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Abstract

In this paper, we first propose a new fear measure for Treasury markets, similar to the VIX for
equities. This implied variance measure relies on the strike of simple variance swaps which are
robust to the inclusion of jumps. We then construct a Treasury bond variance risk premium as
the difference between this implied variance and expected variance estimate using autoregressive
models. Variance risk premia in bond markets behave very differently from equity markets in many
respects: Firstly, while equity variance risk premia remain mostly positive and display pronounced
spikes, bond market variance risk premia are highly volatility and change sign quite often. Sec-
ondly, we show that bond variance risk premia predict (i) bond returns, (ii) stock returns in the
cross-section, and (iii) corporate credit spreads and the predictive power is stronger than for the
equity variance risk premium. The return predictability is remarkably robust to the inclusion of
standard predictors suggested in the literature and after addressing several econometric concerns.
Furthermore, we show that uncertainty about macroeconomic variables is an important determi-
nant of the variance risk premia.
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During the recent financial crisis only one sector generated significant profits for the leading

investment banks: Volatility arbitrage trading in forex, fixed income, and commodities.

According to a BIS survey on foreign exchange and derivatives markets activity, the interest

rate derivatives market has grown by 24% over the last three years to reach an average daily

turnover of USD 2.1 trillion.1 As a consequence, both market and academic interest in equity-

index volatility measures and their associated risk premia has grown rapidly. For instance,

the VIX index—also dubbed the “investors’ fear index”—is believed to be a good proxy of

aggregate uncertainty or risk aversion.2 The VIX is also shown to be a good predictor for

the cross-section of stocks (Ang, Hodrick, Xing, and Zhang, 2006), corporate credit spreads

(Collin-Dufresne, Martin, and Goldstein, 2001) and bond excess returns (Baele, Bekaert,

and Inghelbrecht, 2010). Furthermore, the associated variance risk premium extracted from

equity markets also predicts stock market index and bond excess returns (Drechsler, 2010

and Drechsler and Yaron, 2011), as well as corporate credit spreads (Wang, Zhou, and Zhou,

2010). Given this extensive literature for equity markets, it is rather surprising that no effort

has been undertaken to measure these risk premia in fixed income markets. Filling this gap

is the goal of this paper.

To further motivate our paper, imagine an investor who was long a synthetic variance swap

on the 30 year or 10 year Treasury futures over the past 20 years. Figure 1 plots the payoff on

this long position in the variance swap from January 1990 to September 2010. As is evident

from the figure, the strategy exhibits large variability during times of crisis like the two

crisis periods indicated by the gray shaded areas. Interestingly, the strategy yields attractive

annualized Sharpe ratios of almost 1.32 and 1.87, respectively. These numbers are twice as

large compared to holding Treasury futures themselves and three times as large compared to

investing in the equity market index. Overall, the numbers motivate a deeper examination

of these risk premia and their impact on asset prices.

[Insert Figure 1 approximately here.]

We contribute to the literature in the following way. First, we construct and document vari-

ance risk premia for the term structure of Treasury bonds. Second, we calculate an implied

1See BIS (2010).
2See, e.g., Bollerslev, Gibson, and Zhou (2007) and Korteweg and Polson (2010), among others.
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volatility measure comparable to the VIX for the Treasury market, the TIV measure. Third,

we investigate whether the bond variance risk premium helps forecasting bond and stock

returns, and corporate credit spreads. Finally, we investigate the economic determinants of

bond variance risk premia.

To the best of our knowledge, we are the first who construct a term structure of variance

risk premia for the bond market. Even though there is ample evidence of priced variance

risk in both the index and single stock equity market, we know surprisingly little about the

compensation for variance risk in bond markets. The variance risk premium is defined as

the difference between the risk-neutral and physical variance. While most of the literature

has mainly focussed on either Black and Scholes (1973) implied volatility or a model-free

approach, we follow Martin (2011), who constructs implied variance measures from so called

simple variance swaps. The advantage of this approach is that it leads to a genuine measure of

implied variance, whereas, the so-called model-free approach contains higher order moments

of the risk-neutral distribution once the assumption of the underlying asset being an Itô

process is relaxed. This is particularly useful, as we study a period where assets are subject

to sudden jumps.

While the risk-neutral expectation may be estimated in a completely model-free fashion

using a cross-section of options written on the underlying, the calculation of the objective

expectation requires some mild auxiliary modeling assumptions. A priori, it is not clear, what

the best proxy for this objective expectation should be. Andersen, Bollerslev, and Diebold

(2007) show that simple autoregressive type of models estimated directly for the realized

volatility often perform better than parametric modeling approaches designed to forecast

the integrated volatility. In calculating our benchmark bond variance risk premium we thus

use a version of the HAR-RV model proposed by Corsi (2009) augmented by including lagged

implied variance as additional regressors.3

The implied variance measures we derive in both equity and bond markets are remarkably

similar and the unconditional correlation is around 60% measured over the last 20 years.4

3Bollerslev, Sizova, and Tauchen (2010) use the simple HAR-RV model to construct the stock market
variance risk premium while Busch, Christensen, and Nielsen (2011) use the same approach as we do to
improve forecasts of realized volatility.

4The correlation between the implied variance measures for 30 year Treasury futures and equities is as
high as 69% whereas the correlation between the implied variance measure for 5 year Treasury futures and
equities is around 53%.
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The VIX index is often dubbed as a fear of gauge index as it spikes in crisis periods. We find

a similar pattern for the bond market using the Martin (2011) approach. Implied volatilities

in bond markets spike when uncertainty is high. On the other hand, we find that the variance

risk premia in bond and equity markets display very different patterns. While the variance

risk premium in the equity market is essentially always positive (i.e. it acts as an insurance

premium), the variance risk premium in the Treasury market switches the sign quite often.

This suggests that investors do not always perceive volatility in the Treasury market as risk.

This is also manifested in the predictive regressions we run. We find a large and statistically

significant predictive power of the bond variance risk premium for bond and stock excess

returns, and corporate credit spreads. Unlike results we find for the equity market, however,

the sign is mostly negative, indicating that a higher bond variance risk premium requires

lower expected returns on average. This is in contrast to the usually positive slope coefficient

found for the equity variance risk premium (see Zhou, 2010 or Mueller, Vedolin, and Zhou,

2011).

Our findings can be summarized as follows: First, a one standard deviation change in the 30

year Treasury bond variance risk premium induces a 0.4 standard deviation negative change

in bond excess returns, increases the stock market excess return by 0.4 to 0.6 standard

deviations and induces a negative 0.25 to 0.66 standard deviation change in high grade

corporate credit spreads across different maturities. In contrast, the equity variance risk

premium on the other only has significant forecasting power for low grade credit spreads.

Since the predictive power of the bond variance risk premia is not driven out by either term

structure or macro factors, we ask ourselves what the drivers of these variance risk premia

could be. One obvious candidate are proxies for uncertainty. Many papers have documented

that the equity variance risk premium is affected by proxies of uncertainty extracted from

survey data (see Drechsler and Yaron, 2011 among others). We test this hypothesis using

forecasts on a variety of macro and term structure variables from Blue Chip and find high R2

of around 30% for the equity and up to 60% for the bond variance risk premium. Uncertainty

of nominal (inflation) risk is a a significant for both bond and equity variance risk premia.

In addition, variance risk premia also load on proxies for real (consumption) risk. Bond

variance risk premia are also driven by uncertainty about Fed interventions.
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We remain agnostic about possible theoretical underpinnings of our findings. While most

papers that study the predictability from the variance risk premium onto other factors find

a positive slope coefficient, we find negative signs for bond excess returns and credit spread

changes. The interpretation of these papers is usually that the variance risk premium is a

proxy for economic uncertainty which loads on the stochastic discount factor and therefore

has to require a positive premium. Our intuition is that bond and equity variance risk premia

give us an indication of so called flight to quality effects. Stock and bond correlation is highly

time-varying and while the average unconditional correlation is positive, it can switch sign

quite often and has done so increasingly often during the past couple of years. Negative

stock and bond correlation is often related to flight to quality (see Baele, Bekaert, and

Inghelbrecht, 2010). Intuitively, we would expect flight to quality to occur in periods of high

uncertainty. Indeed, running simple rolling regressions from stock and bond correlation onto

equity and bond variance risk premia, we often find opposing effects, especially in periods of

distress.

We are not the first to study variance risk premia. While a plethora of literature has focussed

on the stock market variance risk premium, less attention has been given to the variance

risk premia of individual stocks or commodities.5 Rather surprisingly, to the best of our

knowledge, almost no paper has looked at variance risk premia in the fixed income market.

In a contemporaneous study, Trolle and Schwartz (2011) empirically study the swaption cube

using swap data on 10 year Treasury notes.

The rest of the paper is organized as follows. Section I. describes our data set and section II.

describes the econometric methods used to estimate the TIV measure and the variance risk

premia. Section III. presents the results of our empirical study and section IV. concludes.

The Appendix contains a more detailed description of the data and alternative methods to

estimate the implied and realized variance measures.

5For literature on the stock market variance risk premium, see, e.g., Driessen, Maenhout, and Vilkov
(2009), Bollerslev, Gibson, and Zhou (2009), Carr and Wu (2009), Cremers, Halling, and Weinbaum (2010)
and Todorov (2010), among others. Bakshi and Kapadia (2003) and Vedolin (2010) for example study the
variance risk premia of individual stocks and Trolle and Schwartz (2009) investigate variance risk premia in
commodity markets.
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I. Data

A. Treasury Futures and Options Data

To calculate our implied and realized volatility measures for Treasury bonds, we use futures

and options data from the Chicago Mercantile Exchange (CME). Our Treasury futures and

options data runs from October 1982, May 1985 and May 1990 to September 2010 for the 30

year, 10 year, and 5 year Treasury bond futures and options, respectively. We use a monthly

frequency throughout this paper and thus have 336, 305, and 245 observations available,

respectively. We use high-frequency intra-day price data of the 30 year U.S. Treasury bond

futures and the 10 year and 5 year U.S. Treasury notes futures and we use end-of-day prices

of options written on the underlying futures.

Treasury futures are traded electronically as well as by open outcry. While the quality

of electronic trading data is higher, the data only becomes available in August 2000. To

maximize our time span, we therefore use data from electronic as well as pit trading sessions.

We only consider trades that occur during regular trading hours (07:20–14:00) when the

products are traded side-by-side in both markets, as liquidity in the after-hours electronic

market is significantly smaller.

The contract months for the Treasury futures are the first three (30 year Treasury bond

futures) or five (10 year and 5 year Treasury notes futures) consecutive contracts in the

March, June, September, and December quarterly cycle. This means that at any given point

in time up to five contracts on the same underlying are traded. To get one time series, we

roll the futures on the 28tℎ of the month preceding the contract month.

For options, the contract months are the first three consecutive months (two serial expirations

and one quarterly expiration) plus the next two (30y futures) or four (10y and 5y futures)

months in the March, June, September, and December quarterly cycle. Serials exercise into

the first nearby quarterly futures contract, quarterlies exercise into futures contracts of the

same delivery period. We roll our options data consistent with the procedure applied to the

futures.
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B. Other Data

Treasury Data:

We use the Fama and Bliss discount bond database from CRSP to compute yields, returns,

and forward rates for two to five year bonds. Yields and returns are computed in logs. Yield

spreads and excess returns are constructed relative to the one year bond. We denote by

r
(�)
t+1 = p

(�−1)
t+1 − p

(�)
t , the return on a � year bond with log price p

(�)
t . The excess bond return

is defined as:

rx
(�)
t+1 ≡ r

(�)
t+1 − y

(1)
t ,

where y
(1)
t is the one year yield. From the same data, we also construct a tent-shaped

factor from forward rates, the Cochrane and Piazzesi (2005) factor, CP. Wright and Zhou

(2009) document the strong predictive power of the mean jump size for bond risk premia.

In line with those authors, we measure the rolling realized jump mean, J̃ , using five minute

frequency data on the 30 year Treasury bond futures. We use a 24-month rolling window

due to the assumption that jumps are large and rare. Summary statistics are reported in

Table 1, Panel A and Table 2, Panel A.

