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Abstract

In a present-value model with time-varying risks, we develop a latent variable approach

to estimate expected market returns and dividend growth consistently with the conditional

risk features implied by present-value constraints. We find a time-varying expected div-

idend growth and expected return, with the explained fractions of return and dividend

growth variability which are around 10% at an annual frequency. Expected return is more

persistent than expected dividend growth and generates large price-dividend ratio compo-

nents that mask the predictive power for future dividend growth. The model implies (i)

predictive regressions consistent with a weak return predictability and a missing dividend

predictability by aggregate price-dividend ratios, (ii) predictable market volatilities, (iii)

volatile and often counter-cyclical Sharpe ratios and (iv) a time-varying and hump-shaped

term structure of stock market risk. These findings show the importance of controlling

for time-varying risks and the potential long-run effect of persistent return or dividend

forecasts when studying predictive relations.

∗We would like to thank Jules van Binsbergen, Christian Gouriéroux, Paolo Porchia, and the par-

ticipants of the II Workshop on Games and Decisions in Reliability and Risk, Belgirate, the Workshop

in Time Series and Financial Econometrics at Bocconi University, the 10th Swiss Doctoral Workshop in

Finance, the 8th FINRISK Research Day, and the seminar participants of IE Business School, Madrid,

and Warwick Business School, for valuable comments. We gratefully acknowledge the financial support

of the Swiss National Science Foundation (NCCR FINRISK). The usual disclaimer applies.
†University of Lugano, Via Buffi 13, CH-6900 Lugano, Switzerland; e-mail: ilaria.piatti@usi.ch
‡University of Lugano and Swiss Finance Institute, Via Buffi 13, CH-6900 Lugano, Switzerland;

e-mail: fabio.trojani@usi.ch

1



1 Introduction

We propose a latent variable framework with time-varying risks, to estimate expected

market returns and dividend growth rates consistently with the conditional risk restric-

tions of present-value models. This approach aggregates information from the history of

dividend growth, price-dividend ratios and market volatilities, and uncovers expected re-

turns and dividend growth rates coherently with the conditional risk features of dividends

and returns. Given exogenous latent processes for expected market returns, expected ag-

gregate dividend growth and the variance-covariance structure of dividends and returns,

we specify a Campbell and Shiller (1988) present-value model that constraints the con-

ditional risk structure of expected return and dividend shocks, together with the implied

price-dividend ratio dynamics. We finally apply a Kalman filter to estimate the model

by Quasi Maximum Likelihood (QML).

We find that expected dividend growth and expected returns are both time-varying,

but while expected dividend growth explains a negligible fraction of actual dividend

growth (with average model-implied R2 values below 1%), expected returns explain a

large portion of future returns (with average model-implied R2 values of about 50%).

Estimated expected dividend growth is more persistent than expected returns and gives

rise to a large price-dividend ratio component that masks the predictive power of valuation

ratios for future returns. These findings have important economic implications. First,

they produce a sharp statistical evidence for return predictability. Second, they highlight

the potential presence of expected dividend growth components that are substantially

more persistent than expected returns. Third, they stress the importance of accounting

for persistent dividend forecasts and their long-run effects when predicting future returns

with the price-dividend ratio. Using our present-value model with time-varying risks, we

also uncover the potential implications of these predictive structures for the long-horizon

predictability of market returns and the term structure of market risks. First, we find

that the lower persistence of expected market returns is linked to a weaker model-implied

predictability at longer horizons. Second, we observe that the larger uncertainty about

future expected returns produces a model-implied term structure of risks that is often

upward sloping and sometimes hump-shaped.
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Using Monte Carlo simulations, we show that, despite the large estimated degree of

return predictability, our model is broadly consistent with (i) the weak statistical evidence

of return predictability in predictive regressions with aggregate price-dividend ratios, (ii)

the even weaker evidence of dividend growth predictability at yearly horizons, (iii) a low

real-time predictability of stock returns, (iv) predictable market risks, (v) volatile and

often counter-cyclical Sharpe ratios, (vi) a stronger evidence of return predictability using

long-horizon predictive regressions and (vii) a decreasing term structure of market risks,

uncovered by variance ratio tests or multi-period ahead iterated VAR forecasts. Finally,

we find that while the predictive power of price-dividend ratios for future returns is low

and time-varying, the forecasting power of price-dividend ratios adjusted for the hidden

expected dividend growth component is large and more stable over time.

Our approach builds on the recent literature advocating the use of present-value mod-

els to jointly uncover market expectations for returns and dividends, including Menzly,

Santos, and Veronesi (2004), Lettau and Ludvigson (2005), Ang and Bekaert (2007), Let-

tau and Van Niewerburgh (2008), Campbell and Thompson (2008), Pastor, Sinha, and

Swaminathan (2008), Rytchkov (2008), Cochrane (2008a), Cochrane (2008b), Ferreira

and Santa-Clara (2010) and van Binsbergen and Koijen (2010), among others. We add

to this literature by introducing a tractable present-value model incorporating the latent

time-varying features of return and dividend risks, in which we study the implications for

the identification of potentially persistent dividend growth components, the detection of

predictive relations and the estimation of time-varying risk features.

Using our modeling framework, we reconcile a number of predictive regression findings

in the literature. First, we show that large time-varying expected return components are

compatible with the weak in-sample predictability of market returns by aggregate price-

dividend ratios, as well as with both predictable market risks and high Sharpe ratio

volatilities. Second, we show that our findings are consistent with Goyal and Welch

(2008) observation that aggregate price-dividend ratios have no additional out-of-sample

predictive power for market returns, relative to a straightforward sample mean forecast.

Third, our results indicate that a present-value model with time-varying risks is able to

identify persistent dividend components in price-dividend ratios, which can be related

to the long-run implications of expected dividend growth, studied in Bansal and Yaron
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(2004), Lettau and Ludvigson (2005) and Menzly, Santos, and Veronesi (2004), among

others. In contrast, the model with constant risks tends to identify a less persistent

expected dividend growth process, which explains a large fraction of future dividend

growth (with average model-implied R2 values of about 99%). Fourth, the persistent

dividend component in price-dividend ratios is responsible for the weak and time-varying

predictability evidence of standard predictive regressions. We show that price-dividend

ratios adjusted by this component produce a strong and more robust evidence in favour

of return predictability, by eliminating a large fraction of the time-instabilities noted by

Lettau and Van Niewerburgh (2008), among others, within standard predictive regression

models.1 Fifth, a framework featuring time-varying risks can potentially help to recon-

cile some of the implications for the term structure of market risks and the long-horizon

predictability features. Our findings show that even if from an investor’s perspective the

average term structure of market risks can be increasing, as motivated, e.g., by Pastor

and Stambaugh (2010),2 the term structure of risks uncovered by multi-period ahead

VAR forecasts can be decreasing, as shown, e.g., in Campbell and Viceira (2005). Simi-

larly, even if the term structure of long-horizon predictability can be decreasing from an

investor’s perspective, the one uncovered by multi-period ahead VAR forecasts can be

increasing, as emphasized, e.g., by Cochrane (2008a). Finally, we provide independent

evidence on the importance of time-varying risk features to uncover predictive return

relations within present-value models. Using a particle filter approach, Johannes, Ko-

rteweg, and Polson (2011) estimate a set of Bayesian predictive regressions of market

returns on aggregate payout yields. They show that models with return predictability

and time-varying risks can produce a large additional economic value, from the perspec-

tive of a Constant Relative Risk Aversion investor maximizing the predictive utility of her

terminal wealth. In contrast, models with constant risks imply no substantial economic

gain in incorporating predictability features. Consistently with these findings, our model

estimates a large degree of return predictability, which is hardly uncovered by the setting

1This last finding supports the intuition, put forward in Lacerda and Santa-Clara (2010), among

others, that price-dividend-ratios adjusted by a smooth real-time proxy of dividend expectations can

have a large and more robust predictive power for future returns.
2In a Bayesian predictive regression setting with time-varying expected returns and volatility, Jo-

hannes, Korteweg, and Polson (2011) also find a sometimes increasing term structure of market risk.
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with constant risks.

The paper proceeds as follows. Section 2 introduces our present-value model with

time-varying return and dividend risks. In Section 3, we discuss our data set and the

estimation strategy, while Section 4 presents estimation results. In Section ??, we analyse

the model implications and show that they are consistent with a number of predictive

regression findings in the literature. Section 5 discusses additional implications of the

model and Section 6 concludes.

2 Present-Value Model

As shown in Cochrane (2008a), among others, dividend growth and returns are better

studied jointly in order to understand their predictability features. Following Campbell

and Shiller (1988), this section introduces a present-value model with time-varying risks

for the joint dynamics of aggregate dividends and market returns. We denote by

rt+1 ≡ log

(
Pt+1 +Dt+1

Pt

)
, (1)

the cum-dividend log market return, and by

∆dt+1 ≡ log

(
Dt+1

Dt

)
, (2)

the aggregate log dividend growth. Expected return and dividend growth, conditional

on investors’ information set at time t, are denoted by µt ≡ Et[rt+1] and gt ≡ Et[∆dt+1],

respectively, while the conditional variance-covariance or returns and dividend growth is

denoted by Σt.

