17% 708

Thirty-year -0.118∗ 9 -0.082∗ 19% 712 -0.069∗∗∗ 62 -0.032 19% 712

Panel C: GovPX, 01/2001-12/2004

Two-year -0.210∗∗∗ 117 -0.174∗∗∗ 8% 972 -0.197∗∗∗ 153 -0.177∗∗∗ 8% 972

Three-year -0.210 23 -0.219 17% 345 -0.417 44 -0.473 18% 345

Five-year -0.038 49 0.055 4% 932 -0.284∗∗∗ 152 -0.244∗∗ 4% 932

Ten-year -0.342 21 0.020 2% 718 -0.473∗∗∗ 148 -0.348 3% 718

Thirty-year n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
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Table 5. POMOs and Information Heterogeneity

This table reports OLS slope coefficients axi,CB of the regression of average daily bid-ask spread and price

changes ∆SBi,t (in bps, defined in Section 4.1) for on-the-run Treasury notes and bonds (i) over same-maturity

or any-maturity POMO days (ICBi,t = 1 or ICBt = 1) on the contemporaneous realizations of SSDFq – the

simple scaled average of the standardized dispersion of analyst forecasts of six macroeconomic variables from SPF,

see Section 4.2.1 – multiplied by the difference between SSDF 70
th

q (the top 70th percentile of its empirical

distribution) and SSDF 30
th

q (the bottom 30th percentile of its empirical distribution). We label these differences

as ∆∆SB,xi,t = axi,CB

³
X70th

t −X30th

t

´
for Xt = SSDFq. We also estimate, again by OLS, the interaction of

either ICBi,t or ICBt with Xt = SSDFq in the following regression model (Eq. (9)):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + αxi,CBI

CB
i,t Xt + εi,t,

whereXt = SSDFq. We report these cross-product coefficients as∆αxi,CB = αxi,CB

³
X70th

t −X30th

t

´
, again

in bps. Means and regression coefficients are estimated over the full sample period (January 2, 2001 to December

31, 2007). Data for three-year notes is available only between May 7, 2003 and December 7, 2007. N is the

number of observations. R2a is the adjusted R
2. A ∗, ∗∗, or ∗∗∗ indicates statistical significance at the 10%, 5%,

or 1% levels, respectively, using Newey-West standard errors for αxi,CB.

Same-maturity POMOs Any-maturity POMOs

Segment ∆∆SB,xi,t N ∆αxi,CB R2a N ∆∆SB,xi,t N ∆αxi,CB R2a N

Two-year -0.104∗∗∗ 157 -0.076∗∗∗ 10% 1,682 -0.107∗∗∗ 211 -0.082∗∗∗ 11% 1,682

Three-year 0.011 58 0.010 11% 964 -0.023 102 -0.020 11% 964

Five-year -0.240∗∗∗ 75 -0.162 12% 1,686 -0.206∗∗∗ 210 -0.158∗∗∗ 12% 1,686

Ten-year -0.328∗ 33 -0.320∗ 9% 1,563 -0.361∗∗∗ 196 -0.311∗∗∗ 11% 1,563

Thirty-year -1.550∗∗ 28 -1.589∗∗ 9% 1,516 -0.247 200 -0.201 7% 1,516
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Table 6. POMOs and Fundamental Uncertainty

This table reports OLS slope coefficients axi,CB of the regression of average daily bid-ask spread and price

changes∆SBi,t (in bps, defined in Section 4.1) for on-the-run Treasury notes and bonds (i) over same-maturity or

any-maturity POMO days (ICBi,t = 1 or ICBt = 1) on the contemporaneous realizations of EURV OLm – the

monthly average of daily Eurodollar implied volatility from Bloomberg, see Section 4.2.2 –multiplied by the differ-

ence betweenEURV OL70
th

m (the top 70th percentile of its empirical distribution) andEURV OL30
th

m (the bot-

tom 30th percentile of its empirical distribution). We label these differences as∆∆SB,xi,t = aB,xi,CB

³
X70th

t −X30th

t

´
for Xt = EURV OLm. We also estimate, again by OLS, the interaction of either I

CB
i,t or ICBt with Xt =

EURV OLm in the following regression model (Eq. (9)):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + αxi,CBI

CB
i,t Xt + εi,t,

where Xt = EURV OLm. We report these cross-product coefficients as ∆αxi,CB = αxi,CB

³
X70th

t −X30th

t

´
and∆βxi,CB = βxi,CB

³
X70th

t −X30th

t

´
, again in bps. Means and regression coefficients are estimated over the

full sample period (January 2, 2001 to December 31, 2007). Data for three-year notes is available only between

May 7, 2003 and December 7, 2007. N is the number of observations. R2a is the adjusted R
2. A ∗, ∗∗, or ∗∗∗

indicates statistical significance at the 10%, 5%, or 1% levels, respectively, using Newey-West standard errors for

αxi,CB.