Stock Index Futures and Options Data:

To calculate the implied and realized variance measures for the stock market we use futures

and options on the S&P 500 index from CME. The sample period is from January 1983 to

September 2010. As additional implied variance measure and to check our results that are

obtained using futures data we also use the VIX and VXO measures that are calculated

using options on the S&P 500 cash index instead of S&P 500 futures.6 The VIX is available

starting in January 1990 and the VXO is available since January 1986.

Stock Market Data:

To proxy for the market portfolio we use the S&P 500 index. The one year market excess

return rx
(m)
t is defined as the annual return on the market portfolio less the one year Treasury

yield. We also calculate the excess returns on a portfolio of value and growth stocks (rx
(v)
t

and rx
(g)
t ), respectively. These portfolios are constructed using stocks traded on NYSE,

AMEX, and NASDAQ from CRSP. Summary statistics are reported in Table 1, Panel B.

6The VIX is the implied volatility calculated using a model free approach whereas the VXO is calculated
using the Black and Scholes (1973) implied volatility.
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Credit Spreads:

We construct a term structure of corporate credit spreads for different ratings (AAA, BBB,

and B). To calculate credit spreads we use the difference between corporate and Treasury

par yields obtained from Bloomberg’s option free fair market curves. Summary statistics for

selected credit spreads are reported in Table 1, Panel C.

Macroeconomic Data:

We compute the eight static macroeconomic factors F̂j, j = 1 . . . , 8 from Ludvigson and Ng

(2009, 2010) for an updated data set.7 We also estimate volatility proxies for inflation and

consumption. We calculate these by estimating a GARCH process for monthly CPI inflation

and consumption (non-durables and services). The macroeconomic data is from Global

Insight and the Federal Reserve Economic Data (FRED). We present summary statistics in

Table 2, Panel B.

Forecast Data:

We use forecast data from BlueChip Economic Indicators (BCEI) to calculate proxies of

uncertainty about macroeconomic variables. BCEI collects monthly forecasts of twelve key

financial and macroeconomic indicators from about fifty professional economists in leading

financial and economic advisory firms.8 The forecasts are made for different time horizons.

This data exhibits strong seasonality and thus we adjust the series using a 12-period ARIMA

filter. We use the cross sectional standard deviation of the filtered panel data within each

month as the monthly gauge of uncertainty. We calculate the time series of the cross sectional

standard deviation using the forecasts for the current and the subsequent calendar year for

each forecast variable i. Thus, for each variable we have two time series reflecting the

uncertainty of the forecaster. Our uncertainty proxy Û i is the first principal component

extracted from these two time series.

7The original data set was previously used in Stock and Watson (2002). Some of the macroeconomic
variables are no longer available after 2007. Consequently, we use 125 instead of 132 macroeconomic time
series. In addition, we exclude all stock market and interest rate time series and work with a set of 104
variables. We also use the full data set with 125 variables and the original factors for shorter sample
period ending in 2007 as a robustness check. Our results remain unchanged. A detailed description of the
macroeconomic data is provided in Appendix B. and Table 8.

8The twelve series are real gross domestic product (RGDP), the GDP chained price index (GDPI),
the consumer price index (CPI), industrial production (IP), real disposable personal income (DPI), non-
residential investment (NRI), the unemployment rate (UNEM), housing starts (HS), corporate profits (CP),
total US auto and truck Sales (AS), the three-month secondary market bank discount basis (SR) and the 10
year constant maturity Treasury yield (LR).

7

http://research.stlouisfed.org/fred2/


To construct the Fed uncertainty factor we follow Ulrich (2011). Each month, we run a

cross-sectional Taylor rule regression using the the predictions of the individual forecasters:

rjt = ct + �g
t g

j
t + ��

t �
j
t + �jt ,

where rjt is the forecast of the three month discount rate of forecaster j, gjt the forecast of

real GDP growth, and �j
t the forecast of inflation (CPI) and �jt is thus the anticipated Fed

intervention. ct, �
g
t and ��

t are assumed to be time-varying to account for the forward-looking

bias. The cross-sectional variance of �it is then a proxy for so called Fed uncertainty.

The summary statistics of the uncertainty factors for CPI inflation, real disposable income,

housing starts and the Fed uncertainty are displayed in Table 2, Panel A.

[Insert Tables 1 and 2 approximately here.]

II. Estimation of Bond Variance Measures and Variance Risk Premia

In this section we describe the methods used to estimate the expected risk-neutral and

objective variance, E
ℚ
t

(∫ T

t
�2
udu

)
and Eℙ

t

(∫ T

t
�2
udu

)
. Since we do not want to take an

a-priori stance on the “best” proxy for the risk-neutral and objective variance, we first

use various methods to calculate both the variance under the risk-neutral and the physical

probability measure. We then document the differences among the methods and we choose

the appropriate measures to calculate the bond variance risk premia.

We essentially use two different methods to approximate E
ℚ
t

(∫ T

t
�2
udu

)
, the expected risk-

neutral variance:

1. MIV denotes the model-free implied variance.

2. SMIV denotes the risk-neutral variance of simple returns.

For both methods we consider various interpolation methods to find the expected risk-neutral

variance for a one month horizon.

To approximate the expected objective variance, Eℙ
t

(∫ T

t
�2
udu

)
, we also use different ap-

proaches, two of which are presented in this section:
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1. RV (kmin) denotes the realized variance using data sampled at a k minute interval. We

consider 5, 25 and 60 minute intervals.

2. RV (IV) denotes the heterogeneous autoregressive realized variance estimator estimator

augmented by including lagged implied variance as additional regressors.

Further methods that can be used to approximate the expected objective variance are de-

scribed in Appendix A..9

In the last part of this section we define a Treasury Implied Volatility or “TIV” measure

in the spirit of the well known VIX index that is calculated by CBOE for the S&P 500

index. Our proposed TIV measure is the 30 year Treasury bond futures implied volatility.

The 30 year Treasury futures and options have the longest available history and they are

significantly more liquid than the 10 year and 5 year Treasury futures. We propose that

this measure be used as the analogue to the VIX for the Treasury market. We calculate a

daily TIV measure going back to October 1982. Unconditionally, the TIV measure has a

correlation of 50% with the VIX for the common sample period since 1983.10

A. Implied Variance

Following standard practice, we use options to back out a proxy for the expected variance

under the risk-neutral measure. The simplest way to calculate the implied variance would

be to invert the standard Black (1976) formula. Black’s model is often used to value interest

rate options.11 However, one of the relevant assumptions underlying the model is constant

volatility which is inconsistent with the application to forecasting changes in volatility.

Britten-Jones and Neuberger (2000) propose a method that does not require this assumption

and thus does not suffer from this inconsistency. Moreover, their approach is completely

9Additional measures include RV (HAR), the standard HAR-RV estimator, BV (kmin), the realized bi-
power variation using data sampled at a k minute interval, RV (AC1), the first-order autocorrelation-adjusted
realized variance estimator, RV (TS), the two scale realized variance estimator and RV (TSadj), the two scale
realized variance estimator that adjusts for bias introduced by microstructure noise.

10The time series for the TIV measure is available upon request from the authors. The data will also be
made available on the authors’ website. Note that we construct our own VIX measure which is based on
options on S&P500 future options rather than on the underlying cash index. The reason being that futures
options data on the S&P500 date back to the 1980s with high trading volumes. For the common sample
period since 1990, our VIX measure has a correlation with the published VIX of 99.4% and the root mean
squared error is below 1%.

11E.g., Busch, Christensen, and Nielsen (2011) use this measure to study the forecasting power of implied
volatility for realized volatility of Treasury bond futures.
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model free and only requires current option prices. However, interest rates are assumed to

be non-stochastic, which again is inconsistent as they are assumed to be stochastic when it

comes to calculating the payoff of the option (which is written on a futures that is dependent

on an underlying interest rate process). Moreover, both approaches assume European instead

of American options and forward instead of futures contracts as the underlying asset.

One application of the model-free implied variance is the VIX which is the implied volatility

index of S&P500 options. Neuberger (1994) shows that the VIX corresponds to the quadratic

variation of the forward price of the S&P500 index under the risk-neutral measure. One issue

with the model-free implied variance is that is heavily relies on the Itô assumption for the

underlying process. In the presence of skewness, Carr and Lee (2009) show that the VIX will

be upward biased compared to the true risk-neutral quadratic variation. Recently, Martin

(2011) introduced the simple variance swap for which the realized leg can be computed from

simple returns of the underlying index and the index forward. The SVIX, as the VIX, can

be approximated as a portfolio of out-of-the-money options. As he shows, the SVIX can be

constructed under weaker assumptions and in particular, even in the presence of jumps.

To implement the two methods for calculating the implied variance, we treat the American

options as European.12 Furthermore, we assume that the short risk-free rate is non-stochastic

(or at least not too volatile) such that the forward and futures prices coincide.

To obtain the model-free implied variance MIV , we follow Demeterfi, Derman, Kamal,

and Zhou (1999) and Britten-Jones and Neuberger (2000). They show that if the underlying

asset price is continuous, the risk-neutral expectation of total return variance is defined as an

integral of option prices over an infinite range of strike prices. Since in practice, the number

of traded options for any underlying asset is finite, the available strike price series is a finite

sequence. Suppose the available strike prices of the call options belong to
[
Kcall, K

call
]
,

where K
call ≥ Kcall ≥ 0. As shown in Jiang and Tian (2005), a truncated version of the

integral over the infinite range of strike prices can be used to evaluate the model-free implied

12Jorion (1995) shows that early exercise premia are small for short maturity at-the-money options on
futures, while Overdahl (1988) demonstrates that early exercise of options on Treasury futures happens
about 0.1% of the time and happens both with calls and puts but only with options that are significantly
in the money. In the empirical implementation we use only out-of-the money options and thus assume that
the early exercise option will not distort the option price.
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volatility. Denote C (T,K) the spot call price with strike price K expiring at time T and Ft

the forward price. We use the trapezoidal rule to numerically calculate the integral:

2

∫ K
call

Kcall

C (T,K)−max (0, Ft −K)

K2
dK ≈ K

call −Kcall

m

m∑

i=1

[
gt,T

(
Kcall

i

)
+ gt,T

(
Kcall

i−1

)]
.

where

gt,T
(
Kcall

i

)
=

C
(
T,Kcall

i

)
−max

(
0, Ft −Kcall

i

)
(
Kcall

i

)2 , (1)

and Kcall
i is the itℎ largest strike price for the call option. To implement the trapezoidal

rule, we now need the option prices C
(
T,Kcall

i

)
, for i = 1, . . . , m. Since some of these prices

are not available, we apply a cubic spline interpolation method as proposed in Forsythe,

Malcolm, and Moler (1977) to obtain the missing values.13

Let

MIV
(�)
t =

K
call −Kcall

m

m∑

i=1

[
gt,T

(
Kcall

i

)
+ gt,T

(
Kcall

i−1

)]
, (2)

where � = T − t denotes the time horizon or time to maturity. As mentioned above, we

replace Ft in equation (1) by the futures price. Since in-the-money and at-the-money options

are less liquid, (2) is evaluated for out-of-the money call options whose strike prices are no

less than 0.94× Ft. Finally, We set m = 100 and restrict MIV
(�)
t = 0 when t = T .

In addition to the model free implied variance, MIV
(�)
t , we then calculate the implied vari-

ance from simple returns, SMIV
(�)
t . The calculations follow the same steps as the calcula-

tions for the model-free implied variance. The SMIV
(�)
t is defined as:

SMIV (�) =
2erT

T

(∫ Ft

0

1

S2
0

P (T,Kput
i )dKput

i +

∫
∞

Ft

1

S2
0

C(T,Kcall
i )dKcall

i

)
. (3)

We estimate the model-free and the simple return implied variances at the end of each month

for a 30 day horizon to get our monthly time series, denoted MIV
(i)
t and SMIV

(i)
t , where

13Jiang and Tian (2005) take a different approach: They first calculate the implied volatilities of available
options with the Black and Scholes formula, and then use the interpolation method to obtain the Black and
Scholes implied volatilities of the unavailable options. Using these implied volatilities, they use the Black
and Scholes formula again to obtain the continuum of option prices. They claim that their method can avoid
the nonlinearity problem in the option prices. However, we find a direct use of the interpolation method on
the option prices to be more robust.
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i = {30y, 10y, 5y, E} stands either for the 30 year, 10 year of 5 year Treasuries or the equity

index.