µt, gt and Σt follow exogenous latent processes that model the time-varying second-

order structure of returns and dividends: ∆dt+1

rt+1

 =

 gt

µt

+ Σ
1/2
t

 εDt+1

εrt+1

 , (3)

where (εDt+1, ε
r
t+1)′ is a bivariate iid process. Expected returns and expected dividends

follow simple linear autoregressive processes, allowing for the potential presence of a
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risk-in-mean effect linked to Σt:
3

gt+1 = γ0 + γ1(gt − γ0) + εgt+1, (4)

µt+1 = δ0 + δ1(µt − δ0) + Tr(Λ(Σt − µΣ)) + εµt+1, (5)

with real valued parameters γ0, γ1, δ0, δ1 and symmetric 2× 2 parameter matrices Λ and

µΣ. Tr(.) denotes the trace of a matrix, i.e., the sum of its diagonal components. Pa-

rameter µΣ is the unconditional mean of stationary variance-covariance process Σt, while

parameter Λ captures the potential presence of a risk-in-mean effect linked to the time-

varying risks of returns and dividends. Shocks (εgt+1, ε
µ
t+1)′ have zero conditional means,

but they feature a potentially time-varying risk structure, which has to be consistent with

the present-value constraints imposed on the dynamics of dividends, returns and price-

dividend ratios, discussed in detail below. The case Λ = 0 corresponds to a model with no

risk-in-mean effect. In this case, the conditional mean of (gt+1, µt+1) has a simple linear

autoregressive structure. However, process (gt+1, µt+1) does not follow a standard linear

autoregressive process with constant risk, as for instance the one studied in van Binsber-

gen and Koijen (2010), because also in this case shocks (εgt+1, ε
µ
t+1)′ feature a degree of

heteroskedasticity, induced by present-value constraints when Σt is time-varying.

We specify the dynamics of Σt by a simple autoregressive process that implies tractable

price-dividend ratio formulas also in presence of a risk-in-mean effect. Precisely, we

assume that Σt follows a Wishart process of order one (see Gourieroux, Jasiak, and

Sufana (2009) and Gourieroux (2006)):

Σt+1 = MΣtM
′ + kV + νt+1, (6)

with integer degrees of freedom k > 1, a 2×2 matrix M of autoregressive parameters and

a 2 × 2 symmetric and positive-definite volatility of volatility matrix V . Note that for

3A large literature studies the relation between conditional mean and conditional volatility of stock

returns. See, e.g., Pastor, Sinha, and Swaminathan (2008), Campbell (1987), Breen, Glosten, and Jagan-

nathan (1989), French, Schwert, and Stambaugh (1987), Schwert (1989), Whitelaw (1994), Ludvigson

and Ng (2007), Ghysels, Santa-Clara, and Valkanov (2005), Bollersev, Engle, and Wooldridge (1988),

Glosten, Jagannathan, and Runkle (1993), Brandt and Kang (2004), Gallant, Hansen, and Tauchen

(1990) and Harrison and Zhang (1999). An excellent review of this literature is provided by Lettau and

Ludvigson (2010).
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k > n−1 process Σt takes positive semi-definite values, making dynamics (6) a naturally

suited model for multivariate time-varying risks. The conditional distribution of Σt+1 is

Wishart and completely characterized by the (affine) Laplace transform:

Ψt(Γ) = Et [expTr(ΓΣt+1)] =
expTr [M ′Γ(I2 − 2V Γ)−1MΣt]

[det(I2 − 2V Γ)]k/2
, (7)

which implicitly defines the conditional distribution of zero mean 2 × 2 error term νt+1

in model (6). Under process (6), the unconditional mean µΣ is the unique solution of the

(implicit) steady state equation:

µΣ = kV +MµΣM ′. (8)

Finally, it can be shown that the dynamic dependence structure between risk factors in

this model is quite flexible, with, e.g., both conditional and unconditional correlations

that are unrestricted in sign.

2.1 Price-dividend ratio

Let pdt ≡ log Pt

Dt
denote the log price-dividend ratio. To derive the expression for the

price-dividend ratio implied by our model, we follow Campbell and Shiller (1988) log

linearization approach:4

rt+1 ' κ+ ρpdt+1 + ∆dt+1 − pdt, (9)

where pd = E[pdt], κ = log(1+exp(pd))−ρpd and ρ = exp(pd)

1+exp(pd)
. By iterating this equation

using dynamics (4)-(6), we obtain a log price-dividend ratio that is an affine function of

µt, gt and Σt. For convenience of interpretations and in order to obtain pdt expressions

that are easily manageable in our Kalman filter estimation, we directly express pdt as an

affine function of a demeaned expected return and dividend growth (µ̂t = µt − δ0 and

ĝt = gt − γ0) and a demeaned half vectorized covariance matrix (Σ̂t = vech(Σt − µΣ)).

4Expression (9) is obtained from a first order Taylor expansion of (1) around the unconditional mean

of pd. The approximation error is related to the variance of the price-dividend ratio (see, e.g., Engsted,

Pedersen, and Tanggaard (2010)), which is time-varying in our model. However, even in our setting, the

approximation turns out to be very precise.
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Proposition 1 (Price-dividend ratio) Under model (3)-(6), the log price-dividend ra-

tio takes the affine form:

pdt = A−B1µ̂t +B2ĝt +B3Σ̂t, (10)

with

A =
κ+ γ0 − δ0

1− ρ
, (11)

B1 =
1

1− ρδ1

, (12)

B2 =
1

1− ργ1

, (13)

and 1× 3 vector B3, which depends only on parameters ρ, δ1,Λ,M through an expression

given explicitly in Appendix A.2.

Price-dividend ratio pdt is an affine function of expected returns, expected dividend

growth and dividend-return variance-covariance risk. The dependence of pdt on covari-

ance matrix Σt reflects the potential presence of a risk-in-mean effect when Λ 6= 0.

According to intuition, pdt is decreasing in expected returns and increasing in expected

dividend growth. The dependence on Σt is more ambiguous and depends on parameters

that jointly affect the expected return, expected dividend and variance-covariance risk

dynamics.

2.2 Time-varying risks in the present-value model

For Quasi Maximum Likelihood estimation with a Kalman Filter, we assume indepen-

dence between shocks to returns and dividends (εDt+1, ε
r
t+1)′ and shocks to time-varying

risk νt+1, in equations (3) and (6), respectively, where we assume (εDt+1, ε
r
t+1)′ to follow a

bivariate standard normal distribution.

Time-varying risks in dynamics (3) and (6) have implications for the conditional risk

features of expected returns and expected dividend growth in equations (4) and (5) of

our present-value model. Let

ε̃Dt+1 = e′1Σ
1/2
t

 εDt+1

εrt+1

 (14)
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and

ε̃rt+1 = e′2Σ
1/2
t

 εDt+1

εrt+1

 (15)

be the total shocks to dividends and returns in dynamics (3), where ei denotes the i−th

unit vector in R2. Campbell and Shiller (1988) approximation (9) implies, together with

the explicit PD expression (10):

ε̃rt+1 = ε̃Dt+1 + ρεpdt+1, (16)

and

εpdt+1 = B2ε
g
t+1 −B1ε

µ
t+1 +B3ε

Σ
t+1, (17)

where εΣ
t+1 = vech(νt+1). The redundancy of return shocks in equation (16) implies that

the state dynamics of our present-value model (3)-(6), can be fully described by the joint

dynamics of state vector (∆dt+1, pdt+1, Σ̂t, ĝt, µ̂t). Moreover, equation (17) implies that

the distribution of the shocks in expected returns and expected dividends is constrained:

One of the shocks εgt+1 or εµt+1 can be defined as a linear combination of the others and

an identification assumption has to be imposed.

For identification purposes, we assume that εgt+1 is independent of (εDt+1, ε
r
t+1)′ and

distributed as N(0, σ2
g). Under this assumption, the conditional variance of return expec-

tation shock

εµt+1 =
1

ρB1

(ε̃Dt+1 − ε̃rt+1 + ρB2ε
g
t+1 + ρB3ε

Σ
t+1) (18)

can be computed explicitly:

V art(ε
µ
t+1) =

1

(ρB1)2
(Σ11,t + Σ22,t − 2Σ12,t) +

(
B2

B1

)2

σ2
g +

1

B2
1

B3V art(ε
Σ
t+1)B′3 , (19)

where time-varying 3 × 3 covariance matrix V art(ε
Σ
t+1) is an affine function of Σt, given

in closed-form in Appendix A.1.

In summary, the variance-covariance matrix for the vector of shocks (ε̃Dt , ε̃
r
t , ε

g
t , ε

Σ
t )′ in

our present-value model is given by:

Qt =


Σt 02×1 02×3

01×2 σ2
g 01×3

03×2 02×1 V art(ε
Σ
t+1)

 . (20)
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3 Data and Estimation Strategy

This section describes our data set and introduces our estimation strategy based on a

Quasi Maximum Likelihood estimation with a Kalman filter.

3.1 Data

We obtain the with-dividend and without dividend monthly returns on the value-weighted

portfolio of all NYSE, Amex and Nasdaq stocks from January 1946 until December 2009

from the Center for Research in Security Prices (CRSP). We use this data to construct

annual series of aggregate dividends and prices. We assume that monthly dividends are

reinvested in 30-day T-bills and obtain annual series for cash-reinvested log dividend

growth. Data on 30-day T-bill rates are also obtained from CRSP.

In order to produce useful information to identify latent time-varying risk components

in our present-value model, we consider proxies for the yearly realized volatility of market

returns, which can be measured with a moderate estimation error, because market returns

are available on a daily frequency. We download daily returns of the value-weighted

portfolio of all NYSE, Amex and Nasdaq stocks from 1946 until the end of 2009 from

CRSP, and compute a proxy for the yearly realized return variance as the sum of squared

daily market returns over the corresponding year:

RVt =
Nt∑
i=1

r2
i,t,

where ri,t is the market return on day i of year t and Nt is the number of return ob-

servations in year t. We do not correct for autocorrelation effects in daily returns (see

French, Schwert, and Stambaugh (1987)) nor we subtract the sample mean from each

daily return (see Schwert (1989)), since we found the impact of these adjustments to be

negligible.

