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Abstract

Idiosyncratic volatility has received considerable attention in the recent financial
literature. Whether average idiosyncratic volatility has recently risen, whether it is a
good predictor for aggregate market returns and whether it has a positive relationship
with expected returns in the cross-section are still matters of active debate. We revisit
these questions from a novel perspective, by taking the cross-sectional variance of stock
returns as a measure of average idiosyncratic variance. Two key advantages of this
measure are its model-free nature and its observability at any frequency, which allows
us to present new results on the properties of daily idiosyncratic volatility series.
Through central limit arguments, we formally show that the cross-sectional dispersion
of stock returns can be regarded as a consistent and asymptotically efficient estimator
for idiosyncratic volatility. We empirically confirm that the cross-sectional measure
provides a very good proxy for average idiosyncratic risk as implied by standard asset
pricing models and that it predicts well aggregate returns, especially at the daily
frequency. The predictability power of idiosyncratic risk is further increased when
adding a measure of cross-sectional skewness to the cross-sectional variance factor.
We finally provide evidence that idiosyncratic risk is a positively rewarded risk factor.
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1 Introduction

The recent financial literature has paid considerable attention to idiosyncratic volatility.
Campbell et al. (2001) and Malkiel and Xu (2002) document that idiosyncratic volatility
increased over time, while Brandt et al. (2009) show that this trend completely reversed itself
by 2007, falling below pre-1990s levels and suggest that the increase in idiosyncratic volatility
through the 1990s was not a time trend but rather an “episodic phenomenon”. Bekaert
et al. (2008) confirm that there is no trend both for the United States and other developed
countries. A second fact about idiosyncratic volatility is also a source of contention. Goyal
and Santa-Clara (2003) put forward that idiosyncratic volatility has forecasting power for
future excess returns, while Bali et al. (2005) and Wei and Zhang (2005) find that the
positive relationship is not robust to the sample chosen. Finally, while some economic
theories suggest that idiosyncratic volatility should be positively related to expected returns,
Ang et al. (2006) find that stocks with high idiosyncratic volatility have low average returns.

An underlying issue in all these studies is the measurement of idiosyncratic volatility.
Campbell et al. (2001) use a value-weighted sum of individual firm idiosyncratic variances,
computed as the variances of residuals of differences between individual firm returns and
the return of an industry portfolio to which the firm belongs.! In addition to this measure,
Bekaert et al. (2008) use also the individual firm residuals of a standard Fama and French
three-factor model to compute a value-weighted aggregate idiosyncratic volatility.?

We revisit the issues regarding the dynamics and forecasting power of idiosyncratic
variance by using instead the cross-sectional dispersion of stock returns. Through central
limit arguments, we provide the formal conditions under which the cross-sectional variance
(CSV) of stock returns asymptotically converges towards the average idiosyncratic variance.?
One key advantage of this measure is obviously its observability at any frequency, while the
previous approaches have used monthly measures based on time series of daily returns. A
second important feature is that this measure is model-free, since we do not need to obtain
residuals from a particular model to compute it.

We confirm empirically that the cross-sectional variance is an excellent proxy for the
idiosyncratic variance obtained from the CAPM or the Fama-French models, as done in
the previous literature. Correlations between the CSV measure and the model-based mea-

sures estimated monthly, are always above 99%, whether we consider equally-weighted or

I'This amounts to imposing unit beta restrictions in an industry-market model.

2This is also the approach followed in Ang et al. (2006).

3Goyal and Santa-Clara (2003) argue informally that their measure can be interpreted as a measure
of cross-sectional dispersion of stock returns, but do not establish a formal link between the two. In the
practitioners’ literature (see DiBartolomeo (2006)), cross-sectional dispersion of returns is called variety and
is used in risk management and performance analysis.



capitalization-weighted measures of idiosyncratic variance. We also estimate a regime-
switching model for CSV time series at both daily and monthly frequencies and find re-
markably coherent results in terms of parameter estimates. If we were to build a daily series
of model-based idiosyncratic variance, we will roll a window of one-month of daily data,
which will result in a very persistent time series. We construct such a daily series but could
not find any regimes. This reinforces the usefulness of the CSV to capture idiosyncratic
volatility at high frequency.