Same-maturity POMOs Any-maturity POMOs

Segment ∆∆SB,xi,t N ∆αxi,CB R2a N ∆∆SB,xi,t N ∆αxi,CB R2a N

Two-year -0.015 157 -0.007 9% 1,682 -0.026 211 -0.017 9% 1,682

Three-year -0.067∗ 58 0.033 11% 964 -0.130∗∗∗ 102 -0.087∗∗∗ 12% 964

Five-year -0.040 75 -0.030 11% 1,686 -0.023 210 -0.015 11% 1,686

Ten-year -0.393 33 -0.318∗∗ 9% 1,563 -0.123 196 -0.094 10% 1,563

Thirty-year -1.009 28 -0.389 8% 1,516 -0.452 200 -0.143 7% 1,516
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Table 7. POMOs and Policy Uncertainty

This table reports OLS slope coefficients axi,CB of the regression of average daily bid-ask spread and price

changes ∆SBi,t (in bps, defined in Section 4.1) for on-the-run Treasury notes and bonds (i) over same-maturity

or any-maturity POMO days (ICBi,t = 1 or ICBt = 1) on the contemporaneous realizations of FEDV OLm

– the monthly average of daily volatility of the federal funds rate, from the FRBNY, see Section 4.2.3 –

multiplied by the difference between FEDV OL70
th

m (the top 70th percentile of its empirical distribution)

and FEDV OL30
th

m (the bottom 30th percentile of its empirical distribution). We label these differences as

∆∆SB,xi,t = axi,CB

³
X70th

t −X30th

t

´
for Xt = FEDV OLm. We also estimate, again by OLS, the interac-

tion of either ICBi,t or ICBt with Xt = FEDV OLm in the following regression model (Eq. (9)):

∆SBi,t = αi,0 + αi,CCalendart + αi,∆D∆D
B
i,t + αi,∆C∆C

B
i,t + αi,CBI

CB
i,t + αxi,CBI

CB
i,t Xt + εi,t,

whereXt = FEDV OLm. We report these cross-product coefficients as∆αxi,CB = αxi,CB

³
X70th

t −X30th

t

´
,

again in bps. Means and regression coefficients are estimated over the full sample period (January 2, 2001 to

December 31, 2007). Data for three-year notes is available only between May 7, 2003 and December 7, 2007. N

is the number of observations. R2a is the adjusted R
2. A ∗, ∗∗, or ∗∗∗ indicates statistical significance at the 10%,

5%, or 1% levels, respectively, using Newey-West standard errors for αxi,CB.

Same-maturity POMOs Any-maturity POMOs

Segment ∆∆SB,xi,t N ∆αxi,CB R2a N ∆∆SB,xi,t N ∆αxi,CB R2a N

Two-year -0.061∗∗∗ 157 -0.046∗ 10% 1,682 -0.076∗∗∗ 211 -0.058∗∗ 10% 1,682

Three-year 0.059∗∗ 58 0.036∗ 11% 964 0.082∗∗∗ 102 0.062∗∗∗ 12% 964

Five-year -0.236∗∗ 75 -0.178 12% 1,686 -0.094∗∗ 210 -0.052 12% 1,686

Ten-year 0.109 33 0.037 9% 1,563 -0.105∗∗ 196 -0.116∗∗ 10% 1,563

Thirty-year -1.673∗ 28 -1.815∗∗∗ 9% 1,516 0.012 200 -0.163 7% 1,516
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Figure 1. Market Liquidity and Central Bank Intervention

This figure plots the difference between equilibrium price impact in the presence and in the absence of the

stylized Central Bank of Eq. (4), ∆λ ≡ λCB − λ = λCB − σv
√
Mρ

σz[2+(M−1)ρ] , as a function of either γ (the

Central Bank’s commitment to achieve its policy, in Figure 1a), σ2T (the uncertainty surrounding that policy, in

Figure 1b), ρ (the degree of correlation of the speculators’ private signals, in Figure 1c), or σ2v (the fundamental

uncertainty, in Figure 1d), when σ2v = σ2z = σ2T = 1, ρ = 0.5, ψ = 0.5, γ = 0.5, andM = 500.

a) ∆λ versus γ b) ∆λ versus σ2T
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Figure 3. POMOs and Fed Funds rates

This figure plots the daily total principal amounts of U.S. Treasury securities purchased (POMOt > 0)

or sold (POMOt < 0) by the FRBNY as POMOs (left axis, in billions of dollars), as well as both the federal

funds effective daily rate from overnight trading in the federal funds market (dotted line, right axis, in percentage

terms, i.e., multiplied by 100) and its corresponding target set by the FOMC (solid line, right axis), between

January 2, 2001 and December 31, 2007.
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