3.2 State space representation

The relevant state variables in model (3)-(6) are the expected return and dividend growth

µt, gt and variance-covariance matrix Σt. We propose a Kalman filter to estimate the

model parameters together with the values of these latent states. To this end, we cast the
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model in state space form, using demeaned state variables µ̂t, ĝt and Σ̂t defined in Section

2.1. In this way, we obtain the following linear transition dynamics with heteroskedastic

error terms for present-value model (3)-(6):

ĝt+1 = γ1ĝt + εgt+1,

µ̂t+1 = δ1µ̂t +N ′Σ̂t + εµt+1,

Σ̂t+1 = SΣ̂t + εΣ
t+1,

where 1× 3 vector N is a function only of parameter Λ and 3× 3 matrix S is a function

only of parameter M , both specified explicitly in Appendix A.1.

Observable variables in our model are dividend growth ∆dt+1, the price-dividend

ratio pdt+1 and the market realized volatility RVt+1. Note that while the market return

rt+1 produces redundant information, relative to linear combinations of ∆dt+1 and pdt+1,

the market realized volatility produces useful information to identify time-varying risk

structures, summarized by state Σ̂t. This is a sharp difference of our setting, relative to

present-value models with constant risks, in which dividend growth and price-dividend

ratio provide sufficient information to identify the latent state dynamics.

Measurement equations for ∆dt+1, pdt+1, RVt+1 are derived from the model-implied

expressions for dividend growth, price-dividend ratio and the conditional variance of

returns. The measurement equation for dividend growth follows from the first row of

dynamics (3):

∆dt+1 = γ0 + ĝt + ε̃Dt+1 . (21)

To obtain a measurement equation for the market realized variance, we model the con-

ditional variance of market returns, Σ22,t, as an unbiased predictor of RVt+1:

RVt+1 = Σ22,t + εRVt+1 = µΣ
22 + ( 0 0 1 )Σ̂t + εRVt+1, (22)

where the measurement error is such that εRVt+1 ∼ iidN(0, σ2
RV ).

The measurement equation for the log price-dividend ratio in equation (10) contains

no error term. As shown by van Binsbergen and Koijen (2010), this feature can be

exploited to reduce the number of transition equations in the model. By substituting the
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equation for pdt in the measurement equation for dividend growth, we arrive at a final

system with two transition equations (one of which is vector valued),

µ̂t+1 = δ1µ̂t +N ′Σ̂t + εµt+1, (23)

Σ̂t+1 = SΣ̂t + εΣ
t+1, (24)

and three measurement equations:

∆dt+1 = γ0 +
1

B2

(
pdt − A+B1µ̂t −B3Σ̂t

)
+ ε̃Dt+1, (25)

RVt+1 = µΣ
22 + ( 0 0 1 )Σ̂t + εRVt+1, (26)

pdt+1 = (1− γ1)A+B1(γ1 − δ1)µ̂t + [B3(S − γ1I3)−B1N
′]Σ̂t + γ1pdt

+B2ε
g
t+1 −B1ε

µ
t+1 +B3ε

Σ
t+1. (27)

We use the Kalman filter to derive the likelihood of the model and we estimate it using

QML. The parameters to be estimated are the following:

Θ = (γ0, δ0, γ1, δ1,M, k, V,N, σg, σRV ).

For identification purposes, we impose some parameter constraints. M is assumed lower

triangular, with positive diagonal elements less than one. V is assumed diagonal with

positive components and k ≥ 2 is integer. Parameters δ1 and γ1 are bounded to be less

than one in absolute value, while σg and σRV are constrained to be positive. Overall,

the most general version of our present-value model contains 15 parameters. A restricted

model with no risk-in-mean effect (Λ = 0) implies 12 parameters to estimate. Details on

the estimation procedure are presented in Appendix B.

4 Results

We estimate our model and consider first the case where no risk-in-mean effect is present

(Λ = 0). This is useful, because in this case the dependence of price-dividend ratio

pdt on µ̂t and ĝt in Proposition 1 is identical to the dependence obtained in the model

with constant dividend and return risks. Thus, this setting allows us to obtain simple

interpretations for the additional effect of time-varying risks on dividend and return

predictability features.
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We focus on the structural quantification of the predictability implications of present-

value models with time-varying risks, i.e., the characterization of the dynamic features

of processes µt, gt and Σt for expected returns, expected dividend growth and time-

varying risks. First, we quantify the estimated degree of model-implied predictability for

returns, dividend growth and return volatility. Second, we analyse the implications of

the estimated price-dividend ratio decomposition for the predictability features of returns

and dividends by aggregate valuation ratios. Third, we evaluate the consistency of the

model implications with a number of well-known predictive regression findings in the

literature.

4.1 Estimation results

Table 1, Panel A, presents our QML estimation results for present-value model (23)-(27).

The value of the quasi log-likelihood is 853.28.5 We can formally reject the null hypoth-

esis that expected dividends are constant (i.e. γ1 = 0 or 1 and σg = 0) at conventional

significance levels. The unconditional expected log return is δ0 = 9%, while the uncon-

ditional expected growth rate of dividends is γ0 = 5.6%. Expected return features an

high autoregressive root, δ1 = 0.907, which is an indication of a highly persistent process,

having an half-life of about 7.5 years. Expected dividend growth are persistent, but less

persistent than expected return, with an autoregressive root γ1 = 0.44 and an half-life

of 1.2 years.6 For comparison, the estimated persistency of expected returns (expected

dividend growth) in a model with constant risks is slightly larger (lower), with an esti-

mated root δ1 = 0.923 (γ1 = 0.368) and half-life 9 years (1.1 years).7 Estimation results

5Parameter standard errors are obtained using the circular block-bootstrap of Politis and Romano

(1992), in order to account for the potential serial correlation in the data. We use eight years blocks.

Results are unchanged using the stationary bootstrap in Politis and Romano (1994).
6The first order autoregressive coefficient is equivalent to 1 − λ∆t, where λ is the mean reversion

speed and ∆t is one year in our setting. The half-life is defined as ln 2
λ .

7To derive the implications for the model with constant risks, we estimate the model in van Binsbergen

and Koijen (2010) for the case of cash-reinvested dividends, using data for the sample period 1946-2009.

Our parameter estimates are very similar to their ones, which are based on the sample period 1946-2007.

Detailed estimation results are given in Table II of the Supplemental Appendix, which is available from

the authors on request.
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also indicate persistent dividend and return risks. The autoregressive matrix M in the

risk dynamics (6) features both a quite persistent and a less persistent component, with

estimated eigenvalues M11 = 0.523 and M22 = 0.999, respectively, and a slightly negative

out-of-diagonal element M21 = −0.071. The low estimated degrees of freedom parameter

k = 5 indicates a fat tailed distribution for the components of Σt.

4.2 Basic predictability features

In order to quantify the degree of predictability implied by present-value model (3)-(6),

we can measure the fraction of variability in rt, ∆dt and RVt explained by µt−1, gt−1 and

Σ22,t−1, respectively.8 We present in Figure 1 the estimated expected return, expected

dividend growth and return variance implied by our present-value model. In each panel,

we also plot the fitted values of an OLS regression of rt, ∆dt and RVt on the lagged log

price-dividend ratio, as well as the actual value of these variables.9

The second panel in Figure 1 highlights apparent differences between the expected

dividend growth estimated by our present-value model and those of a standard predictive

regression: The model-implied expected dividend growth varies more over time and fol-

lows more closely the actual dividend growth. A different figure arises for returns in the

first panel of Figure 1, where the expected returns estimated by the present-value model

and the one implied by the predictive regression are quite smooth and close to each other.

These findings are consistent with the different persistence features of expected return

and dividend growth estimated by the present-value model with time-varying risks. Fi-

nally, the third panel in Figure 1 shows that the filtered conditional variance of returns

estimated by the model is a quite good predictor of future realized variances, consistently

with the large evidence of predictability in returns second moments produced by the

literature.

8Let It denote the econometrician’s information set at time t, generated by the history of dividends,

price-dividend ratios and realized volatilities up to time t. Given estimated parameter Θ̂, the Kalman

filter provides expressions to compute filtered estimates of the unknown latent states µt−1, gt−1 and

Σt−1, conditional on It−1.
9The predictive regression for returns takes the form rt+1 = ar+brpdt+ε

r
t+1. The predictive regression

for dividend growth is ∆dt+1 = ad+bdpdt+ε
d
t+1. The one for realized variance is RVt+1 = aRV +bRV pdt+

εRVt+1.
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We can quantify the degree of predictability in returns, dividend growth and returns

variance within our present-value model and a standard predictive regression, by the

following sample R2 goodness-of-fit measures:

R2
Ret = 1− V̂ ar(rt+1 − µt)

V̂ ar(rt+1)
, (28)

R2
Div = 1− V̂ ar(∆dt+1 − gt)

V̂ ar(∆dt+1)
, (29)

R2
RV = 1− V̂ ar(RVt+1 − Σ22,t)

V̂ ar(RVt+1)
, (30)

where V̂ ar denotes sample variances and µt, gt, Σ22,t are, with a slight abuse of notation,

the estimated expected return, expected dividend growth and conditional return variance

in the present-value model and the standard predictive regression model, respectively.

The results in Table 2 show that the estimated R2 for returns in the present-value

model is about 10.38%. The estimated R2 for dividends is about 11.59%, while the one

for the realized variance of returns is about 13.59%. Therefore, expected returns, ex-

pected dividend growth and conditional variances of returns seem to explain a relatively

large fraction of actual returns, dividend growth and realized variances in our model.

The predictability results of standard predictive regressions are consistent with the evi-

dence in the literature. While the R2 for returns is about 10.5%, the one for dividends is

about 1.1%. Finally, the R2 of predictive regressions for realized variance is about 12.2%.

In summary, while the model-implied return predictability is close to the one implied

by a standard predictive regression of returns on lagged price-dividend ratio, the divi-

dend growth predictability uncovered by standard predictive regressions is much lower

than the model-implied dividend growth predictability. The estimated structure of the

price-dividend ratio decomposition in our model offers an intuition for this finding: Since

price-dividend ratios are only noisy signals of expected dividend growth, which are con-

taminated by an expected return component, these predictive regressions are affected by

the well-known EIV problem; see also van Binsbergen and Koijen (2009). According to

the estimated parameters in Panel B of Table 1, the expected return (expected dividend

growth) loads negatively (positively) on price-dividend ratios, with an estimated coeffi-

cient −B1 = −8.109 (B2 = 1.743). Therefore, the smooth expected return component has

a large loading on the model-implied price-dividend ratio. This large loading is associated
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with a large fraction of the price-dividend ratio that is driven by expected return shocks.