The regime-switching model indicates clearly that the CSV is counter-cyclical, the dis-
persion of returns being high and quite variable when economic growth subsides. We analyze
further the relation between CSV and economic and financial variables. In particular, we
find that there exists a substantial correlation between the equal-weighted CSV and con-
sumption growth volatility. This is consistent with Tédongap (2010) who provides strong
evidence that consumption volatility risk explains a high percentage of the cross-sectional
dispersion in average stock returns for the usual set of size and book-to-market portfolios
that have been used in tests of asset pricing models. In intertemporal asset pricing models of
Bansal and Yaron (2004), Bollerslev et al. (2009) and Bollerslev et al. (2009), consumption
growth volatility is a measure of economic uncertainty, which is a priced risk factor that
affects returns, therefore providing a rationale for the observed correlation between CSV
and consumption growth volatility.

On the debate about predictability of aggregate returns by the idiosyncratic variance, we
first verify empirically that the CSV measure leads to the same conclusions that other studies
(in particular Goyal and Santa-Clara (2003) and Bali et al. (2005)) have reported at the
monthly frequency. Then, we report new results at the daily frequency. Specifically, we show
that the predictive power of idiosyncratic volatility is much stronger both quantitatively and
statistically at the daily frequency than at the monthly frequency. This relationship is robust
to the inclusion of return variance and option-implied variance as additional variables in
the predictive regressions.

We find that the relation is much stronger and stable across periods between the equally-
weighted measure of aggregate idiosyncratic volatility and the returns on the equally-
weighted index than for the market-cap weighted equivalents. Economic sources of hetero-
geneity between firms, as diverse as they can be, are better reflected in an equally weighted
measure, all other things being equal. This argument is consistent with previous findings in
Bali et al. (2005), who argue that the relationship between equal-weighted average idiosyn-
cratic risk and the market-cap weighted index on the sample ending in 1999:12 is mostly
driven by small stocks traded in the NASDAQ. Of course, when the bubble burst, the market

capitalization of dot.com small firms was relatively more affected causing the relationship



to break down in 2000 and 2001. This effect is not prevalent in an equally-weighted index,
for which the relationship remains strong.

However, the frequency at which predictive regressions are run has an important impact
on the results, since at lower frequencies we find little evidence of predictability for the
equally-weighted measure of CSV. At quarterly and annual frequencies, we find that the
capitalization-weighted measure of CSV is a very strong predictor of the aggregate value-
weighted returns. When using CSVEY alone as a predictor we obtain remarkable R?s of
4% and 26% at quarterly and annual frequencies, respectively. Adding the implied variance
brings the R?s to almost 19% and 29%. In all these predictability regressions, the sign of
the CSVEW variable is negative. We relate these results to potential explanations in terms
of missing factors, Guo and Savickas (2008), or dispersion of investors’ opinions, Cao et al.
(2005).

Finally, we unveil an asymmetry in the relationship between idiosyncratic variance and
returns and show that the predictive power of specific risk is substantially increased when
a cross-sectional measure for idiosyncratic skewness is added as explanatory variable. In
fact, this is yet another key advantage of our measure that it lends itself to straightforward
extensions to higher-order moments.

The statistical significance of the moments of the cross-sectional distribution in these
predictive regressions of future returns is not the same as the cross-sectional pricing of stocks
or portfolios. However, as emphasized in Goyal and Santa-Clara (2003), the two pieces of
evidence are related. Using a Fama-MacBeth procedure with several sets of portfolios, we
find support for a positive and significant price of risk for the exposure to the idiosyncratic
variance risk. Theoretical rationalizations of a positive relation between idiosyncratic risk
and expected returns can be found in the asset pricing literature. Levy (1978), Merton
(1987) and Malkiel and Xu (2002) pricing models relate stock returns to their beta with the
market and their beta to market-wide measures of idiosyncratic risk. In these models, an
important portion of investors’ portfolios may differ from the market. Their holdings may
be affected by corporate compensation policies, borrowing constraints, heterogeneous beliefs
and include non-traded assets that add background risk to their traded portfolio decisions
(e.g. human capital and private businesses). These theoretical predictions are also in line
with Campbell et al. (2001)’s argument that investors holding a limited number of stocks
hoping to approximate a well-diversified portfolio would end up being affected by changes
in idiosyncratic volatility just as much as by changes in market volatility. More recently,
Guo and Savickas (2008) argue that changes in average idiosyncratic volatility provide a

proxy for changes in the investment opportunity set and that this proxy is closely related



to the book-to-market factor?.