B. Realized Variance

To estimate Eℙ
t

(∫ t+1

t
�2
udu

)
, the daily expected variance we first consider realized variance

RVt, which is defined as

RVt =

M∑

i=1

r2t,i, (4)

where

rt,i = logP

(
t− 1 +

i

M

)
− logP

(
t− 1 +

i− 1

M

)

is the intra-daily log return in the itℎ sub-interval of day t and P (t− 1 + i/M) is the asset

price at time t − 1 + i/M. The estimator is consistent for
∫ t

t−1
�2
udu if the log price process

does not have jump components and under some mild regularity conditions. For each day,

we take rt,i between 7:25 and 14:00. We use three different sampling frequencies for rt,i,

namely, we use k = {5, 25, 60} minute intervals to calculate RV
(kmin)
t .

The normalized monthly realized variation RVt,1m is defined by the average of the 22 daily

measures. The normalized weekly realized variation RVt,1w is correspondingly defined by the

average of the 5 daily measures:

RVt,1w =
1

5

4∑

j=0

RVt−j , and RVt,1m =
1

22

21∑

j=0

RVt−j .

To better capture the long memory behavior of volatility, we use the daily, weekly and

monthly realized variance estimates to estimate the heterogenous autoregressive model of

realized volatility (HAR-RV) proposed by Corsi (2009). The daily HAR-RV model is ex-

pressed as

RVt+1 = �+ �DRVt + �WRVt,1w + �MRVt,1m + "t+1.

This simple method avoids some difficulties in long memory time series modeling and the

parameters can be consistently estimated by OLS. However, a Newey-West correction is

needed to make appropriate statistical inference. Moreover, such a HAR type model can
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be easily modified, for example, by adding extra covariates that contain predictive power.

It is also possible to apply the model to integrated squared variance measures other than

the simple realized variance. Andersen, Bollerslev, and Diebold (2007) extend the model

to show that the predictability for RVt+ℎ over different time intervals almost always comes

from the continuous component of the total price variation, rather than the discontinuous

jump component.

We aim to obtain the monthly estimates directly, so we replace the daily realized variance

RVt+1 by the monthly measure RVt+22,1m. Moreover, we include lagged estimates of implied

volatility to improve the realized volatility forecasts. Hence, we then run the following OLS

regression for the projection:

RVt+22,1m = � + �DRVt + �WRVt,1w + �MRVt,1m + � ′(i)(ℎ)IV(L)t + "t+22,1m, (5)

where IV(L)t contains lagged implied variance up to lag L.14 We use intra-day data sampled

at the 5-minute interval to calculate the daily realized variance, i.e. RVt = RV
(5min)
t . We

implement the regression using a rolling window of 180 trading days. This allows us to

obtain real-time forecasts R̂V t+22,1m for RVt+22,1m using the rolling parameter estimates.15

As the HAR-RV predictor for
∫ t+� ′

t
�2
udu we use

RV
(HAR)
t = 22× R̂V t+22,1m. (6)

We denote the augmented version of our monthly HAR-RV predictor RV (IV). To obtain the

monthly estimates for the realized variance, we sum the daily estimates over the last month.

Subsequently, the realized variance (RV (kmin)) estimator always refers to the aggregated

monthly measure.

14We choose the lag length to be four using the Akaike and Bayesian information criteria.
15We use daily realized variance estimates from the first 223 trading days as the input for initial estimation:

Daily realized variances from day 1 to day 201 are used to construct RVt, RVt,1w, and RVt,1m. Daily realized
variances from day 23 to day 223 are used to constructRVt+22,1m. On day 223, the first out of sample forecast

R̂V t+22,1m from the fitted model is constructed by using RV223, RV223,1w, and RV223,1m as the input data
to the initial fitted model. The same method is applied for day 224, 225, . . . with the corresponding window
parameters. We estimate the expected realized variance using an expanding data set to avoid a look ahead
bias.
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Figure 2 shows time series plots for the monthly variance measures for the 30 year, 10 year,

and 5 year Treasury bond futures, respectively as well as the S&P 500. For the S&P 500,

we use options on S&P 500 futures to be consistent with our calculations of the Treasury

implied variances. Note, however, that the calculation of the VIX for example requires op-

tions on the cash index itself. Table 3, Panels A and B present summary statistics of implied

and realized volatility measures (which are simply obtained by taking the square root of

the corresponding variance measures). The numbers shown are annualized and expressed in

percent. The average size of the variance measures for the long-term futures is consistently

larger than for the short-term futures. This is intuitive, as agents who invest in longer term

bonds want to be compensated for holding these bonds. The equity implied volatilities are

almost twice as large as the implied volatilities for 30 year futures and almost three and more

than four times as large as the implied volatilities for 10 year and 5 year futures, respec-

tively. Realized volatilities are on average lower than the corresponding implied volatilities

implying a variance risk premium that is positive on average for bonds and the equity in-

dex. The summary statistics for the VIX index are included in Panel A for comparison

purposes. As noted earlier, the equity index model-free implied variance (or volatility in this

particular case) backed out from futures options is very highly correlated with the VIX and

consequently, the summary stats are very similar.

[Insert Figure 2 approximately here.]

With regards to the statistical properties of different variance measures, the realized vari-

ance RV is on average larger than the bipower variation BV , since the former includes both

continuous and discontinuous parts of the integrated variance, while the latter is a robust

estimation for the continuous part only. Quantities of the realized variance estimates with

lower frequency data (25 and 60 minutes) are smaller than those obtained with higher fre-

quency data (5 minutes), but they are more stable (i.e. they have lower sample standard

deviations). This may suggest that the lower frequency versions underestimate the true

integrated variance. For the 30 year and 10 year bond futures, skewness and kurtosis for

robust realized variance estimators when microstructure noise is present are much higher

than those for equally spaced-time estimators. But for the 5 year bond futures, empirical

distributions of the robust realized variance estimators do not show too much skewness and
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fat-tail behavior.16 Overall, we find the realized variance estimates from the HAR-RV and

augmented HAR-RV model’s projections to have relatively low skewness and kurtosis. How-

ever, the method to obtain RV (IV) does not guarantee its positiveness. As for the implied

variance measures, the implied volatility measures using the model-free approach are higher

than using the simple returns approach. The intuition is the same as in Martin (2011). If

the return distribution is skewed, simple return implied variance tends to be lower than for

standard variance swaps. The reason being that the implied variance from the latter con-

tain all the higher order moments of the return distribution. Overall, the implied variance

measures have lower skewness than their realized variance counterparts.

[Insert Table 3 approximately here.]

C. Variance Risk Premia

We define the variance risk premium from day t to T as follows:

V RPt,� ≡ E
ℚ
t

(∫ T

t

�2
udu

)
− Eℙ

t

(∫ T

t

�2
udu

)
,

where � = T − t denotes the time horizon.17 Economic theory suggests that the variance risk

premium should be positive in order to compensate investors who bear risks from expected

price fluctuations. The general positiveness of the variance risk premia can also be confirmed

empirically from comparing the means of the different variance (or volatility) measures.

From an econometrician’s point of view however, it is not a priori clear what variance mea-

sures should be used. While the expected variance under the risk-neutral measure can be

estimated in a completely model-free fashion, the calculation of the objective expectation, re-

quires some mild auxiliary modeling assumptions. Andersen, Bollerslev, and Diebold (2007)

argue that simple autoregressive type models estimated directly for the realized variance

typically perform equally well as, and often better, than parametric modeling approaches

designed to forecast the integrated variance. Therefore, we use the RV (IV) measure as our

benchmark. This proxy of the variance risk premium has recently been used in Bollerslev,

16These results are not reported.
17For notational simplicity, we subsequently drop the subscript � as we always consider the one month

horizon.
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Sizova, and Tauchen (2010). In Figure 3 we plot the annualized variance risk premia (ex-

pressed in squared percent) defined as the difference between the model-free implied variance

(MIV (i)) and the RV (IV,i) for the 30 year Treasury bond (V RP (30y)) as well as the 10 year

and 5 year Treasury notes (V RP (10y) and V RP (5y)). As we can see, the three time-series

share a lot of co-movement: The unconditional correlations between the 5 year, 10 year and

30 year bond variance risk premia ranges between 55% and 82%. We also note that V RP (30y)

displays the largest volatility, especially during crisis periods indicated by the shaded areas.

The bond variance risk premia are positive on average but they change sign quite often.

In contrast, the equity variance risk premium V RP (E) (also plotted in Figure 3) is always

positive and on average significantly higher in magnitude. The correlation between the bond

and the equity variance risk premia is about 45% to 50%. The summary statistics of the

annualized variance risk premia expressed in squared percent are reported in Table 3, Panel

C.

[Insert Figure 3 approximately here.]

D. Treasury Implied Volatility (TIV)

In this section we introduce a measure for Treasury Implied Volatility in the spirit of the

VIX. To construct the TIV measure we use the model free implied variance obtained by

a linear interpolation using the nearest two expiration dates, MIV (i). The TIV measure

is the square root of the MIV
(30y)
t for the futures on 30 year Treasuries. Figure 4 (lower

panel) plots the annualized TIV measure and our VIX measure (backed out from options on

futures) for the common sample period 1983 to 2010.18 The unconditional correlation of the

two monthly time series is 46%. The unconditional correlation between the TIV measure

and the original VIX for the period 1990 to 2010 is 62%.19 In the upper panel, we also depict

the STIV and SVIX calculated using the simple variance swap approach. Again, the two

series almost move in lock-step, the unconditional correlation being 50%.

We also calculate the implied volatility using simple returns, STIV and SVIX, which are

robust to jumps. The correlation for the full sample period is 49% and the correlation since

18However, we calculate the TIV measure going back to October 1982, the start date of our data.
19The correlation between the TIV and our VIX measure for the same time period is exactly the same,

which is not surprising given the near perfect correlation between the original VIX calculated using options
on the cash index and our measure calculated using options on futures.
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1990 is 64%. As before, we can also compare the SVIX calculated using options on the cash

index and the futures. As in Martin (2011) we use data from Optionmetrics to calculate the

SVIX backed out from options on the cash index. This data is available starting in January

1996. The correlation between the two SVIX measures is again nearly perfect and reaches

99.7%. The correlation between the STIV and the cash SVIX (as well as the futures SVIX)

for the period from 1996 to 2010 is 68%.

In the next section we document the strong predictive power of the bond variance risk

premia for excess bond and stock returns, and corporate credit spreads. We use the implied

variance measures based on simple returns (STIV and SVIX) because they are robust to

jumps. However, our results are not sensitive to the choice of implied variance measure.

[Insert Figure 4 approximately here.]

III. Empirical Evidence

In this section, we study the predictive power of the Treasury bond variance risk premia

for annual Treasury bond excess returns, stock excess returns and corporate credit spread

changes. We do this univariate and multivariate, i.e. we run regressions using only various

variance risk premia measures as regressors before including additional explanatory variables.

We find that estimated coefficients of bond variance risk premia are both economically and

statistically significant even if we include standard predictors suggested in the literature. We

then also investigate the economic determinants of bond variance risk premia. We calculate

the variance risk premia using the methods described in the previous section. Namely, the

variance risk premium is the difference between the model-free implied variance and the

augmented HAR-RV projection. We use the implied variance calculated from simple returns
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as it has slightly more desirable properties and is robust to the presence of jumps. However,

none of the results in this section are sensitive to the choice of implied variance measure.20

A. Predictability

We start by assessing the in-sample predictive ability of bond variance risk premia for asset

returns. To do this, we run the following type of regression:

rx
(i,�)
t+ℎ = � ′(i,�)(ℎ)VRPt + ′(i,�)Mt + �

(i,�)
t+ℎ (7)

where rx
(i,�)
t+ℎ denotes excess returns on two to five year nominal Treasury bonds (with a ℎ = 1

year holding period), the market (S&P 500 index), value and growth stock excess returns

(six months and one year holding period), or corporate credit spread changes for spreads in

rating category i = {AAA,BBB,B}, respectively. VRPt is a vector containing the equity

market variance risk premium VRP
(E)
t , and the Treasury bond variance risk premia for 5, 10

and 30 year maturities (VRP
(30y)
t , VRP

(10y)
t and VRP

(5y)
t ). M denotes a vector of additional

predictor variables and �(i,�) is the error term. Note that we run standardized regressions,

meaning, for all regressors and regressands, we de-mean and divide by the standard deviation.