Therefore, the large and persistent expected return component in price-dividend ratios

likely obfuscates the predictive power of expected dividend growth for actual dividend

growth. Since the expected return component is difficult to estimate from actual returns,

due to a very low signal-to-noise ratio, isolating it from aggregate price-dividend ratios

in a model-free way is a potentially difficult task. Our model offers a natural way to

isolate it, in order to quantify the degree of predictability that is potentially generated in

predictive regressions, using aggregate price-dividend ratios adjusted by a smooth proxy

of expected return.

4.3 Interpretation of Predictability Results

In order to explain the empirical evidence on time-varying risk-return tradeoffs, model

predictions, such as the relatively high return and dividend growth predictability, are

more realistically addressed in relation to their consistency with a number of well-known

predictive regression findings in the literature. In this section, we test the main model

implications for (i) the predictability features of standard predictive regressions with

aggregate price-dividend ratios, (ii) long-term predictability properties and (iii) real-time

predictability patterns.

We follow a Monte Carlo simulation approach. Starting from the parameter estimates

in Section 4.1, we test by Monte Carlo simulation whether model implications are broadly

consistent with data-derived implications. We simulate 10000 paths of length 64 years for

all state variables and observable variables in our model, following the steps given below:

• Take parameter estimates in Section 4.1.

• Generate 10000 random time series of all shocks in the model, using their conditional

covariance matrix (20) and constraint (18).

• Using simulated shocks, obtain recursively the latent states gt, µt and Σt from

equation (4), (5) and (6), respectively.

• For each simulated sample, compute the actual return and dividend growth from

dynamics (3), the actual price-dividend ratio from formula (10) and the actual
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realized variance of returns from identity (22).

4.3.1 Joint dividend-return predictability features

The predictive regression results in the data indicate the presence of return predictability

(with an R2 of about 10.49%) and a weak dividend predictability (with an R2 of about

1.06%) by aggregate price-dividend ratios. As emphasized in Cochrane (2008a), this joint

evidence implies sharp restrictions that are useful to validate or test the ability of a model

in generating appropriate predictability properties. We follow this insight and compute

by Monte Carlo simulation the model-implied joint distribution of estimated R2’s for div-

idend, return and realized volatility predictive regressions with lagged log price-dividend

ratios. Table 3 (columns SV ) reports confidence intervals for the estimated degree of

predictability in OLS predictive regressions, if the world would be well represented by

our model. Our time-varying risks model implies OLS predictive regression results in line

with the empirical evidence. For instance, the median OLS R2s for return and dividend

predictive regressions are about 13.84% and 0.91%, respectively, and are very similar to

the 10.49% and 1.06% OLS R2s estimated on real data. Overall, real data OLS R2s

for return, dividend and realized variance predictive regressions are all well inside the

80% confidence interval of estimated OLS R2s simulated from our present-value model.

These results also indicate that the degree of predictability uncovered by standard pre-

dictive regressions, relative to true model-implied one, can be strongly downward biased

for dividend growth.

It is useful to compare the predictability implications of the model with time-varying

return and dividend risks with those of present-value models with constant risks. Columns

CV in Table 3 summarize the results of the same simulation exercise for the present-value

model with constant risks studied in van Binsbergen and Koijen (2010). Since in this

setting market volatilities are constant, the table only contains results for dividend and

return predictability features. The median R2 implied by OLS predictive regressions

for returns (dividends) is about 7.34% (3.61%), which is approximately 30% lower (320%

higher) than the R2 estimated in the data. In the model with constant risks, the marginal

probability of observing a simulated R2 for dividend growth predictive regression larger

than the one in the data is about 70.8%, while the same probability in the model with
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time-varying risks is about 47%.

Additional useful predictability insights can be derived from the joint predictability

features of dividends and returns. Figure 2 presents scatter plots for the simulated joint

distribution of R2s in standard OLS regressions of returns and dividend growth on the

lagged log price-dividend ratio. Right (left) panels present results for the model with

time-varying (constant) risks. In each panel, the vertical and horizontal straight red lines

report R2s estimated on real data. The right panel of Figure 2 shows that the model

with constant risks tends to generate frequently, i.e., in 57% percent of the cases, R2

for returns smaller than in the data and R2 for dividends larger than in the data. That

is, the model structure tends to produce frequently an indication of a stronger dividend

predictability and a weaker return predictability than in the data. These features are

less pronounced in the model with time-varying risks (left panel), where the probability

of such R2-combinations is nearer to 25% (18%). In summary, these findings show that

the joint distribution of R2 coefficients implied by the present-value model with time-

varying risks is less biased towards finding particular dividend and return predictability

structures that are less consistent with the empirically observed ones.

The basic intuition for the potentially different degrees of predictability implied by

standard predictive regressions, relative to the latent expected return and dividend growth

processes in our model, is provided in Cochrane (2008b), who derives the relation between

state-space models and their observable VAR counterparts in settings with constant risks.

He shows that in these models the conditional mean of the predicted variable can contain,

in addition to the lagged dividend yield, a long moving average of dividend growths, price-

dividend ratios or returns, which would be easy for standard predictive regressions to miss.

In a context with time-varying risks, such moving average components can include return

and dividend shocks featuring an heteroskedasticity of unknown form that is potentially

difficult to model. These features can further increase the difficulties of obtaining efficient

predictive regression parameter estimates using linear regression methods.10

10Using the Kalman filter in Appendix B, we borrow from van Binsbergen and Koijen (2010) to

derive approximate expressions for the observable model-implied VAR representation with respect to

the econometrician’s information set. Such VAR contains several lag polynomials of returns, dividend

growth rates and return realized variances. Analytic expressions for the VAR coefficients, as well as the
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4.3.2 Long-horizon predictive regressions

Cochrane (2008a) shows how to derive regression coefficients of long-horizon returns and

dividend growth on price-dividend ratio, implied by yearly predictive regressions. By

applying recursively the following regressions,

rt+1 = ar + brpdt + εrt+1

∆dt+1 = ad + bdpdt + εdt+1

pdt+1 = apd + φpdt + εpdt+1

the regression coefficient of long-run returns,
∑∞

j=1 ρ
j−1rt+j, on pdt is

blrr =
br

1− ρφ
.

Similarly, the regression coefficient of long-run dividend growth is

blrd =
bd

1− ρφ
.

We compute, as in Section 4.3.1, these regression coefficients from the data and by sim-

ulation.11 We find that the model with time-varying risks produces with a frequency of

almost 35% estimated long-run coefficients within one standard deviation of the observed

sample values (jointly), compared to a frequency of 19% when we simulate from the con-

stant risks model. Figure 3 reproduces, in the left (right) panel, the joint distribution of

predictive regression coefficients of dividend growth on log price-dividend ratio, bd, and

long-horizon predictive coefficients of returns, blrr = br
1−ρφ , for a model with time-varying

(constant) risks. We find that the model with time varying risks tends to be more in line

with standard long-horizon predictive regression results than a model with constant risks,

which tends to generate a slightly excessive dividend predictability. For instance, at a

confidence level of 95%, the long-horizon predictive coefficient for dividend growth, blrd ,

is significantly different from zero 13.7% of the times in the model with constant risks,

and only 7% of the times in the model with time-varying risks.

derivations and definitions for the arising errors terms are presented in Section C of the Supplemental

Appendix.
11Using yearly data from 1946 to 2009 we find φ = 0.9162, br = −0.127 and bd = −0.0166, so that

blrr = −1.1599 (with a standard deviation of 0.4339) and blrd = −0.1518 (with a standard deviation of

0.1877). Standard deviations are obtained by the delta method from the standard deviations of br, bd

and φ. Note that blrr and blrd satisfy the approximate identity blrd − blrr = 1; see Cochrane (2008a).
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4.3.3 Out-of-sample predictability

From the perspective of real-time forecasting, out-of-sample prediction is more relevant

than in-sample prediction. Goyal and Welch (2008) study the out-of-sample explanatory

power of a large set of predictive variables for market returns, finding that most of them

perform worse than the historical mean in forecasting future returns. As explained in

Cochrane (2008a), among others, a weak out-of-sample forecasting power does not imply

a rejection of the null of predictability itself, but it rather raises important doubts about

the practical usefulness of such return forecasts in forming real-time portfolios, given the

persistence of forecasting variables and the short span of available data. In our setting,

disappointing out-of-sample performance could be explained, e.g., by the difficulty to

estimate the latent state variables, exacerbated by the presence of time-varying risks and

a highly persistent expected return.

Given the degree of return and dividend growth predictability implied by the estima-

tion results in Table 1, a useful reality check for our present-value model is the absence of

excessive incremental out-of-sample forecasting power, relative to a simple mean forecast,

when using simple predictive regressions based on aggregate price-dividend ratios. Fol-

lowing Goyal and Welch (2008), we quantify incremental out-of-sample predictive power

by the metric:

R2
i,OS = 1− MSEi,A

MSEi,M
, (31)

where MSEi,A (MSEi,M) is the out-of-sample mean squared forecast error of the predic-

tive regression model (historical mean) for returns (i = r) and dividend growth (i = d), re-

spectively. We simulate 10000 paths of observables and state variables from our estimated

present-value models and compute the joint Monte Carlo distribution of (R2
d,OS, R

2
r,OS)

realizations. The scatter plot in Figure 4 summarizes our findings and shows that, under

the estimated present-value model, it is unlikely that predictive regressions for returns

or dividends can produce a significantly larger out-of-sample predictive power than the

historical mean. The estimated probability of the event {R2
d,OS ≤ 0, R2

r,OS ≤ 0} is about

70%, while the estimated probability of the event {R2
d,OS > 0, R2

r,OS > 0} is less than

1.7%.
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5 Additional Implications

In this section, we study additional implications of the present-value model with time-

varying risks, by focusing on (i) time-varying risk features, (ii) the term structure of

long-horizon predictability and (iii) the term structure of market risks.