Ang et al. (2006) and Ang et al. (2009) find results that are opposite to our findings and
to these theories since stocks with high idiosyncratic volatility have low average returns but
cannot fully rationalize this result. However, Huang et al. (2009) find that the negative sign
in the relationship between idiosyncratic variance and expected returns at the stock level
becomes positive after controlling for return reversals. Similarly, Fu (2009) documents that
high idiosyncratic volatilities of individual stocks are contemporaneous with high returns,
which tend to reverse in the following month.

The rest of the paper is organized as follows. In Section 2, we provide a formal argument
for choosing the cross-sectional variance of returns as a measure of average idiosyncratic
volatility, explore its asymptotic and finite-distance properties, as well as the assumptions
behind its use, and compare it to other measures formerly selected in the literature. Section
3 provides an empirical implementation of the concept, again in comparison with other
measures, by studying its time-series behavior, outlining the presence of regimes and a
counter-cyclical property. In Section 4, we provide new results on the predictability of
returns by idiosyncratic volatility, and we also extend the analysis to idiosyncratic skewness.
Section 5 focuses on the analysis of the cross-sectional relationship between idiosyncratic
risk and expected returns. Section 6 concludes and a technical appendix collects proofs and

more formal derivations.

2 The Cross-sectional Variance as a Measure of Id-
iosyncratic Variance

Let N; be the total number of stocks in a given universe at day ¢, and assume with no loss
of generality a conditional single factor model for excess stock returns.® That is, we assume
that for all ¢ = 1, ..., Ny, the return on stock 7 in excess of the risk-free rate can be written
as:

Tit = Bk + €ir. (1)

where F} is the factor excess return at time ¢, 5;; is the beta of stock ¢ at time ¢, and & is

the residual, with E(g;) = 0 and cov (F}, ) = 0. We assume that the factor model under

4Alternative explanations of the relation between idiosyncratic risk and return are the firm’s assets’
call-option interpretation by Merton (1974) where equity is a function of total volatility as in Black and
Scholes (1973) as well as Barberis et al. (2001) prospect theory asset pricing model with loss aversion over
(owned) individual stock’s variance.

5 Assuming a single factor structure is done for simplicity of exposure only and the results below can
easily be extended to a multi-factor setting.



consideration is a strict factor model, that is cov (g4, €;:) = 0 for 7 # 5.9
Given T observations of the stock returns and the factor return, one can use the resid-

uals of the regression to obtain a measure of the idiosyncratic variance of asset ¢ by:

2 _ 1

(say a month) can be obtained by averaging across assets such individual idiosyncratic vari-

> _1€%. An average measure of idiosyncratic variance over the 7' observations

ance estimates. This is the approach that has been followed by most related papers with
observations of the returns at a daily frequency to compute monthly idiosyncratic variances.

We propose instead to measure at each time t the cross-sectional variance of observed
stock returns. Using formal central-limit arguments, we show that, under mild simplifying
assumptions, this cross-sectional measure provides a very good approximation for average
idiosyncratic variance. In contrast with most previous measures of average idiosyncratic
variance, the CSV offers two main advantages: it can be computed directly from observed
returns, with no need to estimate other parameters such as betas, and it is readily available

at any frequency and for any universe of stocks.

2.1 Measuring the cross-sectional variance

To see this, first let (wy),~, be a given weight vector process. The return on the portfolio

wt

defined by the weight vector process (w;) is denoted by rt( ) and given by:

Tvgwt) = Z Wit Tt - (2)

We restrict our attention to non-trivial weighting schemes, ruling out situations such
that the portfolio is composed by a single stock. We also restrict the weights to be positive
at every given point in time. Hence, a weighting scheme (w;) is a vector process which
satisfies 0 < wy < 1V 1,t.

The cross-sectional variance measure is defined as follows.