This makes coefficients easier comparable across different predictors.

For the Treasury bond excess return regressions, M includes the rolling mean jump size J̃

constructed from high frequency data on 30 year Treasury futures (see Wright and Zhou,

2009), the Cochrane and Piazzesi (2005) factor, CP, and the eight macro factors from Lud-

vigson and Ng (2009, 2010), F̂j , j = 1 . . . , 8. For the stock market excess return regressions

we include the dividend yield DY , the earnings/price ratio E/P , the book-to-market ratio

B/M and NTIS, the net equity expansion as additional regressors as in Goyal and Welch

(2008). The regression results are presented in Tables 4 to 6. Coefficients are estimated with

ordinary-least squares and standardized and t-statistics are calculated using Newey and West

(1987) standard errors. The sample period is from July 1992 to December 2010.

[Insert Table 4 approximately here.]

In Table 4 we report the regression results excluding the additional control variables. Panel

A contains the results for Treasury bond excess returns. The coefficient for the 30 year

20In fact, the results even hold if the implied variance is calculated by inverting the Black (1976) formula.
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variance risk premium is significant and negative for all different maturities, implying that

higher bond variance risk premium leads to lower excess returns. The coefficient for the

10 year bond variance risk premium on the other hand is significantly positive for all bond

maturities. This result is robust to using a residual from a regression of the 10 year bond

variance risk premium on the 30 year bond variance risk premium instead, implying that not

all bond variance risk premia contain the same information that is relevant for forecasting.

The average adjusted R2 is around 6%. Unlike the bond variance risk premia, the equity

variance risk premium does not seem to contain any relevant information for forecasting

bond excess returns at an annual horizon.21

Univariate regression results for the stocks and credit spreads are reported in Panels B and

C of Table 4, respectively. Overall, the dominating factor for the predictability is again the

30 year bond variance risk premium: Estimated coefficients are positive and statistically

significant for the market, growth, and value excess returns for the six and twelve month

horizons with adjusted R2 ranging from 9% to 13%. Again, the equity variance risk premium

is not statistically significant for any stock portfolio. For monthly credit spread changes, the

estimated coefficients for the 30 year bond variance risk premium are negative and highly

statistically significant at any maturity for investment grade bonds (AAA and BBB) with

t-statistics between 2.33 and 4.53. For B rated bonds however, Treasury bond variance

risk premia are no longer significant. For the equity variance risk premium the pattern

seems reversed. The significance improves as the credit quality deteriorates and the equity

variance risk premium is a highly significant predictor of B credit spread changes. Overall,

the adjusted R2 range between 8% for short maturity AAA bonds and 31% for long maturity

BBB bonds.

To check the robustness of our univariate results, we add different established predictors of

bond and equity risk premia. The results are reported in Tables 5 and 6.

[Insert Tables 5 and 6 approximately here.]

To summarize, the results from the univariate regressions with respect to the 30 year bond

variance risk premia are remarkably robust to the inclusion of a host of control variables.

21These findings echo the results in Mueller, Vedolin, and Zhou (2011) who find that the equity variance
risk premium heavily loads on short-term bond risk premia but does not predict excess returns at the annual
horizon.
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The coefficients for the Treasury excess returns are still significantly negative, while the

coefficients for the bond excess returns remain significant and positive. Including the CP

factor, the jump measure and the macro factors increases the adjusted R2 to roughly 45%

across all maturities for the Treasury bond regressions. The 10 year bond variance risk

premium is driven out and the equity variance remains insignificant. As in Ludvigson and

Ng (2009), the macro factors explain a significant fraction of the variation in bond excess

returns over the sample period, while the CP factor is not significant. The jump measure

is the most significant predictor with t-statistics ranging between 6.9 and 7.2. Wright and

Zhou (2009) report that the implied variance extracted from equity options loses its predictive

power when the regression is augmented by the jump measure. While results are different

from theirs in many respects, it is important to note that our bond variance risk measures

are significant even when adding the mean jump size.

We report results from regressing stock excess returns for a six and twelve month holding

period on variance risk premia and a series of predictor variables in Table 6. We augment the

univariate regressions with the dividend yield, earnings to price ratio, book to market ratio

(all for the S&P 500) and net equity expansion as in Goyal and Welch (2008). Except for

NTIS, none of the additional factors is statistically significant in the regressions. As is the

case with the bond regressions, the 30 year bond variance risk premium remains significant

for all horizons and portfolios. In addition, the equity market variance risk premium has

predictive power for the market and the growth portfolio but not the value portfolio. Overall,

the adjusted R2 raise to roughly 30% for the six month horizon and up to 40% for the annual

excess returns.

We currently do not report extended regressions for the corporate credit spreads as none of

the other suggested factors have been significant. The results are available upon request.

In summary, we find that excess returns on bonds, the stock market and corporate credit

spreads are predictable using bond variance risk premia. The reported in-sample predictabil-

ity is strong both statistically and economically.
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B. What Drives Bond Variance Risk Premia?

In this section, we explore the economic drivers of the bond variance risk premia in more

detail. Equilibrium models that study variance risk premia focus on the equity market only.

Drechsler and Yaron (2011) link the variance risk premium of the market index to uncertainty

about fundamentals. In particular, time variation in economic uncertainty and a preference

for early resolution of uncertainty are required to generate a positive variance premium that

is time varying and predicts excess stock market returns. Drechsler (2010) reports a high

correlation between the variance risk premium and the dispersion in the forecasts of next

quarter’s real GDP growth from the Survey of Professional Forecasters. It is natural to

assume that variance risk premia are associated with higher uncertainty. Options provide

investors with a hedge against high variance in the underlying returns and high variance

usually occurs when unexpected shocks affect macroeconomic variables. The premium that

investors are willing to pay or receive against such events is related to their uncertainty.

To test the hypothesis that uncertainty affects variance risk premia, we run regressions from

the monthly variance risk premia on uncertainty factors about the real and the nominal

side of the economy as well as about monetary policy actions. The uncertainty factors are

constructed from BCEI forecast data. We proxy for uncertainty about the real and nominal

side of the economy by the cross sectional standard deviation of the forecasts of CPI (ÛCPI),

real disposable income (ÛRDPI), and housing starts (ÛHS) for the current and the next

calendar year, respectively. The Fed uncertainty factor ÛFED is the cross sectional variance

of the residual from a Taylor rule regression of the short rate forecast on real GDP growth

and inflation (CPI) forecasts.22 In addition to the uncertainty measures, we also include two

variables that measure the time-varying volatility of inflation and consumption (�� and �g,

respectively) and two macro factors that can be interpreted as a real (F̂1) and a nominal

(price) factor F̂2. The macro volatilities are calculated by estimating a GARCH process using

monthly CPI and per capita consumption (non-durables and services). The macro factors

are constructed using the first two principal components of a large set of macro variables as

in Ludvigson and Ng (2009, 2010).23

22See section I. for details.
23Given that the factors are principal components, the economic interpretation is not straightforward. We

calculate the marginal correlations (instead of marginal R2 as in Ludvigson and Ng, 2009) of the individual
time series with the respective factors for our data set. As in Ludvigson and Ng (2009), it is reasonable to
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Hence, we run the following regression:

V RP
(i)
t = � ′UÛt + � ′F F̂t + ′SŜt + �

(i)
t , (8)

where V RP
(i)
t is the equity or bond variance risk premium for a particular maturity (T =

30, 10 and 5 years) at time t, Ût is a vector of the uncertainty measures at time t, F̂t

contains the real and nominal macro factors, and Ŝt contains the macro volatilities �� and

�g. �
(i)
t is the error term. Again, all coefficients are estimated with ordinary-least squares

and standardized, and t-statistics are in brackets and are calculated using Newey and West

(1987) standard errors. The sample spans the period from July 1992 to December 2009.

[Insert Table 7 approximately here.]

The results are presented in Table 7. In summary, the results confirm that uncertainty

variables have relevant explanatory power for variance risk premia but there are cross sec-

tional differences. First, we run regressions using only the uncertainty proxies as explanatory

variables and then we include both the levels and volatilities of measures for the real and

nominal side of the economy.

The four uncertainty factors alone explain almost 60% and 50% of the variation in 30 year

and 10 year bond variance risk premia, respectively but only about 30% of equity variance

risk premia and roughly 22% of 5y bond variance risk premia.24

Uncertainty about monetary policy actions is highly significant for 30 year bond variance

risk premia but at most marginally for some of the other measures. The most important

and robust uncertainty measure is uncertainty about inflation (CPI) that is significant for

bond and variance risk premia and robust to including additional regressors. Uncertainty

about the real side of the economy proxied by uncertainty about real disposable income is

significant for all variance risk premia measures as long as no other controls are included.25

interpret the first factor as a real factor. The second factor can be interpreted as an inflation factor. See
Appendix B. for additional information.

24There is possibly too much noise in the time series of the 5y bond variance risk premia as the 5 year
futures and options are much less liquid compared to the instruments for 30 year and 10 year bonds and
notes. This interpretation is also supported by the less than stellar predictability of the 5 year bond variance
risk premium as shown in section A..

25We also have a measure of uncertainty about real GDP growth. This measure is seems less powerful than
uncertainty about real disposable income and is less robust. However, the results are robust to including
uncertainty about real GDP growth in the regressions.
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Uncertainty about the housing sector seems relevant for the equity variance risk premium

but not for bond variance risk premia in general.

Adding levels and volatilities of macro variables to the regression only marginally improves

the adjusted R2 for bond variance risk premia. Macro volatilities are not significant for any

of the bond variance risk premia while the real factor F̂1 enters with a positive sign and

is significant. For equity variance risk premia, the additional four variables help raise the

adjusted R2 from 31% to 38%, the additional explanatory power mainly driven by the real

factor F̂1.

Note that in the current specification of regression (8) we include a limited set of uncertainty

factors as we try to parsimoniously capture measures of the real and nominal side of the

economy and uncertainty thereabout. In a kitchen sink regression of additional uncertainty

measures (results currently not reported) we find that several of them are significant. On

the other hand, only the real factor turns out to be relevant for explaining the variation

in variance risk premia whereas all other macro factors are not. This further supports the

notion that the variance risk premia are driven by uncertainty and not by actual macro

fundamentals.

It is also noteworthy that some loadings on uncertainty factors are estimated to be negative.

A priori it might seem odd that higher uncertainty implies a lower risk premium. However,

one thing to keep in mind is that the variance risk premium can change its sign. This happens

more often for Treasury variance risk premia than for the equity variance risk premium. It

is conceivable that investors’ preferences with regards to risky assets are time varying. The

uncertainty measurements are all derived from forecasts of macroeconomic variables. Some

of these variables are pro-cyclical, such as real GDP and real disposable income. A divergence

of predictions about pro-cyclical indicators (or increasing uncertainty about these variables)

is often thought to reflect a future downturn in the economy. A negative economic shock

will drive investors to seek safe investments in a flight to quality and into Treasuries. As a

result, prices of Treasuries will go up and yields will fall. Changing perceptions of the risks

associated with Treasury securities will most likely also have a negative impact on required

risk premia.

Obviously, forecast dispersions about macroeconomic variables may not always reflect a view

that the overall economic situation is worsening. Patton and Timmermann (2010) show that
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the time-series correlation between the consensus forecast and the dispersion in forecasts is

strongly negative for GDP growth while it is positive for inflation. The dispersion in beliefs

about the GDP growth rate seems to be strongly counter-cyclical whereas the dispersion

of beliefs about inflation does not exhibit an equally clear pattern. These empirical results

may be used to reconcile the existence of both negative and positive coefficients for different

uncertainty variables in regression (8).