5.1 Basic time-varying risk features

The present-value model with time-varying risks implies a number of useful implications

for conditional second moments of returns and dividends, which can be investigated in

more detail using the estimated model parameters in Table 1. In this section, we focus

on the dynamics of conditional Sharpe ratios and the time-varying co-movement features

implied by the model.

5.1.1 Conditional Sharpe ratio dynamics

Using the estimated states µ̂t−1 and Σ̂t−1 for latent expected returns and variance-

covariance risks in our Kalman filter, we find a relatively good degree of variability in

both expected market returns and market risk. The average negative correlation between

expected returns and return volatilities is about -0.36 , even if in some subperiods these

variables tend to move in the same direction (see Figure 5). Therefore, we cannot draw

a unique conclusion on the direction of the link between conditional mean and volatility

of returns, which seems instead to vary over time.

Conditional Sharpe ratios are defined as the ratio of conditional excess expected re-

turns and conditional volatility, which requires assumptions on the risk-less interest rate

rft :

SRt =
Et(rt+1)− rft√
V art(rt+1)

=
µt − rft√

Σ22,t

.

To compute our proxy for SRt, we fix rft as the annualized 30-day T-Bill rate at time t.

Figure 6 shows that conditional Sharpe ratios estimated by our model are often counter-

cyclical, consistently with the empirical evidence, and quite volatile, which is a useful

implication in order to account for part of the “Sharpe ratio volatility puzzle” highlighted
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in Lettau and Ludvigson (2010), among others. At the same time, we find that the

conditional Sharpe ratio implied by a model with constant risks is both less counter-

cyclical and not sufficiently volatile.

5.1.2 Time-varying return, dividend and price-dividend ratio correlations

The model-implied conditional correlation between returns and expected returns is:

corrt(ε̃
r
t+1, ε

µ
t+1) =

Covt(ε̃
r
t+1, ε

µ
t+1)√

V art(ε̃rt+1)V art(ε
µ
t+1)

, (32)

where Covt(ε̃
r
t+1, ε

µ
t+1) = 1

ρB1
(Σ12,t −Σ22,t), using (18), V art(ε̃

r
t+1) = Σ22,t and V art(ε

µ
t+1)

is given in equation (19). The correlations of returns and dividend growth with the

price-dividend ratio are:

corrt(ε̃
r
t+1, ε

pd
t+1) =

Σ22,t − Σ12,t√
Σ22,t(Σ22,t + Σ11,t − 2Σ12,t)

, (33)

corrt(ε̃
D
t+1, ε

pd
t+1) =

Σ12,t − Σ11,t√
Σ11,t(Σ22,t + Σ11,t − 2Σ12,t)

. (34)

Figure 7 reproduces the time series of correlations (32), (33) and (34) in our model, using

estimated parameters in Table 1 and the corresponding filtered states in our Kalman fil-

ter. We find that the estimated correlation (32) is negative (with a mean of about −0.80),

as expected, but it varies substantially over time, especially after the late sixties. Simi-

larly, the average correlation between price-dividend ratio and returns (dividend growth)

is positive (negative) with a mean of about 0.97 (−0.25), but the degree of correlation

variability increases after the late sixties. While average conditional dividend correla-

tions are roughly consistent with the (unconditional) sample correlation of about −0.25,

the average correlation with returns is substantially different from the sample correlation

of 0.07. This feature follows from the distinct structure of conditional and uncondi-

tional price-dividend ratio variances. Monte Carlo simulations confirm this difference of

conditional and unconditional correlations in the model with time-varying risks, with a

sample correlation of about 0.075 (−0.29) between log price-dividend ratio and returns

(log dividend growth) in line with the empirical evidence; see also Section 4.3.1.
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5.2 Term structure of long-horizon predictability

By applying recursively equations (3)-(5), we obtain the following explicit expressions for

the model-implied n-year return and dividend growth, in the case where Λ = 0:

n∑
j=1

ρj−1rt+j =
1− ρn

1− ρ
δ0 +

1− (ρδ1)n

1− ρδ1

µ̂t +
n−1∑
j=1

ρj
1− (ρδ1)n−j

1− ρδ1

εµt+j +
n∑
j=1

ρj−1ε̃rt+j,

(35)
n∑
j=1

ρj−1∆dt+j =
1− ρn

1− ρ
γ0 +

1− (ργ1)n

1− ργ1

ĝt +
n−1∑
j=1

ρj
1− (ργ1)n−j

1− ργ1

εgt+j +
n∑
j=1

ρj−1ε̃Dt+j.

(36)

The model-implied expected n-year return and dividend growth follow as:

Et

[
n∑
j=1

ρj−1rt+j

]
=

1− ρn

1− ρ
δ0 +

1− (ρδ1)n

1− ρδ1

µ̂t, (37)

Et

[
n∑
j=1

ρj−1∆dt+j

]
=

1− ρn

1− ρ
γ0 +

1− (ργ1)n

1− ργ1

ĝt. (38)

Left panel in Figure 8 plots the estimated term structure of return predictability implied

by formula (37). The term structure is quite time-varying at short horizons, but stabilizes

with the horizon, around a long-term expected market return of approximately 6%.

The term structures of expected returns and dividend growth in equations (37) and

(38) have direct implications for the fraction of long-horizon market returns and dividend

variation that can be anticipated within the model. We can quantify by Monte Carlo

simulation the percentage variation of n-year returns and dividend growth explained by

the model, measured using corresponding R2s for horizons of n = 5, 10, 20 and 30 years.12

For each horizon n, blue lines in Figure 9 represent the median (solid line) and the 10%-

and 90%-quantile (dashed lines) of the model-implied R2 distribution of returns, both for

the model with time-varying risks (left panel) and the model with constant risks (right

panel).

We find that the term structure of model-implied predictive power for returns is in-

creasing in both cases, even if for the time-varying risks model it slightly decreases for

12We simulate 10000 paths of observables and state variables, as in Section 4.3.1, but we fix the path

length to 200 years, instead of 64 years, in order to obtain a sufficient number of simulated long-term

returns and dividend growth also for very long horizons.
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horizons longer than 20 years. Using the same simulated data, we can also quantify

the term structure of long-horizon predictability uncovered by computing R2 implied by

multi-period ahead iterated VAR forecasts.13 The red lines in Figure 9 display the cor-

responding Monte Carlo quantiles. Consistent with what is often found in real data for

post-war aggregate returns, we find that the uncovered term structures of predictability

are increasing for both models.14 The two bottom panels in Figure 9 report the 10%-,

50%- and 90%-quantile in the Monte Carlo distribution of estimated coefficients in stan-

dard predictive regression of n-year returns on lagged log price-dividend ratio, showing

that the null hypothesis of no long-horizon return predictability is typically rejected in

both models.

Figure 10 reports results for long-horizon dividend growth predictability. The model

with time-varying risks features lower and less significant dividend predictability at all

horizons, and both models imply a decreasing term structure. For both models, multi-

period ahead iterated VAR forecasts uncover a slightly increasing term structure of R2s

with wide confidence intervals, but estimated direct predictive regression coefficients (bot-

tom panels), obtained by estimating simple OLS regressions of n-year dividend growth

on the log price-dividend ratio, cannot reject the null of no predictability, as it is usually

found in real data.

5.3 Term structure of market risks

Siegel (2008) reports that unconditional (sample) variances realized over long investment

horizons are lower than short-horizon variances on a per-year basis. Based on an es-

timated VAR model for returns and predictors, Campbell and Viceira (2005) conclude

that also the term structure of conditional variances is decreasing with the investment

horizon. Taking a slightly different view, Pastor and Stambaugh (2010) show that from

the perspective of an investor subject to parameter uncertainty and imperfect predictors

stocks can be more risky over longer horizons.

The model-implied conditional variance of a n-year return in the setting with time-

13Analytic expressions for n-year expected return and dividend growth implied by VAR forecasts are

provided in Appendix A.4.
14See also, e.g., Chen (2009).
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varying risks is derived from equation (35) as follows:

V art

[
n∑
j=1

ρj−1rt+j

]
=

n−1∑
j=1

ρ2j

(
1− (ρδ1)n−j

1− ρδ1

)2

V art(ε
µ
t+j) +

n∑
j=1

ρ2(j−1)V art(ε̃
r
t+j) +

+ 2
n−1∑
j=1

ρ2j−1 1− (ρδ1)n−j

1− ρδ1

Covt(ε
µ
t+j, ε̃

r
t+j), (39)

where V art(ε
µ
t+j), V art(ε̃

r
t+j) and Covt(ε

µ
t+j, ε̃

r
t+j) are affine functions of the variance-

covariance state Σt, given explicitly in Appendix A.5. The model-implied term structure

of per-period market risk is thus time-varying. Figure 8 (right panel) plots its estimated

dynamics. We find an hump-shaped average term-structure of market risk and the hump

is particularly evident in periods of high short-term volatility.

To understand these findings, it is useful to split conditional variance (39) in its

three components: A first term reflecting uncertainty about future expected returns, a

second term capturing the risk of future return shocks and a third part reflecting the

mean reversion of returns, due to the negative correlation between realized and expected

return shocks. Figure 11 plots the term structure of market risk and its three components

estimated for years 1946, 1986 and 2008, which are associated with an increasing level of

one year market volatility. Consistent with the intuition that return mean reversion tends

to produce a decreasing term structure of risk, we find that in all cases the mean reversion

component has a strongly negative term structure effect, which is however often offset by

the impact of the other two components for long horizons. The largest contribution to the

average positively-sloped term structure of market risk arises from the uncertainty about

future expected returns. As highlighted by Pastor and Stambaugh (2010), the effect

of this component is often underestimated or neglected and its relative contribution is

positively linked to the degree of predictability in returns, which is large for long horizons.