Definition (CSV): The cross-sectional variance measure under the weighting scheme
(w;), denoted by CS V") is given by

Ny
Csvt(wt) = Z Wit (Tz‘t - ngwt)>2- (3)
i=1

6This assumption is made in the single index or diagonal model of Sharpe (1963) and in the derivation of
the APT in Ross (1976). It implies that all commonalities are explained by the factor model in place. One
should notice that the very definition of idiosyncratic risk relies precisely on the assumption of orthogonal
residuals: assuming that the model is the “true” factor model implies that the“true” idiosyncratic risk is
the one measured with respect to that model, which in turn implies that no commonalities should be left
after controlling for the common factor exposure.



A particular case of interest is the equally-weighted CSV (or EW CSV), denoted by
CSVEW and corresponding to the weighting scheme w;; = 1/N; V i, t:
1 & 2
CSVtEW = ﬁt ZZI (Tit - TEW) ) (4)
where rEW is the return on the equally-weighted portfolio.

Another weighting scheme of interest is the cap weighting scheme. If we denote by c¢;;
be the market capitalization of stock ¢ at the beginning of the month corresponding to
day t, Cy = vaztl cy; the total market capitalization and r®" the return on the market
capitalization-weighted portfolio, the cap-weighted (CW) (or CW CSV) is defined as:

Ny
CSVEW = ngw (rie — rtCW)Q : (5)
i=1

where w$W = SN &.

For any given weighting scheme (in particular EW or CW), the corresponding cross-
sectional measure is readily computable at any frequency from observed returns. This
stands in contrast with the previous approaches that have used monthly measures based
on time series regressions on daily returns. The second important feature of the CSV is its

model-free nature, since we do not need to specify a particular factor model to compute it.”

2.2 A Formal Relationship between CSV and Idiosyncratic Vari-
ance

The following proposition establishes a formal link between CSV and idiosyncratic variance.
It is an asymptotic result (N; — oo) obtained under the assumptions of homogeneous betas
and residual variances across stocks, i.e. By = B = 1V i, E(e}) = o2 (t) Vi. These

assumptions will be relaxed below.

Proposition 1 (CSV as a prozy for idiosyncratic variance - asymptotic re-
sults):

Assume By = By = 1V i (homogeneous beta assumption) and E(e%) = o2 (t) Vi (homo-
geneous residual variance assumption), then for any strictly positive weighting scheme, we
have that:

NtHOO

Ny )
C’SVt(wt) = Z Wit (m — rﬁw”) — 02 (t) almost surely. (6)
i=1

"While Goyal and Santa-Clara (2003) and Wei and Zhang (2005)consider the equally-weighted CSV in
conjunction with other measures, they do not provide a thorough discussion about the conditions under
which it can be interpreted as a proxy for idiosyncratic variance nor their empirical validity in the data, as
we provide in this paper.



Proof See Appendix A.

This result is important because it draws a formal relationship between the dynamics of
the cross-sectional dispersion of realized returns and the dynamics of idiosyncratic variance.
Note that this asymptotic result CSV, ™" —s 02 (t) holds for any weighting scheme that
satisfies 0 < w;; < 1V 4,t. Of course, at finite distance, different weighting schemes will
generate different proxies for idiosyncratic variance. In the empirical analysis that follows,
we shall focus on the equally-weighted scheme, while also considering the cap-weighted
scheme for comparison purposes. Formal justification for our focus on the equally-weighted
scheme is provided in the next section, where we show that the EW CSV is the best estimator
for idiosyncratic variance within the class of CSV obtained under a strictly positive weighting

scheme.

2.3 Properties of CSV as an Estimator for Idiosyncratic Variance

First, we derive in Proposition 2 the bias and the variance of the CSV as an estimator of
idiosyncratic variance. Then we study their asymptotic limits as the number of firms grows
large and conclude that the equally-weighted CSV is the best among all-positively-weighted

estimators.

Proposition 2 (Bias and variance of CSV):
Maintaining the homogenous beta assumption (B = p; = 1 ¥ i,t) and the homogeneous
residual variance assumption (E(e%) = o2 (t) Vi), for any strictly positive weighting scheme,

we have that: N
E|csv™] = o2 (1) (1 -3 wi) (7)
i=1

To analyze the variance of the CSV estimator, we further make the assumption of multi-
variate normal residuals € ~ N(0, %), where ¥¢ denotes the variance covariance matrix of

the residuals. Under this additional assumption, we obtain:

Ny 2 Ny Ny
Var [C’SVt(w*)} =202 () (ZZI wft> + ; w? — 2 izlw?t (8)

Proof See Appendix B for a proof in the slightly more general case when the homogeneous

specific variance assumption has been relaxed.