IV. Conclusion

We construct variance risk premia for U.S. Treasury notes and bonds with 5 year, 10 year and

30 year maturities, respectively. While the existing literature has studied the equity market

variance risk premium, variance risk premia of individual stocks or even commodities, this is

the first paper to examine these premia in the fixed income markets. The Treasury variance

risk premia are correlated with each other but the correlation is far from perfect, suggesting

that they may contain different information depending on the maturity.

We find that the bond variance risk premia are positive on average and display a large,

often counter-cyclical variability. We construct a new measure of Treasury implied volatility

measure similar to the well established VIX index for the index equity market.

We show that the Treasury bond variance risk premia possess significant predictive power

for both bond and stock excess returns as well as credit spread changes for different credit

qualities. This predictability is remarkably robust to including various other predictors such

as Treasury jump measures, the Cochrane and Piazzesi (2005) factor or the Ludvigson and

Ng (2009, 2010) macro factors.

Finally, we investigate the economic drivers of the bond variance risk premium. Recent

literature has suggested that economic uncertainty is a potential determinant of variance

risk premia and we show corroborating evidence that uncertainty about the real and the

nominal side of the economy is important for explaining the bond variance risk premia. At

the same time, macroeconomic variables themselves have little effect.

This paper is a first attempt at measuring and quantifying variance risk premia in fixed

income markets, exploring their determinants and assessing their importance for predicting
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asset prices and risk premia. However, we have remained agnostic about the structural

drivers of these risk premia. Prima facie, it is not clear why risk premia from fixed income

markets should have such a strong predictive power for corporate bonds or stocks. Chen,

Joslin, and Tran (2010) provide a theoretical foundation that the jump risk premium in

the market equity risk premium is mainly driven by agents’ disagreement about either the

intensity of disasters or their impact. Starting from this foundation, one could extend their

model for learning and study the implications of both learning and heterogeneous beliefs on

the term structure of interest rates and the corresponding risk premia for both stochastic

volatility and jumps. In such a setting, these risk premia emerge quite naturally as they

compensate agents for holding assets that are subject to both volatility and jump risk.
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Appendix

A. Bond Variance and Jump Measures

In this section we describe additional methods used to estimate the expected risk-neutral and

objective variance, Eℚ
t

(∫ T

t
�2
udu

)
and Eℙ

t

(∫ T

t
�2
udu

)
. We use various methods to calculate

both the variance under the risk-neutral and the physical probability measure. Furthermore,
we calculate and analyze measures of jump risk for the Treasury bond futures.

As discussed in Section II., we essentially use two different methods to approximate Eℚ
t

(∫ T

t
�2
udu

)
,

the expected risk-neutral variance:

1. MIV denotes the model-free implied variance.

2. SMIV denotes the risk-neutral variance of simple returns.

In addition, we also calculate the Black (1976) implied variance. Further below, we describe
the additional interpolation methods to find the expected risk-neutral variance for a one
month horizon.

To approximate the expected objective variance, Eℙ
t

(∫ T

t
�2
udu

)
, we use seven different ap-

proaches in total:

1. RV (kmin) denotes the realized variance using data sampled at a k minute interval. We
consider 5, 25 and 60 minute intervals.

2. BV (kmin) denotes the realized bi-power variation using data sampled at a k minute
interval. Again, we consider 5, 25 and 60 minute intervals.

3. RV (AC1) is the first-order autocorrelation-adjusted realized variance estimator.

4. RV (TS) is the two scale realized variance estimator.

5. RV (TSadj) denotes the RV (TS) estimator that adjusts for bias introduced by microstruc-
ture noise.

6. RV (HAR) denotes the heterogeneous autoregressive realized variance estimator estima-
tor.

7. RV (IV) denotes the heterogeneous autoregressive realized variance estimator estimator
augmented with lagged implied variance terms.

A.1. Implied Variance

In addition to the two model free implied variances, MIV
(�)
t and SMIV

(�)
t , we also use

the inverted Black (1976) formula to calculate the implied variance BIV
(�)
t . For every day

t we start by calculating the implied variance measures for all available option maturities
�i, i = 1 . . . , N . Having calculated MIV

(�i)
t and BIV

(�i)
t , we consider four different methods

to construct the monthly estimates:26

26To save space we just show the formulas for MIV .
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1. First, we consider the available MIV
(�i)
t and use the Forsythe, Malcolm, and Moler

(1977) cubic spline method to interpolate over � = 20, 30, . . . , 180 days. As our time t

estimates for the 30 day horizon we pick the interpolated value MIV
(30)
t .

2. Second, we average over the seventeen interpolated values from above, i.e. MIV
(�)
t

with � = 20, 30, . . . , 180 and normalize to a one month horizon.

MIV
(int avg)
t =

30

17

∑

�=20,30,...,180

MIV
(�)
t

�
. (-1)

3. The third method is a simple average over the implied variances of the available options,
i.e. without interpolation. Unlike the second method, this average is calculated using
a potentially different number of observations N at each point in time t. Again, we
normalize to a one month horizon.

MIV
(simavg)
t =

30

N

∑

1=1,...,N

MIV
(�i)
t

�i
. (-2)

4. The final method is similar to the approach used to calculate the daily VIX index.27

At each point in time t we consider the two sets of options with expiration dates �1 and
�2 closest to the desired 30 day horizon so that �1 < 30 < �2. We calculate MIV

(lin)
t as

the weighted average, i.e. a linear interpolation between the implied variances of the
two options:

MIV
(lin)
t =

�2 − 30

�2 − �1
MIV

(�1)
t +

30− �1
�2 − �1

MIV
(�2)
t . (-3)

Using these four methods, we estimate the model-free (SMIV and MIV ) and the Black
(1976) implied variances at the end of each month for a 30 day horizon to get our monthly

time series. Our benchmark method is MIV
(lin)
t , which is used without subscript in the main

text.

A.2. Realized Variance

To estimate Eℙ
t

(∫ t+1

t
�2
udu

)
, the daily expected variance we first consider realized variance

RVt and realized bi-power variation BVt. BVt is defined as

BVt =
�

2

(
M

M − 1

) M∑

i=1

∣rt,i∣ ∣rt,i+1∣ , (-4)

where

rt,i = logP

(
t− 1 +

i

M

)
− logP

(
t− 1 +

i− 1

M

)

is the intra-daily log return in the itℎ sub-interval of day t and P (t− 1 + i/M) is the asset
price at time t− 1+ i/M. Just as RVt, BVt is consistent for

∫ t

t−1
�2
udu if the log price process

does not have jump components and under some mild regularity conditions. For each day,

27See the VIX White Paper, Whaley (1993).
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we take rt,i between 7:25 and 14:00. We use three different sampling frequencies for rt,i,

namely we use k = {5, 25, 60} minute intervals to calculate BV
(kmin)
t .

The third estimator for Eℙ
t

(∫ t+1

t
�2
udu

)
is the first-order autocorrelation-adjusted realized

variance estimator RV
(AC1)
t described in Zhou (1996). We use a data frequency of 5 minutes

and apply the practical method described in Hansen and Lunde (2006) to construct the
estimator.

RV
(AC1)
t =

M−1∑

i=2

r2t,i +

M−1∑

i=1

rt,irt,i+1 +

M∑

i=2

rt,i−1rt,i. (-5)

The fourth estimator is the two scale realized variance proposed by Zhang, Mykland, and
Äıt-Sahalia (2005). As before, we use 5-minute data to construct the variance estimate.
Following their method, we first define the set of time grids on day t as G = {1, . . . ,M}.
Let G(k) = {k, k + K, k + 2K, . . . , k + aK}, k = 1, . . . , K, and K + aK = M. Obviously,
G(k)

∩G(k′) = ∅ if k ∕= k′, k = 1, . . . , K.

Define

RV
(k)
t =

a∑

i=1

(
r
(k)
t,i

)2

,

where

r
(k)
t,i = logP

(
t− 1 +

k + iK

M

)
− logP

(
t− 1 +

k + (i− 1)K

M

)
.

Then, the two scale realized variance estimator is defined as

RV
(TS)
t = RVt −

M

M
RV

(avg)
t , (-6)

where M = (M −K + 1) /K and RV
(avg)
t = 1

K

∑K

k=1RV
(k)
t . In the case of equally spaced

5-minute data, and since the returns rt,i are measured between 7:25 and 14:00, M = 80. We
set K = 5 and thus a = 15.

We consider the following bias-corrected RV (TS) as our fifth estimator:

RV
(TSadj)
t =

(
1− M

M

)−1

RV
(TS)
t . (-7)

Zhang, Mykland, and Äıt-Sahalia (2005) claim that RV
(TSadj)
t performs better than RV

(TS)
t ,

RV
(avg)
t and RVt in estimating

∫ t

t−1
�2
udu in the presence of microstructure noise.

Using the five methods described above, we obtain daily variance estimates for each trading
day t. The normalized monthly realized variation RVt,1m is defined by the average of the 22
daily measures. The normalized weekly realized variation RVt,1w is correspondingly defined
by the average of the 5 daily measures:

RVt,1w =
1

5

4∑

j=0

RVt−j , and RVt,1m =
1

22

21∑

j=0

RVt−j .

The final estimator is the HAR-RV predictor for
∫ t+� ′

t
�2
udu, RV (HAR).
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To obtain the monthly estimates for the first five measures, we sum the daily estimates
over the last month. Subsequently, the realized variance (RV (kmin)), bi-power variation
(BV (kmin)), first order auto-correlation-adjusted realized variance (RV (AC1)), two scaled re-
alized variance (RV (TS)) and adjusted two scaled realized variance (RV (TSadj)) estimators
always refer to the aggregated monthly measures.

A.3. Jump Risk Measures

Wright and Zhou (2009) document that the average jump size in Treasury bonds is a good
predictor for bond excess returns and in particular they show that Black and Scholes (1973)
implied volatility loses its predictive power in the presence of such jump measures. In the
following, we also calculate empirical measures for intra-daily jump components which can
be easily constructed using the realized variance and the bi-power variation, RVt and BVt.
Barndorff-Nielsen and Shephard (2004, 2006) show that the difference between the realized
variance, RVt and the bi-power variation, BVt can be used to consistently estimate the
discontinuous jump variation in the price process. Furthermore, if some regularity conditions
hold, the joint distribution of RVt and BVt converges asymptotically to a bivariate Normal
distribution, and this statistical property can be used to test whether price jumps occur on
a given day t. Following Huang and Tauchen (2005) and Zhang, Zhou, and Zhu (2009), we
use the ratio type statistic:

Zratio,t =

√
M RVt−BVt

RVt√
Amax (1, B)

, (-8)

where A = (�/2)2 + � − 5 and

B =

∫ t

t−1
�4
udu

(
∫ t

t−1
�2
udu)

2
,

for the jump test. Under the null of no jump occurring on day t, (-8) converges to a standard
Normal N (0, 1). For estimating, B, the denominator can be approximated by BV 2

t , and the
integrated quarticity

∫ t

t−1
�4
udu can be estimated by the realized tri-power quarticity (TPt)

or quadpower quarticity (QPt),

TPt = �−3
4
3

(
M2

M − 2

)M−2∑

i=1

(∣rt,i∣ ∣rt,i+1∣ ∣rt,i+2∣)
4
3 ,

QPt = �−4
1

(
M2

M − 3

)M−3∑

i=1

∣rt,i∣ ∣rt,i+1∣ ∣rt,i+2∣ ∣rt,i+3∣ ,

where �a = E (∣Z∣a) , Z ∼ N (0, 1). We then use:

Jratio
t = (RVt − BVt)× 1{Φ(Zratio,t) ≥ �}, (-9)

as the empirical measure for the jump variation on day t, where Φ(x) is the cumulative
distribution function of the standard Normal, and we fix the type I error at 0.001 (� = 0.999).
After obtaining daily jump variation estimations, we aggregate them to a monthly basis to
extract monthly jump variation estimates in that month. Finally, we calculate a maturity
weighted average Treasury jump measure J (T ) from the measures for the 30 year Treasury
bonds and 10 year and 5 year Treasury notes.
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B. Macroeconomic Data

We compute the eight static macroeconomic factors F̂j , j = 1 . . . , 8 from Ludvigson and
Ng (2009, 2010) for an updated data set.28 Some of the macroeconomic variables are no
longer available after 2007. Consequently, we use 125 instead of 132 macroeconomic time
series. Furthermore, we exclude all stock market and interest rate time series and work
with a set of 104 variables. However, we also calculate the macroeconomic factors using
all 125 series (denoted F̂

(125)
j ). The main data source for the macroeconomic data is Global

Insight. The complete list and description of the macro variables is presented in Table 8. The
transformations are the same as in Ludvigson and Ng (2009, 2010). log denotes logarithm,
Δ log and Δ2 log are the first and second differences of the logarithm, respectively. lev
denotes the level of the series and Δlev is the first difference in levels.