The term structure effect of return shock risk is typically positive and decreasing with

the horizon.

The bottom right panel of Figure 11 reports for comparison the decomposition of the

(constant) term structure of market risks in the model with constant volatility.15 In this

15The expression for the conditional variance in the constant risks case is analogous to expression

(39), but with V art(ε
µ
t+j), V art(ε̃

r
t+j) and Covt(ε

µ
t+j , ε̃

r
t+j) that are constant functions only of the model

parameters.
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case, we find that the effect of future expected return risk is not large enough to offset

the impact of the other two term structure components, leading to a downward sloping

term structure of risk. Finally, it is interesting to note that even if the time-varying risks

model suggests a larger average market risk at very long horizons, it might be difficult

to identify this feature without appropriate assumptions about the latent risk dynamics.

To illustrate this feature, Figure 12 presents sample variance ratios for horizons from 2

to 30 years, computed from our 64-year sample of observed annual log returns, together

with the 10%, 50% and 90%-quantile of the variance ratio’s Monte Carlo distribution

(obtained from 10000 samples of returns), in the time-varying risks (upper panel) and

the constant risks (lower panel) models. For each model, median variance ratios decrease

with the horizon and observed sample values are inside the 80% confidence interval of

the Monte Carlo simulation.16

6 Conclusion

We introduce a tractable latent variable approach with time-varying risks to predictive

regressions, in which expected market returns and aggregate dividend growth rates are

consistent with the conditional risk features of returns and dividends in a Campbell and

Shiller (1988) present-value model. Given exogenous latent processes modeling expected

returns, expected aggregate dividend growth and the conditional variance-covariance fea-

tures of dividends and returns, we use filtering methods to uncover their joint dynamics,

as well as the implications for the long-horizon predictability of market returns and the

term structure of market risks.

We find that expected dividend growth and expected returns are both time-varying.

However, while expected dividends predict a small fraction of actual dividend growth

(with average R2 values of about 0.5%), expected returns explain a large portion of future

returns (with average R2 values of about 47%). The expected dividend growth estimated

16The width of these confidence intervals increases rapidly with the horizon, due to the decreasing

number of long-horizon returns. The variance ratio at horizon n is defined as the sample variance of

n-year returns, divided by n times the sample variance of 1-year returns. Calculations are based on

overlapping returns and unbiased variance estimates, as for instance in equation (2.4.37) of Campbell,

Lo, and MacKinlay (1997).
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by our model is substantially more persistent than expected returns and gives rise to

a large price-dividend ratio component that masks the predictive power of valuation

ratios for future returns. At the same time, the low persistence of expected market

returns produces a moderate model-implied predictability at longer horizons, while the

large uncertainty of future expected returns induces an often upward sloping, sometimes

hump-shaped, term structure of market risks.

Through these mechanics, our model implies a variety of predictive features that are

consistent with a number of findings in the literature. These include (i) the weak return

predictability by aggregate price-dividend ratios, (ii) an even weaker predictability of

dividends by aggregate price-dividend ratios, (iii) the predictability of market volatilities,

(iv) the large volatility and counter-cyclicality of aggregate Sharpe ratios, (v) a stronger

evidence of return predictability using standard long-horizon predictive regressions and

(vii) an often decreasing term structure of market risks uncovered by variance ratio tests

or multi-period ahead iterated VAR forecasts.

Our analysis shows that the degree of dividend and return predictability uncovered

by present-value models in a latent variable framework can be quite sensitive to the

assumption of time-varying return and dividend risks: Our estimations for the setting

with constant risks imply an expected dividend growth less persistent that expected

returns, a weak return predictability (with average R2 values of about 6%) and a large

dividend predictability (with average R2 values of about 99%). The sensitivity of tests

for predictability to the assumption of constant or time-varying risks can be illustrated

by estimating the model with constant risks on time-series of data simulated from the

model with time-varying risks. We find that while the persistence of expected dividend

growth and expected returns in the time-varying risk model implies autoregressive roots

of 0.996 and 0.541, the average estimated root is 0.602 and 0.914, respectively, with 90%

Monte Carlo confidence intervals that do no contain the true model parameters. These

point estimates imply a substantially biased estimated degree of persistence, which in

turn influences (i) the uncovering of return and dividend predictability relations, (ii) the

decomposition of the price-dividend ratio unconditional variation, (iii) the form of the

term structure of long-horizon predictability and (iv) the shape of the term structure of

market risks.
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Our findings also demonstrate the importance of considering time-varying risks and

the potential long-run effects of persistent dividend forecasts for reconciling the predictive

regression results in the literature. In our model, price-dividend ratios produce a weak and

time-varying evidence for return predictability, but price-dividend ratios adjusted by the

persistent dividend component have a larger and more time-consistent predictive power

in standard predictive regressions, suggesting that smooth real-time proxies of dividend

expectations, as proposed in, e.g., Lacerda and Santa-Clara (2010), could prove useful

to construct adjusted valuation ratios with better predictive power for future returns.

Our model also produces additional evidence on the importance of time-varying risks to

uncover predictive return relations. Consistently with the empirical evidence in Johannes,

Korteweg, and Polson (2011), we show that while our setting with time-varying risks

implies a large degree of return predictability, such a predictability is hardly uncovered

by the model with constant risks.

Finally, an important question concerns the extent to which estimated return pre-

dictability features could be exploited in real time, e.g., to build successful dynamic

portfolio strategies. Given the relatively low estimated degree of persistence of expected

market returns in our model, a key aspect is likely the identification of relevant predictive

variables, spanning the information set available to investors for building their return ex-

pectation µt. A first interesting approach in this direction can make use of cross-sectional

information on individual stocks, in order to better span investors’ conditional informa-

tion set. Kelly and Pruitt (2011) propose and estimate a predictive factor model with

constant risks, in which cross-sectional information from individual stock price-dividend

ratios is aggregated to forecast market returns and dividends. In a similar spirit, Bren-

nan and Taylor (2010) extract aggregate discount rate news from equity portfolio returns,

based on individual stock characteristics like size and book-to-market. A second useful

way of enlarging the predictive conditional information set, e.g., to compute proxies of

dividend forecasts, can make use of either synthetic prices of dividend strips, which can

be synthesized from options and futures data, or direct quotes for swaps, futures or op-

tions on dividends, which have been recently introduced in several exchanges; see, for

instance, van Binsbergen, Brandt, and Koijen (2010) and van Binsbergen, Hueskes, Koi-

jen, and Vrugt (2011). This enriched predictive information set can prove useful also for
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a more accurate identification of the dynamics of the term structure of market risks in

present-value models with stochastic risks.
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A Present-value model

A.1 Main notation

The state variables of the model are:

µ̂t = µt − δ0,

ĝt = gt − γ0,

Σ̂t = vech(Σt − µΣ),

where µΣ is the solution of (8), which is such that

vech(µΣ) = [I3 − L2(M ⊗M)D2]−1kL2vec(V ),

where I2 is the identity matrix of dimension two, D2 and L2 are 2-dimensional duplication

and elimination matrices, respectively, i.e for a symmetric 2× 2 matrix A:

D2vech(A) = vec(A), L2vec(A) = vech(A),

where vec denotes vectorization and vech half-vectorization.

The dynamics of the state variables are obtained from (4)-(6) as follows:

ĝt+1 = γ1ĝt + εgt+1,

µ̂t+1 = δ1µ̂t +N ′Σ̂t + εµt+1,

Σ̂t+1 = SΣ̂t + εΣ
t+1,

where N = D′2vec(Λ) and S = L2(M ⊗M)D2.

In terms of these demeaned states, the dynamics of realized returns and dividend growth

in equation (3) is the following:

∆dt+1 = γ0 + ĝt + ε̃Dt+1

rt+1 = δ0 + µ̂t + ε̃rt+1

where

ε̃Dt+1 = e′1Σ
1/2
t

 εDt+1

εrt+1

 ,
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and

ε̃rt+1 = e′2Σ
1/2
t

 εDt+1

εrt+1

 .

Since εµt+1 is a linear combination of the other shocks (see equation (18)), to complete

the specification of the model we only need to specify the conditional covariance matrix

of 
ε̃Dt+1

ε̃rt+1

εgt+1

εΣ
t+1

 ,

which is given by:

Qt =


Σt 02×1 02×3

01×2 σ2
g 01×3

03×2 02×1 V art(ε
Σ
t+1)

 , (40)

where V art(ε
Σ
t+1) in equations (19) and (20) is given by:

V art(ε
Σ
t+1) = L2(I4 +K2,2)[MΣtM

′ ⊗ V + k(V ⊗ V ) + V ⊗MΣtM
′]L′2,

with K2,2 being the commutation matrix of order two, i.e. the 4 × 4 matrix such that,

for any 2× 2 matrix A, K2,2vec(A) = vec(A′).

A.2 Price-dividend ratio

In this section we present the detailed derivation of equation (10) in the text. From

Campbell-Shiller approximation (9) we have

pdt ' κ+ ρpdt+1 + ∆dt+1 − rt+1. (41)

By iterating this equation we find:

pdt ' κ+ ρ(κ+ ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

=
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

=
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j),

(42)
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assuming that ρ∞pd∞ = limj→∞ ρ
jpdt+j = 0, at least in expectation. Then, we take

expectation conditional to time t:

pdt '
κ

1− ρ
+
∞∑
j=1

ρj−1Et[∆dt+j − rt+j]

=
κ

1− ρ
+
∞∑
j=1

ρj−1Et[gt+j−1 − µt+j−1]

=
κ

1− ρ
+
∞∑
j=0

ρjEt[gt+j − µt+j].