Hence the CSV is a biased estimator for idiosyncratic variance, with a bias given by the

multiplicative factor (1 - Zf\ﬁl wi), which can be easily corrected for since it is available



in explicit form. In the end, the bias and variance of the CSV appear to be minimum for
the EW scheme, which corresponds to taking w; = 1/N, at each date t. It is easy to see,
that this bias disappears and the variance tends to zero for the equally-weighted scheme

when the number of stocks grows large, as explained in the following proposition.

Proposition 3 (Properties of the equally-weighted CSV)
The bias and variance of the EW CSV as an estimator for specific variance disappear
in the limit of an increasingly large number of stocks:
EW
E[CSVY] = o2 ().

Var (CSVtEW)> — 0.

Nt~>oo

Proof See Appendix B for a proof in the slightly more general case when the homogeneous

specific variance assumption has been relaxed..

The equally-weighted C'SV thus appears to be a consistent and asymptotically efficient
estimator for idiosyncratic variance. As such, it is the best estimator in the class of CSV
estimators defined under any positive weighting scheme, and it dominates in particular the
cap-weighted CSV as an estimator for idiosyncratic variance. If we relax the homogeneous

residual variance assumption, we obtain that:

E [CS‘/tEW Nz—>oo Nt Z O-Elt

Hence, the assumption of homogenous residual variances comes with no loss of generality.
In the general case with non-homogenous variances, the CSV simply appears to be an
asymptotically unbiased estimator for the average idiosyncratic variance of the stocks in
the universe. We also have:

Var (CSVPY) < 252 (t) (Ni> — 0.
t

Ni—oo

where the quantity 52 () is an upper bound for the individual idiosyncratic variances (see
Appendix B).

We now discuss the impact on these results of relaxing the homogeneous beta assumption.

2.4 Relaxing the Homogeneity Assumption for Factor Loadings

Relaxing the homogenous beta assumption involves a bias that remains strictly positive
even for an infinite number of stocks and an equal-weighting scheme. We characterize this

bias in the next proposition in order to gauge its magnitude for given models of returns.
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Proposition 4 Bias of CSV as an estimator for average idiosyncratic variance
in the presence of heterogenous betas: Relaxing the assumptions B = 8, = 1V 1,t

(homogeneous beta assumption) we have, for any strictly positive weighting scheme:
Nt Nt
E[CSV] =3 wao? () = S wio? (1) + E [FRCSV/] (9)
i=1 i=1

where C’SVf denotes the cross-sectional variance of stock betas:

Nt Nt 2
CSVP = Z Wit (ﬁit - Z wjtﬂjt) :
i=1 j=1
Proof See Appendix C.

The first term vaztl wyo? (t) in equation (9) represents the average idiosyncratic vari-
ance of stocks within the universe under consideration. The second term — Zf\ﬁl w02 (t)
is the negative bias that was also present even in the presence homogenous beta assump-
tions. If we focus on the equally-weighted scheme, the sum of these two terms is equal
to N% vaztl a?i (t) <1 — N%) so that the bias disappears in the limit of an increasingly large
number of stocks. The third term E [FECSVtﬁ ] in equation (9) represents, on the other
hand, an additional (positive) bias for the CSV as an estimator of average idiosyncratic
variance, which is introduced by the cross-sectional dispersion in betas, and which does not
disappear in the limit of a large number of stocks.

Using the explicit expression provided here, in section 3.1 we directly measure this beta
dispersion bias using the CAPM and the Fama and French three-factor model as bench-
mark factor models. As we will see, although the cross-sectional dispersion of betas has a
non-negligible magnitude, once it is multiplied by the square of the return of the market
portfolio its relative size with respect to the level of idiosyncratic risk becomes very small.
An extensive analysis of the CSV in the empirical section suggests that the homogeneous
beta assumption does not represent a material problem for the CSV as an estimator of
idiosyncratic variance as implied by standard asset pricing models (i.e. CAPM and Fama-

French).