The updated factors are very similar to the original factors. The correlations for the over-
lapping time period are in the range of 75% to 99% (absolute values) although some factors

switch ranks (i.e. F̂
(125)
2 with the updated data is highly correlated with the original F̂LN

3

and vice versa; the same applies to F̂7 and F̂8). The correlations with the factors from the

data set without bond and equity time series are slightly smaller except for F̂1, where the
correlation remains at 98%. Given that the factors are principal components, the economic
interpretation is not straightforward. The macro variables are arranged in seven groups:
output and income (OI); consumption, orders and inventories (COI); labor market (LM);
housing (H); money and credit (MC); bond and exchange rates (BE); and prices (P). The
stock market category is excluded here. We analyze the factors using the marginal corre-
lations of the individual time series with the respective factors. As in Ludvigson and Ng
(2009), the first factor can be interpreted as a real factor. The second factor can be inter-
preted as an inflation factor. The third factor could be interpreted as a housing/real factor,
the fourth seems to pick up variation in exchange rates and again in housing variables. None
of the factors have a mentionable correlation with the the Cochrane and Piazzesi (2005)

factor, whereas the third factor using all data F̂
(125)
3 (the second factor in the original data

set, F̂LN
2 ) exhibits a correlation of -0.45%. This is to illustrate that our factors only pick up

information about macro variables, whereas the original data contains a lot of information
from the term structure that is also picked up by the CP factor.

28Originally, the data set was used in Stock and Watson (2002).
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Table 1

Summary Statistics of Excess Returns and Credit Spreads

This table presents summary statistics for Treasury excess returns (Panel A), stock excess returns (Panel B)
and credit spreads (Panel C) for the time period July 1992 to December 2010. The excess returns for 2, 3,
4, and 5 year bonds are calculated for a one year holding period and the stock market excess returns (S&P
500 index, growth and value portfolio) are for an annual holding period. All numbers are annualized and
expressed in percent.

Panel A: Bond Excess Returns

2y 3y 4y 5y
Mean 0.72 1.42 1.99 2.35
StDev 1.31 2.57 3.60 4.50
Min -2.37 -5.24 -6.88 -8.37
Max 3.52 7.31 10.30 12.54
Skewness -0.03 -0.13 -0.18 -0.24
Kurtosis 2.19 2.39 2.43 2.51
AC(1) 0.94 0.94 0.93 0.92

Panel B: Stock Excess Returns

S&P 500 Value Growth
6m 12m 6m 12m 6m 12m

Mean 0.75 1.50 0.53 1.11 1.34 2.54
StDev 4.33 6.39 4.71 6.78 4.94 6.67
Min -18.83 -19.80 -17.38 -16.86 -25.61 -23.60
Max 12.05 15.27 11.38 14.63 17.05 20.56
Skewness -1.40 -1.03 -0.86 -0.65 -1.61 -0.93
Kurtosis 6.80 4.00 4.67 3.13 9.97 5.16
AC(1) 0.87 0.94 0.85 0.92 0.86 0.94

Panel C: Credit Spreads

AAA BBB B
1y 5y 10y 1y 5y 10y 1y 5y 10y

Mean 0.36 0.49 0.44 1.09 1.26 1.25 3.73 4.22 4.23
StDev 0.26 0.28 0.26 0.76 0.76 0.65 2.09 1.90 1.75
Min 0.00 0.17 0.00 0.36 0.43 0.39 1.06 2.15 2.28
Max 1.84 1.77 1.32 4.48 4.54 3.81 12.17 12.77 12.25
Skewness 2.47 2.07 0.76 2.45 2.18 1.81 1.57 2.18 2.38
Kurtosis 11.12 8.17 3.09 9.68 8.76 7.09 6.45 8.88 9.94
AC(1) 0.88 0.92 0.90 0.98 0.98 0.97 0.97 0.97 0.96
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Table 2

Summary Statistics of Macro and Uncertainty Factors

Panel A reports the summary statistics of the Cochrane and Piazzesi (2005) factor, CP, the mean jump

size, J̃ , the uncertainty measures Û (i), and the annualized inflation and consumption volatilities �� and �g.
Panel B contains the summary statistics for the eight macro factors from Ludvigson and Ng (2009, 2010),

F̂j , j = 1, ..., 8.

Panel A: CP and Jump Factors and Uncertainty Proxies

CP J̃ ÛFED ÛCPI ÛRDPI ÛHS �� �g
Mean 0.70 0.01 0.03 -0.50 -0.46 0.46 1.35 1.00
StDev 1.44 0.08 0.02 0.97 1.13 1.04 0.46 0.15
Min -4.69 -0.21 0.00 -1.70 -1.99 -6.26 0.77 0.72
Max 4.85 0.16 0.10 5.66 3.97 1.97 3.52 1.30
Skewness 0.18 -0.53 1.20 3.02 1.38 -1.77 1.88 0.18
Kurtosis 3.71 2.90 5.55 15.14 4.87 10.65 7.76 2.03
AC(1) 0.88 0.97 0.63 0.84 0.83 0.75 0.94 0.99

Panel B: Macro Factors

F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8

Mean 0.33 0.05 0.06 -0.08 0.16 -0.02 0.17 0.12
StDev 4.74 3.59 2.74 2.10 1.81 2.02 1.80 1.71
Min -7.02 -13.06 -11.72 -8.11 -4.40 -9.58 -3.89 -5.73
Max 22.63 15.65 6.58 12.06 5.46 13.03 4.91 5.33
Skewness 1.93 0.69 -1.02 0.73 0.06 0.35 0.31 0.10
Kurtosis 8.06 6.66 5.47 8.11 3.45 14.33 2.81 3.58
AC(1) 0.85 -0.12 0.42 0.49 0.23 -0.19 0.21 -0.10
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Table 3

Summary Statistics of Implied and Realized Volatility and Variance Risk
Premia

Panels A and B report summary statistics for different implied and realized volatility measures. SMIV and
MIV denote the model-free implied variance for a one month horizon. The measures are a linear interpolation
using call options of the nearest two expiration dates on day t. RV (5min) denotes realized variance sampled
at the 5 minute frequency, and RV (IV) denotes the heterogeneous autoregressive model realized variance
estimator augmented with lagged implied variance terms. All quantities are annualized and expressed in
percent. Panel C presents summary statistics for bond and equity variance risk premia. The variance risk
premia are annualized and expressed in squared percentage terms. They are calculated as the difference of
the model free implied variance and the projected value from the heterogeneous autoregressive model realized
variance estimator augmented with lagged implied variance terms. All data is monthly and the sample spans
the period from July 1992 to December 2010.

Panel A: Implied Volatility

30y Treasury 10y Treasury 5y Treasury S&P500
SMIV MIV SMIV MIV SMIV MIV SMIV MIV VIX

Mean 10.22 10.03 7.07 6.91 4.68 4.49 18.86 20.25 20.34
StDev 2.65 2.43 1.68 1.70 1.16 1.24 7.61 8.61 8.32
Min 6.26 6.03 3.99 2.20 1.84 0.65 9.74 9.97 10.42
Max 24.06 21.96 13.51 13.26 9.26 9.53 52.84 58.46 59.89
Skewness 2.22 1.93 0.86 0.53 0.52 0.63 1.49 1.50 1.57
Kurtosis 10.34 8.79 4.35 3.97 3.75 4.23 6.19 6.28 6.62
AC(1) 0.87 0.85 0.85 0.72 0.75 0.65 0.88 0.88 0.87

Panel B: Realized Volatility

30y Treasury 10y Treasury 5y Treasury S&P500
RV (IV) RV (5min) RV (IV) RV (5min) RV (IV) RV (5min) RV (IV) RV (5min)

Mean 9.50 8.38 6.38 5.49 3.89 3.71 17.03 14.80
StDev 1.44 2.05 0.93 1.47 0.63 1.06 6.02 8.27
Min 6.81 4.77 4.52 2.87 2.84 1.96 9.66 5.35
Max 15.01 18.68 9.54 10.93 7.12 7.55 40.84 77.23
Skewness 1.16 1.21 0.65 0.88 1.16 0.88 1.35 3.04
Kurtosis 5.44 5.87 4.10 3.99 5.74 3.74 5.29 19.13
AC(1) 0.81 0.70 0.83 0.65 0.74 0.60 0.85 0.75

Panel C: Variance Risk Premia

30y Treasury 10y Treasury 5y Treasury S&P500
SMIV MIV SMIV MIV SMIV MIV SMIV MIV

Mean 1.66 1.32 0.92 0.77 0.62 0.50 93.22 163.92
StDev 3.98 3.11 1.33 1.33 0.55 0.67 130.11 216.58
Min -2.04 -2.00 -1.32 -2.25 -0.80 -1.41 -15.11 8.24
Max 30.47 21.82 7.61 7.54 2.92 4.56 1124.57 1830.00
Skewness 4.21 3.68 1.75 1.54 1.05 2.16 4.69 4.27
Kurtosis 25.20 20.66 7.47 7.68 5.10 11.81 33.76 28.36
AC(1) 0.71 0.60 0.74 0.52 0.69 0.43 0.75 0.80
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Table 4

Bonds, Stocks and Credit Spreads Predictability

Each month we run the following regression:

rx
(i,�)
t+ℎ = �′(i,�)(ℎ)VRPt + �

(i,�)
t+ℎ

For bonds, rx
(i,�)
t+ℎ is the one year (ℎ = 12) excess return on � = 24, 36, 48, 60 month Treasury bonds. For

stocks, rx
(i,�)
t+ℎ is the 6 month or 1 year excess return on the market, value or growth portfolio, respectively. For

credit spreads, rx
(i,�)
t+ℎ is the monthly change in the credit spread for rating category i = {AAA,BBB,B} and

maturity � = 1, 5, 10 years. VRPt is a vector containing the equity market variance risk premium VRP
(E)
t ,

and the bond variance risk premia VRP
(30y)
t , VRP

(10y)
t and VRP

(5y)
t . Regressions are standardized, meaning

all variables are de-meaned and divided by their standard deviation. Coefficients are estimated with ordinary-
least squares and standardized. t-statistics are in brackets and are calculated using Newey and West (1987)
standard errors. The sample spans the period from July 1992 to December 2010.