(43)

Iterating the dynamics of µ̂t+1 and ĝt+1 and taking conditional expectation we find

Et[µ̂t+j] = δj1µ̂t +N ′Sj−1

j−1∑
k=0

(δ1S
−1)kΣ̂t

= δj1µ̂t +N ′S−1(Sj − δj1I3)(I3 − δ1S
−1)−1Σ̂t

and

Et[ĝt+j] = γj1ĝt. (44)

Therefore,

pdt '
κ

1− ρ
+
∞∑
j=0

ρj[γ0 + γj1ĝt − δ0 − δj1µ̂t −N ′S−1(Sj − δj1I3)(I3 − δ1S
−1)−1Σ̂t].

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+

ĝt
1− ργ1

− µ̂t
1− ρδ1

+

+N ′
[
(ρS2 − (1 + ρδ1)S + δ1I3)−1 +

1

1− ρδ1

(S − δ1I3)−1

]
Σ̂t

= A+B2ĝt −B1µ̂t +B3Σ̂t, (45)

if max |eig(ρS)| < 1, which is always true since ρ < 1, S = L2(M⊗M)D2 and for M to be

stationary its eigenvalues (its diagonal elements, since M is assumed to be triangular) are

constrained to be lower than 1. The explicit expressions for the present-value coefficients

A, B1, B2 and B3 are the following:

A =
κ+ γ0 − δ0

1− ρ
,

B1 =
1

1− ρδ1

,

B2 =
1

1− ργ1

,

B3 = N ′
[
(ρS2 − (1 + ρδ1)S + δ1I3)−1 +B1(S − δ1I3)−1

]
.
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A.3 Asymptotic bias in standard predictive regressions

We have shown in Section ?? that standard predictive regressions of either returns or

dividend growth rates on the lagged log price-dividend ratio suffer from an error-in-

variables (EIV) problem, which does not disappear as the sample size increases (see

Figure ??). Indeed, the true model for aggregate stock returns is:

rt+1 = δ0 + µ̂t + ε̃rt+1, (46)

but we wrongly assume the following model to hold:

rt+1 = ar + brpdt + εrt+1, (47)

where pdt = A − B1µ̂t + B2ĝt,
17 and we try to estimate the true parameter br = −1/B1

from (47). The p-limit of the OLS slope coefficient is the following:18

b̂r −→
Cov(pdt, rt+1)

V ar(pdt)
, (48)

where

Cov(pdt, rt+1) = Cov(A−B1µ̂t +B2ĝt, δ0 + µ̂t + ε̃rt+1)

= −B1V ar(µ̂t) +B2Cov(ĝt, µ̂t)

V ar(pdt) = B2
1V ar(µ̂t) +B2

2V ar(ĝt)− 2B1B2Cov(ĝt, µ̂t)

so that

b̂r −→
1

−B1 +
B2

2V ar(ĝt)−B1B2Cov(ĝt,µ̂t)

B2Cov(ĝt,µ̂t)−B1V ar(µ̂t)

, (49)

and the unconditional variances and covariance of demeaned expected return and dividend

growth are the following:

V ar(µ̂t) =
(1 − 2 1)vech(µΣ)

ρ2B2
1(1− δ2

1)
+

B2
2σ

2
g

B2
1(1− δ2

1)
,

V ar(ĝt) =
σ2
g

1− γ2
1

,

Cov(ĝt, µ̂t) =
B2σ

2
g

B1(1− γ1δ1)
.

17Remind that, as in Sections 4 and 5, we consider the case in which B3 = 01×3.
18Note that here we denote with b̂r the OLS estimate of the slope coefficient br in (47).
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Thus, the OLS slope coefficient in the regression of returns on lagged price-dividend ratio

is biased and converges to a value that, at the estimated parameters, is lower then the

true one in absolute value, resulting in less evidence for return predictability, but at the

estimated parameters the bias is small due to the relative persistence of expected dividend

growth and returns.

The model for aggregate log dividend growth is:

∆dt+1 = γ0 + ĝt + ε̃Dt+1, (50)

while the wrong model is:

∆dt+1 = aD + bDpdt + εDt+1, (51)

and we try to estimate the true parameter bD = 1/B2 from (51). The p-limit of the OLS

slope is the following:

b̂D −→
Cov(pdt,∆dt+1)

V ar(pdt)
, (52)

where

Cov(pdt,∆dt+1) = Cov(A−B1µ̂t +B2ĝt, γ0 + ĝt + ε̃Dt+1)

= B2V ar(ĝt)−B1Cov(ĝt, µ̂t)

so that

b̂D −→
1

B2 +
B2

1V ar(µ̂t)−B1B2Cov(ĝt,µ̂t)

B2V ar(ĝt)−B1Cov(ĝt,µ̂t)

, (53)

Therefore, the OLS slope coefficient in the regression of dividend growth on lagged price-

dividend ratio is also biased. This bias is negative and, at the estimated parameters,

much more significant than the one for standard return regressions.

A.4 Long-horizon predictability implied by VAR

Let us consider the following VAR model:

rt+1 = ar + brpdt + εrt+1,

∆dt+1 = ad + bdpdt + εdt+1,

pdt+1 = apd + φpdt + εpdt+1.
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By applying recursively these regressions, we obtain the following expected n-year return:

Et

[
n∑
j=1

ρj−1rt+j

]
=

1− ρn

1− ρ
ar + ρbrapd

1− (ρφ)n−1

(1− ρφ)(1− ρ)
+

−ρnbrapd
1− φn−1

(1− ρ)(1− φ)
+ br

1− (ρφ)n

1− ρφ
pdt, (54)

while the expected n-year dividend growth is given by:

Et

[
n∑
j=1

ρj−1∆dt+j

]
=

1− ρn

1− ρ
ad + ρbdapd

1− (ρφ)n−1

(1− ρφ)(1− ρ)
+

−ρnbdapd
1− φn−1

(1− ρ)(1− φ)
+ bd

1− (ρφ)n

1− ρφ
pdt. (55)

A.5 Term structure of conditional variances

The conditional variance of model-implied n-year returns, in equation (35), is the follow-

ing:

V art

[
n∑
j=1

ρj−1rt+j

]
= V art

[
n−1∑
j=1

ρj
1− (ρδ1)n−j

1− ρδ1

εµt+j +
n∑
j=1

ρj−1ε̃rt+j

]

=
n−1∑
j=1

ρ2j

(
1− (ρδ1)n−j

1− ρδ1

)2

V art(ε
µ
t+j) +

n∑
j=1

ρ2(j−1)V art(ε̃
r
t+j) +

+ 2
n−1∑
j=1

ρ2j−1 1− (ρδ1)n−j

1− ρδ1

Covt(ε
µ
t+j, ε̃

r
t+j),

where

V art(ε
µ
t+j) =

1

ρB2
1

(1 − 2 1)vechEt(Σt+j−1) +

(
B2

B1

)2

σ2
g +

1

B2
1

B3V art(ε
Σ
t+j)B

′
3,

V art(ε̃
r
t+j) = (0 0 1)vechEt(Σt+j−1),

Covt(ε
µ
t+j, ε̃

r
t+j) =

1

ρB1

(0 1 − 1)vechEt(Σt+j−1), (56)

and

Et(Σt+j−1) = M jΣt(M
j)′ + kV (j),

V (j) = V +MVM ′ + . . .+M j−1V (M j−1)′,

V art(ε
Σ
t+j) = L2(I4 +K2,2)[MEt(Σt+j−1)M ′ ⊗ V + k(V ⊗ V ) + V ⊗MEt(Σt+j−1)M ′]L′2.

Note that non-contemporaneous correlation between return and expected return shocks

are equal to zero and that the conditional variance of long-run returns is an affine functions

of the variance-covariance state Σt.
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B Kalman Filter

In this section we describe the estimation procedure of the model in Section 2.

We first define an expanded 11-dimensional state vector by the concatenation of the

original state variables and the process and observation noise random variables:

Xt =



µ̂t−1

Σ̂t−1

ε̃Dt

ε̃rt

εgt

εΣ
t

εRVt


,

which satisfies:

Xt+1 = FXt + ΓεXt+1,

where

εXt+1 =



ε̃Dt+1

ε̃rt+1

εgt+1

εΣ
t+1

εRVt+1


,

with conditional variance

Q̃t ≡ V art(ε
X
t+1) =

 Qt 06×1

01×6 σ2
RV

 ,
and Qt, is given in (20). Moreover,

F =


δ1 N ′ 1

ρB1
− 1
ρB1

B2

B1

B3

B1
0

03×1 S 03×1 03×1 03×1 I3 03×1

07×11

 , and Γ =

 04×7

I7

 ,
The measurement equation,

Yt =


∆dt

pdt

RVt

 ,
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is of the form

Yt = M0 +M1Yt−1 +M2Xt,

where

M0 =


γ0 − A

B2

(1− γ1)A

vec(e2e
′
2)′vec(µΣ)

 , M1 =


0 1

B2
0

0 γ1 0

0 0 0

 ,
and

M2 =


B1

B2
−B3

B2
1 0 0 01×3 0

−B1(δ1 − γ1) B3(S − γ1I3)−B1N
′ −1

ρ
1
ρ

0 01×3 0

0 vec(e2e
′
2)′D2 0 0 0 01×3 1

 .
The steps of the filter algorithm are the following:

• Initialize with the unconditional mean and covariance of the expanded state:

X0,0 = 011×1,

P0,0 = E(XtX
′
t).

• The time-update equations are

Xt,t−1 = FXt−1,t−1,

Pt,t−1 = FPt−1,t−1F
′ + ΓQ̃tΓ

′,

where Q̃t is computed using the updated state Xt,t−1.

• The prediction error ηt and the variance-covariance matrix of the measurement

equations are then:

ηt = Yt −M0 −M1Yt−1 −M2Xt,t−1,

St = M2Pt,t−1M
′
2,

where Yt is the observed value of the measurement equation at time t.