Panel A: Fama Bliss Treasury Bonds

2y 3y 4y 5y
V RP (30y) -0.387 -0.385 -0.406 -0.362

(-2.52) (-2.70) (-3.27) (-3.10)

V RP (10y) 0.482 0.509 0.515 0.506
(2.32) (2.53) (2.59) (2.48)

V RP (5y) -0.080 -0.086 -0.053 -0.039
(-0.58) (-0.69) (-0.45) (-0.32)

V RP (E) 0.141 0.138 0.089 0.066
(1.03) (1.05) (0.70) (0.52)

AdjR2 0.06 0.07 0.07 0.07

Panel B: Stocks

S&P 500 Growth Value
6m 12m 6m 12m 6m 12m

V RP (30y) 0.498 0.621 0.453 0.568 0.310 0.407
(3.88) (3.81) (3.47) (3.31) (2.72) (2.89)

V RP (10y) -0.218 -0.714 -0.182 -0.693 0.243 -0.196
(-1.16) (-2.61) (-0.97) (-2.62) (1.27) (-0.64)

V RP (5y) -0.199 0.393 -0.186 0.421 -0.524 0.106
(-0.84) (1.69) (-0.91) (2.03) (-2.28) (0.37)

V RP (E) -0.038 -0.112 0.032 -0.030 -0.090 -0.129
(-0.37) (-1.13) (0.33) (-0.29) (-1.23) (-1.56)

AdjR2 0.10 0.12 0.09 0.12 0.13 0.07

Panel C: Credit Spreads

AAA BBB B
1y 5y 10y 1y 5y 10y 1y 5y 10y

V RP (30y) -0.496 -0.666 -0.396 -0.257 -0.443 -0.415 0.045 -0.016 -0.014
(-3.50) (-4.53) (-3.07) (-2.33) (-4.32) (-2.87) (0.21) (-0.08) (-0.09)

V RP (10y) 0.567 0.368 -0.030 0.118 -0.028 -0.172 -0.155 -0.211 -0.231
(2.10) (1.99) (-0.12) (0.67) (-0.13) (-0.92) (-0.75) (-0.95) (-1.09)

V RP (5y) -0.192 0.018 0.054 -0.014 0.164 0.299 0.089 0.170 0.170
(-1.75) (0.11) (0.31) (-0.10) (0.83) (1.97) (0.52) (0.90) (1.00)

V RP (E) -0.044 0.216 0.332 0.400 0.608 0.578 0.428 0.480 0.463
(-0.58) (2.53) (2.06) (4.18) (3.03) (2.81) (5.95) (5.46) (4.57)

AdjR2 0.08 0.14 0.12 0.11 0.31 0.31 0.17 0.21 0.19
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Table 5

Treasury Bonds Predictability

Each month we run the following regression:

rx
(�)
t+ℎ = �′(�)

VRPt + ′
Mt + �

(�)
t+ℎ,

where rx(�) is the one year excess return on � = 24, 36, 48, 60 months Treasury bonds. VRPt is a vector

containing the equity market variance risk premium VRP
(E)
t , and the bond variance risk premia VRP

(30y)
t ,

VRP
(10y)
t and VRP

(5y)
t . M includes the Cochrane and Piazzesi (2005) factor, the mean jump size, J̃ , and

the macro factors F̂j , j = 1 . . . , 8 from Ludvigson and Ng (2009). Regressions are standardized, meaning all

variables are de-meaned and divided by their standard deviation. Coefficients are estimated with ordinary-

least squares and standardized. t-statistics are in brackets and are calculated using Newey and West (1987)

standard errors. The sample spans the period from July 1992 to December 2010.

2y 3y 4y 5y

V RP (30y) -0.296 -0.291 -0.312 -0.263
(-2.46) (-2.50) (-2.83) (-2.44)

V RP (10y) 0.083 0.115 0.136 0.168
(0.52) (0.73) (0.89) (1.10)

V RP (5y) 0.081 0.060 0.067 0.052
(0.97) (0.72) (0.83) (0.61)

V RP (E) -0.038 0.002 0.006 0.021
(-0.48) (0.02) (0.06) (0.22)

CP -0.035 -0.007 0.039 0.057
(-0.28) (-0.05) (0.29) (0.44)

J̃ -0.658 -0.633 -0.603 -0.587
(-6.92) (-7.08) (-7.23) (-7.23)

F̂1 0.196 0.151 0.105 0.037
(1.99) (1.53) (1.11) (0.39)

F̂2 0.040 0.033 0.036 0.045
(1.33) (1.07) (1.13) (1.34)

F̂3 -0.162 -0.175 -0.203 -0.207
(-1.72) (-2.04) (-2.61) (-2.92)

F̂4 -0.227 -0.266 -0.318 -0.368
(-2.60) (-3.20) (-4.08) (-4.86)

F̂5 0.194 0.166 0.150 0.150
(3.60) (3.05) (2.77) (2.74)

F̂6 0.116 0.136 0.162 0.177
(1.69) (2.10) (2.63) (3.06)

F̂7 -0.011 0.037 0.067 0.094
(-0.17) (0.53) (0.96) (1.37)

F̂8 -0.066 -0.012 0.025 0.043
(-1.26) (-0.23) (0.46) (0.80)

AdjR2 0.47 0.45 0.45 0.46
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Table 6

Stock Excess Returns Predictability

Each month we run the following regression:

rx
(i)
t+ℎ = �′(i)(ℎ)VRPt + ′

Mt + �
(i)
t+ℎ,

where rx(i) are the annual excess returns on the S&P 500 index, the value and growth portfolio, respectively.

VRPt is a vector containing the equity market variance risk premium VRP
(E)
t , and the bond variance risk

premia VRP
(30y)
t , VRP

(10y)
t and VRP

(5y)
t . M includes the dividend yield DY, the earnings/price ratio E/P,

the book-to-market ratio B/M and the net equity expansion NTIS from Goyal and Welch (2008). Regressions
are standardized, meaning all variables are de-meaned and divided by their standard deviation. Coefficients
are estimated with ordinary-least squares and standardized. t-statistics are in brackets and are calculated
using Newey and West (1987) standard errors. The sample spans the period from July 1992 to December
2010.

S&P 500 Growth Value
6m 12m 6m 12m 6m 12m

V RP (30y) 0.451 0.522 0.399 0.443 0.304 0.420
(2.89) (3.15) (2.61) (2.89) (1.90) (2.39)

V RP (10y) -0.052 -0.536 -0.019 -0.551 0.316 -0.079
(-0.29) (-2.22) (-0.10) (-2.41) (1.62) (-0.29)

V RP (5y) -0.409 0.163 -0.385 0.219 -0.649 -0.058
(-2.16) (0.96) (-2.27) (1.49) (-3.23) (-0.26)

V RP (E) 0.217 0.181 0.272 0.242 0.070 0.073
(2.31) (2.67) (2.74) (2.60) (0.86) (0.93)

DY 0.218 0.264 0.206 0.241 0.069 -0.018
(1.25) (1.68) (1.20) (1.61) (0.39) (-0.09)

E/P -0.003 -0.021 0.013 -0.066 -0.088 -0.070
(-0.02) (-0.14) (0.07) (-0.47) (-0.46) (-0.33)

B/M 0.054 0.107 0.060 0.152 0.089 0.191
(0.45) (0.88) (0.47) (1.29) (0.68) (1.34)

NTIS 0.477 0.480 0.423 0.419 0.405 0.520
(2.69) (3.11) (2.87) (3.32) (2.22) (3.01)

AdjR2 0.34 0.41 0.28 0.37 0.27 0.30
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Table 7

Economic Drivers of Bond Variance Risk Premia

The table reports the results from regressing the respective variance risk premia on uncertainty measures
Ût, latent macro factors F̂t and macro volatility measures Ŝt:

V RP
(i)
t = �′U

Ût + �′F
F̂t + �′S

Ŝt + �
(i)
t .

The uncertainty variables are defined as the cross sectional standard deviation of the forecasts of CPI Û (CPI),
real disposable income Û (RDPI) and housing starts Û (HS). We estimate the uncertainty about FED actions
Û (FED) from regressing forecasts of the short rate on CPI and real GDP forecasts. The macro variables
F̂j , j = 1, . . . , 8 are estimated as the first eight principal components from a data set of 104 macroeconomic
variables. In the regression, we include the first and the second factor that can be interpreted as a real
and a (nominal) price factor. The macro volatilities �� and �g are estimated using a GARCH process for
inflation and per capita consumption (non durables and services). Regressions are standardized, meaning all
variables are de-meaned and divided by their standard deviation. Coefficients are estimated with ordinary-
least squares and standardized. t-statistics are in brackets and are calculated using Newey and West (1987)
standard errors. The sample spans the period from July 1992 to December 2009.

V RP (30y) V RP (10y) V RP (5y) V RP (E)

ÛFED -0.194 -0.170 -0.180 -0.090 -0.118 -0.136 -0.041 -0.110 -0.138 -0.026 0.018 -0.040
(-3.31) (-2.65) (-2.84) (-1.56) (-1.71) (-1.96) (-0.56) (-1.26) (-1.59) (-0.34) (0.21) (-0.63)

ÛCPI 0.530 0.512 0.426 0.274 0.287 0.165 0.295 0.344 0.225 0.463 0.447 0.288
(3.18) (3.00) (2.25) (2.91) (2.89) (1.74) (2.07) (2.48) (1.67) (2.60) (2.81) (2.37)

ÛRDPI 0.197 0.184 0.145 0.414 0.383 0.331 0.264 0.288 0.253 0.194 0.261 0.241
(2.12) (1.78) (1.41) (4.96) (4.37) (3.79) (2.32) (2.36) (2.06) (2.03) (2.27) (2.15)

ÛHS -0.113 -0.068 -0.051 -0.133 -0.144 -0.127 0.116 0.000 -0.015 0.220 0.222 0.145
(-1.59) (-1.15) (-0.95) (-1.72) (-1.75) (-1.51) (1.16) (0.00) (-0.13) (2.34) (1.90) (1.68)

�� 0.063 0.027 0.050 -0.006 -0.148 -0.220 -0.124 -0.253
(0.60) (0.28) (0.40) (-0.05) (-1.02) (-1.51) (-0.89) (-1.74)

�g -0.036 -0.046 0.098 0.087 0.118 0.114 -0.174 -0.164
(-0.58) (-0.77) (1.32) (1.22) (1.07) (1.06) (-1.46) (-1.58)

F̂1 0.188 0.259 0.234 0.274
(2.64) (2.83) (1.99) (2.98)

F̂2 -0.029 -0.024 0.056 0.219
(-0.62) (-0.56) (0.96) (1.74)

AdjR2 0.59 0.59 0.60 0.49 0.49 0.51 0.22 0.24 0.25 0.31 0.32 0.38
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Table 8

Macro variables: data description and transformation

The table lists the name of each macro time series, its mnemonic, the description and the source. We start with the data set used in Ludvigson and Ng (2009,
2010) consisting of 132 time series. Some of the macroeconomic variables are no longer available after 2007 and we only have 125 series available throughout
the end of 2009. The time series are arranged in the eight groups used by Ludvigson and Ng (2009, 2010): output and income (OI); consumption, orders and
inventories (COI); labor market (LM); housing (H); money and credit (MC); bond and exchange rates (BE); prices (P); and stock market (SM). We exclude
stock market and interest rate variables (series numbers 82 to 102 in Ludvigson and Ng (2009, 2010)) for a total of 104 macro time series. The transformations
are the same as in Ludvigson and Ng (2009, 2010). log denotes logarithm, Δ log and Δ2 log are the first and second differences of the logarithm, respectively.
lev denotes the level of the series and Δlev is the first difference in levels. The data source is Global Insight except for series 97 to 100 (BEA) and series 104
(University of Michigan). All data are available for the full sample period from January 1990 to September 2010.