• Update filtering:

Kt = Pt,t−1M
′
2S
−1
t ,

Xt,t = Xt,t−1 +Ktηt,

Pt,t = (I −KtM2)Pt,t−1,
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where Kt is called Kalman gain.

To estimate model parameters,Θ, we define the log-likelihood for each time t, assuming

normally distributed observation errors, as19

lt(Θ) = −1

2
log |St| −

1

2
η′tS

−1
t ηt, (57)

where ηt and St denote prediction error of the measurement series and the covariance

of the measurement series, respectively, obtained from the KF. Model parameters are

chosen to maximize the log-likelihood of the data series:

Θ ≡ arg max
Θ
L
(
Θ, {Yt}Tt=1

)
, (58)

with

L
(
Θ, {Yt}Tt=1

)
=

T∑
t=1

lt(Θ), (59)

where T denotes the number of time periods in the sample of estimation.20

19Approximating the true transition density with a Gaussian, makes this a QML procedure. While

QML estimation has been shown to be consistent in many settings, it is in fact not consistent in a Kalman

filter setting since the conditional covariance matrix Q̃t in the recursions depends on the Kalman filter

estimates of the volatility state variables rather than the true, but unobservable, values. However,

simulation results in several papers have shown this issue to be negligible in practice. See also Schwartz

and Trolle (2010).
20For yearly data, as in our application, T is the number of years in the sample.
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C Tables and Figures

Table 1: Estimation results. We present results of the estimation of the present-value model

in equations (3)-(6), imposing Λ = 02×2. The model is estimated by quasi maximum-

likelihood using yearly data from 1946 to 2009 on log dividend growth rates, log

price-dividend ratio and realized variance of returns. Panel A presents estimates of

the coefficients of the underlying processes. Panel B reports resulting coefficients

of the present-value model in equation (10). Bootstrapped standard errors are in

parentheses.

Panel A: Quasi maximum-likelihood estimates

γ0 δ0 γ1 δ1 M11 M21

0.056 0.090 0.440 0.907 0.523 -0.071

(0.007) (0.008) (0.020) (0.220) (0.304) (0.694)

M22 k V11 V22 σg σRV

0.999 5 0.0028 0.0001 0.056 0.0215

(0.242) (2.729) (0.0041) (0.0011) (0.0195) (0.0087)

Panel B: Implied present-value parameters

ρ A B1 B2

0.967 3.364 8.109 1.743

(0.0038) (0.1273) (2.6188) (1.2767)
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Table 2: Sample R-squared values of returns, dividend growth and realized variance of re-

turns, computed using equations (28)-(30). In the first row, R2 are computed from

our present-value model, estimated using yearly data from 1946 to 2009, while the

second row gives results for a standard OLS predictive regression of observed returns,

dividend growth and realized variance on price-dividend ratio.

R-squared values

R2
Ret R2

Div R2
RV

Present-value model 10.38 15.04 13.59

OLS 10.49 1.06 12.16

Table 3: 10%-, 50%- and 90%-quantile of the empirical distribution of R-squared values of

returns, dividend growth and realized variance of returns, computed using (28)-(30),

from OLS regressions of simulated returns, dividend growth and realized variance of

returns on lagged log price-dividend ratio. Distributions are based on 10000 simu-

lations of length 64 years of the state variables and observables in our time-varying

risks model (SV ), using the estimated parameters in Table 1, and in the constant

risks model (CV ) of van Binsbergen and Koijen (2010). Parameters used in the sim-

ulations are estimated using yearly price-dividend ratio and dividend growth from

1946 to 2009.

R2
Ret R2

Div R2
RV

SV CV SV CV SV CV

10% 6.78 2.57 0.03 0.14 0.12 -

50% 13.84 7.34 0.91 3.61 3.42 -

90% 22.71 14.54 5.14 15.88 20.88 -
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Figure 1: Expected vs Realized yearly returns, dividend growth and variance of returns. These

graphs show the model-implied (filtered) series (red lines) of expected returns µt

(first panel), expected dividend growth gt (second panel) and expected return vari-

ance Σ22,t (third panel), as well as the realized (blue lines) return , rt+1, log dividend

growth, ∆dt+1, and variance of returns, RVt+1, respectively. The three panels also

show the fitted values (green lines) of an OLS regression of realized quantities (rt+1,

∆dt+1 and RVt+1, respectively) on the lagged log price-dividend ratio.
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Figure 2: Joint distribution of R2 of OLS predictive regressions of returns and dividend growth

on log price-dividend ratio, obtained simulating 10000 paths of returns, dividend

growth and price-dividend ratio from the model with time-varying risks (left) and

from the model with constant risks (right). Straight red lines correspond to the

observed values in the data. Green dashed lines correspond to median values in the

simulations. Only one thousand simulations are plotted for clarity.
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Figure 3: Joint distribution of forecasting coefficient of OLS predictive regressions of dividend

growth on log price-dividend ratio, bd, and long-run predictive coefficient for returns,

blrr = br
1−ρφ , obtained simulating 10000 paths of returns, dividend growth and price-

dividend ratio from our model (left) and from a model with constant risks (right).

Straight red lines correspond to the observed values in the data. Green dashed lines

correspond to median values in the simulations. Only one thousand simulations are

plotted for clarity.
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Figure 4: Joint distribution of out-of-sample R2 of OLS predictive regressions of returns and

dividend growth on log price-dividend ratio, obtained from equation (31), by sim-

ulating 10000 paths of returns, dividend growth and price-dividend ratio from our

model. Straight red lines correspond to the observed values in the data. Only one

thousand simulations are plotted for clarity.
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Figure 5: Risk-Return tradeoff. Filtered values of conditional expected returns, µt (blue line,

left axis) against filtered conditional volatility of returns,
√

Σ22,t (shaded green line,

right axis).

45 50 55 60 65 70 75 80 85 90 95 00 05 10
−0.1

0

0.1

0.2

µ t

45 50 55 60 65 70 75 80 85 90 95 00 05 10
0

0.02

0.04

0.06

Σ 2
2

,t

49



Figure 6: The blue line shows the conditional Sharpe ratio implied by our model, obtained

from filtered values of conditional expected returns and conditional volatility of

returns, using as risk-free rate the annualized 30-day T-Bill rate at each time t. The

red line is obtained in the same way, but for a version of the model with constant

risks. Shaded areas corresponds to NBER recessions.
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Figure 7: The upper panel shows conditional correlation between expected and unexpected

returns, corrt(ε̃
r
t+1, ε

µ
t+1), obtained from estimated present-value parameters and

filtered values of the covariance state Σt. Shaded areas correspond to NBER re-

cessions. The lower panel displays conditional correlation between shocks in log

price-dividend ratio and returns (blue, left axis), corrt(ε̃
r
t+1, ε

pd
t+1), and conditional

correlation between shocks in log price-dividend ratio and dividend growth (green,

right axis), corrt(ε̃
D
t+1, ε

pd
t+1).
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Figure 8: Dynamics of the term structure of the conditional per-period expected long-horizon

return (left panel) and standard deviation of long-horizon returns (right panel),

from equations (37) and (39), respectively, computed using estimated parameters

and filtered state. We consider horizons of 2 to 30 years.

0

10

20

30

40
50

60
70

80
90

00
10

−0.05

0

0.05

0.1

0.15

0.2

HorizonDate

A
n

n
u

a
liz

e
d

 E
x
p

e
c
te

d
 R

e
tu

rn

0

10

20

30

40
50

60
70

80
90

00
10

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

HorizonDate

A
n

n
u

a
liz

e
d

 S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

52



Figure 9: Upper panels show the term structure of predictive R2 of model-implied long-horizon

expected returns (blue lines), and R2 implied by n-period ahead VAR forecasts (red

lines), obtained by simulating 10000 paths of length 200 years of returns, price-

dividend ratio and expected returns from our time-varying risks model (left) and

from the constant risks model (right). Lower panels display quantiles of the dis-

tribution of the simulated coefficients in OLS regressions of n-year returns on log

price-dividend ratio. Solid lines show the median of the distribution of R-squared,

while dashed lines denote the 10%- and 90%-quantiles, respectively.

5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Horizon

R
2

5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Horizon

R
2

5 10 15 20 25 30

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Horizon

b
r

5 10 15 20 25 30

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Horizon

b
r

53



Figure 10: Upper panels show the term structure of predictive R2 of model-implied long-

horizon expected dividend growth (blue lines), and R2 implied by n-period ahead

VAR forecasts (red lines), obtained by simulating 10000 paths of length 200 years

of dividend growth, price-dividend ratio and expected dividend growth from our

time-varying risks model (left) and from the constant risks model (right). Lower

panels display quantiles of the distribution of the simulated coefficients in OLS

regressions of n-year log dividend growth on log price-dividend ratio. Solid lines

show the median of the distribution of R-squared, while dashed lines denote the

10%- and 90%-quantiles, respectively.
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Figure 11: Decomposition of the term structure of the conditional per-period variance of long-

horizon returns, computed using estimated parameters and filtered states. The blue

line denotes the component of the variance that is due to uncertainty about future

expected returns, the red line denotes the component due to future return shocks,

while the green line denotes the mean reversion component. The black dashed line

denotes the total conditional variance, for horizons of 2 to 30 years. The first three

panels show the decomposition implied by our model at different points in time,

while the last (bottom right) panel considers the term structure estimated for the

constant risks model.
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Figure 12: Sample variance ratios for horizons of 2 to 30 years, computed from the 64-year

sample of annual log stock market returns (red line) and from 10000 samples of

returns simulated from the model (blue lines). Solid blue line denotes the median

variance ratios of the 10000 simulations, while dashed lines represent 10%- and

90%-quantiles. In the upper panel, returns are simulated from our time-varying

risks model. In the bottom panel, returns are simulated from the constant risks

model.
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