Series No. Short Name Mnemonic Transformation Description Group
1 PI ypr Δ log Personal Income (AR, Bil. Chain 2000 $) Output and Income
2 PI less transfers a0m051 Δ log Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) Output and Income
3 M&T sales mtq Δ log Manufacturing and Trade Sales (Mil. Chain 1996 $) Consumption, Orders and Inventories
4 Retail sales a0m059 Δ log Sales of Retail Stores (Mil. Chain 2000 $) Consumption, Orders and Inventories
5 IP: total ips10 Δ log Industrial Production Index - Total Index Output and Income
6 IP: products ips11 Δ log Industrial Production Index - Products, Total Output and Income
7 IP: final prod ips299 Δ log Industrial Production Index - Final Products Output and Income
8 IP: cons gds ips12 Δ log Industrial Production Index - Consumer Goods Output and Income
9 IP: cons dble ips13 Δ log Industrial Production Index - Durable Consumer Goods Output and Income
10 IP: cons nondble ips18 Δ log Industrial Production Index - Nondurable Consumer Goods Output and Income
11 IP: bus eqpt ips25 Δ log Industrial Production Index - Business Equipment Output and Income
12 IP: matls ips32 Δ log Industrial Production Index - Materials Output and Income
13 IP: dble matls ips34 Δ log Industrial Production Index - Durable Goods Materials Output and Income
14 IP: nondble matls ips38 Δ log Industrial Production Index - Nondurable Goods Materials Output and Income
15 IP: mfg ips43 Δ log Industrial Production Index - Manufacturing (Sic) Output and Income
16 IP: res util ips307 Δ log Industrial Production Index - Residential Utilities Output and Income
17 IP: fuels ips306 Δ log Industrial Production Index - Fuels Output and Income
18 NAPM prodn pmp lev Napm Production Index (Percent) Output and Income
19 Cap util utlb00004 Δlev Capacity Utilization (Mfg.) Output and Income
20 Help wanted indx lhelvr.M Δlev Index of Help-Wanted Advertising in Mewspapers (1967=100;Sa) Labor Market
21 Help wanted/emp lhelx Δlev Employment: Ratio; Help-Wanted Ads: No. Unemployed Clf Labor Market
22 Emp CPS total lhem Δ log Civilian Labor Force: Employed, Total (Thous.,Sa) Labor Market
23 Emp CPS nonag lhnag Δ log Civilian Labor Force: Employed, Nonagric. Industries (Thous.,Sa) Labor Market
24 U: all lhur Δlev Unemployment Rate: All Workers, 16 Years & Over (%,Sa) Labor Market
25 U: mean duration lhu680 Δlev Unemploy. By Duration: Average (Mean) Duration in Weeks (Sa) Labor Market
26 U ¡ 5 wks lhu5 Δ log Unemploy. By Duration: Persons Unempl.Less than 5 Wks (Thous.,Sa) Labor Market
27 U 5-14 wks lhu14 Δ log Unemploy. By Duration: Persons Unempl. 5 to 14 Wks (Thous.,Sa) Labor Market
28 U 15+ wks lhu15 Δ log Unemploy. By Duration: Persons Unempl. 15 Wks + (Thous.,Sa) Labor Market
29 U 15-26 wks lhu26 Δ log Unemploy. By Duration: Persons Unempl. 15 to 26Wks (Thous.,Sa) Labor Market
30 U 27+ wks lhu27 Δ log Unemploy. By Duration: Persons Unempl. 27 Wks + (Thous.,Sa) Labor Market
31 Unemp claims ICSA Δ log Initial Claims Labor Market
32 Emp: total ces002 Δ log Employees on nonfarm Payrolls: Total Private Labor Market
33 Emp: gds prod ces003 Δ log Employees on nonfarm Payrolls: Goods-Producing Labor Market
34 Emp: mining ces006 Δ log Employees on nonfarm Payrolls: Mining Labor Market
35 Emp: const ces011 Δ log Employees on nonfarm Payrolls: Construction Labor Market
36 Emp: mfg ces015 Δ log Employees on nonfarm Payrolls: Manufacturing Labor Market
37 Emp: dble gds ces017 Δ log Employees on nonfarm Payrolls: Durable Goods Labor Market
38 Emp: nondble gds ces033 Δ log Employees on nonfarm Payrolls: Nondurable Goods Labor Market
39 Emp: services ces046 Δ log Employees on nonfarm Payrolls: Service-Providing Labor Market
40 Emp: TTU ces048 Δ log Employees on nonfarm Payrolls: Trade, Transportation, and Utilities Labor Market
41 Emp: wholesale ces049 Δ log Employees on nonfarm Payrolls: Wholesale Trade Labor Market
42 Emp: retail ces053 Δ log Employees on nonfarm Payrolls: Retail Trade Labor Market
43 Emp: FIRE ces088 Δ log Employees on nonfarm Payrolls: Financial Activities Labor Market
44 Emp: Govt ces140 Δ log Employees on nonfarm Payrolls: Government Labor Market
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Table 8: Macro variables: data description and transformation (cont.)

45 Avg hrs ces151 lev Avg Weekly Hrs of Prod or Nonsup Workers on Private Nonfarm Payrolls: Goods-Producing Labor Market
46 Overtime: mfg ces155 Δlev Avg Weekly Hrs of Prod or nonsup Workers on Private Nonfarm Payrolls: Mfg Overtime Hours Labor Market
47 Avg hrs: mfg a0m001 lev Average Weekly Hours, Mfg. (Hours) Labor Market
48 NAPM empl pmemp lev Napm Employment Index (Percent) Labor Market
49 Starts: nonfarm hsfr log Housing Starts:Nonfarm(1947-58); Total Farm&Nonfarm(1959-) (Thous.,Saar) Housing
50 Starts: NE hsne log Housing Starts:Northeast (Thous.U.)S.A. Housing
51 Starts: MW hsmw log Housing Starts:Midwest (Thous.U.)S.A. Housing
52 Starts: South hssou log Housing Starts:South (Thous.U.)S.A. Housing
53 Starts: West hswst log Housing Starts:West (Thous.U.)S.A. Housing
54 BP: total hsbr log Housing Authorized: Total New Priv Housing Units (Thous.,Saar) Housing
55 BP: NE hsbne log Houses Authorized by Build. Permits:Northeast (Thou.U.)S.A. Housing
56 BP: MW hsbmw log Houses Authorized by Build. Permits:Midwest (Thou.U.)S.A. Housing
57 BP: South hsbsou log Houses Authorized by Build. Permits:South (Thou.U.)S.A. Housing
58 BP: West hsbwst log Houses Authorized by Build. Permits:West (Thou.U.)S.A. Housing
59 PMI pmi lev Purchasing Managers’ Index (Sa) Consumption, Orders and Inventories
60 NAPM new ordrs pmno lev Napm New Orders Index (Percent) Consumption, Orders and Inventories
61 NAPM vendor del pmdel lev Napm Vendor Deliveried Index (Percent) Consumption, Orders and Inventories
62 NAPM Invent pmnv lev Napm Inventories Index (Percent) Consumption, Orders and Inventories
63 Orders: cons gds x213 Δ log Mfrs’ New Orders, Consumer Goods and Materials (Bil. Chain 1982 $) Consumption, Orders and Inventories
64 Orders: dble gds a0m007 Δ log Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) Consumption, Orders and Inventories
65 Orders: cap gds a0m027 Δ log Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) Consumption, Orders and Inventories
66 Unf orders: dble a1m092 Δ log Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) Consumption, Orders and Inventories

67 M1 fm1 Δ2 log Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able Dep) (Bil$,Sa) Money and Credit

68 M2 fm2 Δ2 log Money Stock: M2(M1+O’nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,Sa) Money and Credit

69 MB fmfba Δ2 log Monetary Base, Adj tor Reserve Requerement Changes (Mil$,Sa) Money and Credit

70 Reserves tot fmrra Δ2 log Depository Inst Reserves:Total, Adj. tor Reserve Req Chgs (Mil$,Sa) Money and Credit

71 Reserves nonbor fmrnba Δ2 log Depository Inst Reserves:Nonborrowed,Adj. Res Req Chgs (Mil$,Sa) Money and Credit

72 C&I loans fclnbw Δ2 log Commercial & Industrial Loans Outstanding in 1996 Dollars (Bci) Money and Credit

73 dC&I loans fclbmc Δ2 log Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus Loans (Bil$,Saar) Money and Credit

74 Cons credit ccinrv Δ2 log Consumer Credit Outstanding - Nonrevolving (G19) Money and Credit
75 Inst cred/PI ccipy Δlev Ratio, Consumer Installment Credit to Personal Income (Pct.) Money and Credit
76 Ex rate: avg exrus Δ log United States;Effective Exchange Rate (Merm) (Index No.) Bond and Exchange rates
77 Ex rate: Switz exrsw Δ log Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) Bond and Exchange rates
78 Ex rate: Japan exrjan Δ log Foreign Exchange Rate: Japan (Yen per U.S.$) Bond and Exchange rates
79 Ex rate: UK exruk Δ log Foreign Exchange Rate: United Kingdom (Cents per Pound) Bond and Exchange rates
80 Ex rate: Canada exrcan Δ log Foreign Exchange Rate: Canada (Canadian$ per U.S.$) Bond and Exchange rates

81 PPI: fin gds pwfsa Δ2 log Producer Price Index: Finished Goods (82-100,Sa) Prices

82 PPI: cons gds pwfcsa Δ2 log Producer Price Index: Finished Consumer Goods (82=100,Sa) Prices

83 PPI: int mat’ls pwimsa Δ2 log Producer Price Index: Intermed Mat.Supplies & Components (82=100,Sa) Prices

84 PPI:crude mat’ls pwcmsa Δ2 log Producer Price Index: Crude Materials (82=100,Sa) Prices

85 Spot market price psccom Δ2 log Spot market price index: bls & crb: all commodities (1967=100) Prices
86 NAPM com price pmcp lev Index Of Sensitive Materials Prices (1990=100) (Bci-99a) Prices

87 CPI-U: all punew Δ2 log Napm Commodity Prices Index (Percent) Prices

88 CPI-U: apparel pu83 Δ2 log Cpi-U: All Items (82-84=100,Sa) Prices

89 CPI-U: transp pu84 Δ2 log Cpi-U: Apparel & Upkeep (82-84=100,Sa) Prices

90 CPI-U: medical pu85 Δ2 log Cpi-U: Transportation (82-84=100,Sa) Prices

91 CPI-U: comm. puc Δ2 log Cpi-U: Medical Care (82-84=100,Sa) Prices

92 CPI-U: dbles pucd Δ2 log Cpi-U: Durables (82-84=100,Sa) Prices

93 CPI-U: services pus Δ2 log Cpi-U: Services (82-84=100,Sa) Prices

94 CPI-U: ex food puxf Δ2 log Cpi-U: All Items Less Food (82-84=100,Sa) Prices

95 CPI-U: ex shelter puxhs Δ2 log Cpi-U: All Items Less Shelter (82-84=100,Sa) Prices

96 CPI-U: ex med puxm Δ2 log Cpi-U: All Items Less Medical Care (82-84=100,Sa) Prices

97 PCE: cons N/A Δ2 log Pce (BEA 2.3.4U), Impl Pr Defl:Pce (1987=100) Prices

98 PCE: durables N/A Δ2 log Pce (BEA 2.3.4U), Impl Pr Defl:Pce; Durables (1987=100) Prices

99 PCE: nondurables N/A Δ2 log Pce (BEA 2.3.4U), Impl Pr Defl:Pce; Nondurables (1987=100) Prices

100 PCE: services N/A Δ2 log Pce (BEA 2.3.4U), Impl Pr Defl:Pce; Services (1987=100) Prices

101 AHE: goods ahpgp Δ2 log Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls: Goods-producing Labor Market

102 AHE: const ahpcon Δ2 log Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls: Construction Labor Market

103 AHE: mfg ahpmf Δ2 log Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls: Manufacturing Labor Market
104 UMICE Δlev U. of Mich. Index of Consumer Sentiment (Expected Index) Consumption, Orders and Inventories
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Figure 1. Synthetic Variance Swap on U.S. Treasuries

This figure plots the time-series of the payoffs on long positions in variance swaps on the 30
year Treasury bond futures (bold line) and the 10 year Treasury notes futures (dotted line).
Shaded areas correspond to recessions as defined by the NBER. Data runs from January
1990 to September 2010.
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Figure 2. Realized and Implied Volatility of 30y, 10y and 5y Treasuries

This figure plots monthly realized (right panels) and implied (left panels) volatility measures
for the 30 year, 10 year and 5 year Treasury futures (left axis, bold line) and the S&P
500 futures (right axis, dashed line). Monthly realized volatility measures are obtained
from aggregating the daily realized volatility estimations over that month and the monthly
implied volatility estimates are the end of month observations. All numbers are annualized
in percent. Shaded areas correspond to recessions as defined by the NBER. The data runs
from July 1992 to September 2010.
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Figure 3. Variance Risk Premia Treasury Bonds and S&P500

This figure plots annualized variance risk premia for the 30 year Treasury bonds (left axis)
and the S&P500 index (right axis). Shaded areas correspond to recessions as defined by the
NBER. Data is monthly and runs from July 1992 to September 2010.
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Figure 4. Simple Treasury IV and SVIX

This figure plots the Treasury implied volatility measure STIV and the SVIX (upper panel)
and TIV and VIX (lower panel) for the period 1983 to 2010. The STIV (SVIX) measure
is calculated using daily options on 30 year Treasury bond futures (S&P500 futures) using
the simple variance approach in Martin (2011). The TIV (VIX) measure is calculated using
daily options on the 30 year Treasury bond futures (S&P500 futures) using the model-free
approach in Britten-Jones and Neuberger (2000). The unconditional correlation between
STIV and the SVIX (TIV and VIX) is 50% (46%).
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