2.5 Competing Measures of Idiosyncratic Risk

In this section, we describe measures that have been used in the literature, and which will be

used for comparison purposes in subsequent sections of the paper. The standard approach



consists of considering idiosyncratic variance either relative to the CAPM and or to the
Fama-French (FF) model (Fama and French (1993)):

Tit = boit + brae X M KTy + by SM By + by HM Ly + 5 (10)

where r; denotes the excess return at time ¢ of stock 7, X M KT is the excess return on the
market portfolio, SM B is the size factor and HM L is the value factor. The idiosyncratic
variance for asset i is the variance of the residuals of the regression, that is, o%(ef*). To
obtain an estimate for average idiosyncratic variance, Bekaert et al. (2008) and Wei and

Zhang (2006) use a market capitalization weighting:
N
FFEP" = " wuo®(h"). (11)
i=1
For comparison purposes we also look at the equally-weighted average of FF idiosyncratic

variance in what follows. An alternative approach to average (mostly) idiosyncratic risk

estimation has been suggested by Goyal and Santa-Clara (2003), with a measure given by:

1 Ny Dy Dy
GStEW = ﬁt Z Z T?d + 2 Z TidVid—11| » (12)
i=1 Ld=1 d=2

where ;4 is the return on stock 7 in day d and D, is the number of trading days in month
.8

Campbell et al. (2001) propose yet an alternative measure of average idiosyncratic vari-
ance, under a very particular setting that allows one to avoid running regressions each
period.” However, their measure is not instantaneous since a window of data is still needed
to estimate individual variances. In what follows, we do not repeat the analysis with this
measure because Bekaert et al. (2008) have shown that it is very closely related to the mea-
sure obtained from standard asset pricing models. In particular, Bekaert et al. (2008) find
that the measure of Campbell et al. (2001) and the FF-based one have a correlation of 98%

and share most of the same structural breaks.

3 Empirical Implementation

In order to perform an empirical analysis of our measure for idiosyncratic risk, we collect

daily US stock returns (common equity shares only) and their market capitalization from

8As in Goyal and Santa-Clara (2003), when the second term makes the estimate negative, it is ignored.
This measure has been originally used in French et al. (1987).

9They assume that all betas are equal to one and substract industry returns in addition to market returns
to control for risk.
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CRSP data base. Our longest sample runs from July 1963 to December 2006. We also
extract the FF factors and the one-month Treasury bill from Kenneth French web-site data
library for the same sample period. Each month, we drop stocks with missing returns and
with non-positive market capitalization at the beginning of the month. The number of firms
varies between 377 and 7293, and remains greater than one thousand 75% of the time. The
maximum number of stocks is reached during the .com bubble. Then, we estimate every
month the cap-weighted idiosyncratic variance as in equation (11), as well as the equal-
weighted version.!® Similarly, we estimate the cap-weighted and equal weighted average
idiosyncratic variance relative to the CAPM. We also estimate the GS average variance
measure as in equation (12) and its cap-weighted version. Finally, we estimate on a daily
basis the equal and cap-weighted versions of the C'SV as in equations (4) and (5). In order
to construct the monthly series for our cross-sectional measures, we estimate the average
of the daily series at the end of each month. For comparison purposes we also estimate
the FF-based average idiosyncratic variance (EW and CW) on a daily basis using a rolling
window sample of one month. We annualize all figures in order to compare daily and
monthly measures. Following Bekaert et al. (2008), we fit a regime-switching model to the
monthly and daily series in order to further compare the different measures. Last, we look
at the relation between the CSV measures of idiosyncratic variance and selected economic

and financial variables.

3.1 Measuring the CSV bias

Some of the previous research on idiosyncratic volatility has been conducted under the
assumption of homogeneous betas across stocks (see Campbell et al. (2001) and Goyal and
Santa-Clara (2003) in particular). As illustrated in Proposition 4 and discussed in Appendix
C, the presence of non-homogeneous betas introduces a positive bias on the CSV as an
estimator for average idiosyncratic variance, which is given by the first term in equation
(9). We now measure the impact of this bias with respect to the CAPM as a benchmark
model.

First, we compute the bias E [FfC’SVtB } for every month in the sample using beta
estimates for each stock with both the equal-weighted and the cap-weighted market returns.
To gauge its importance, we divide it by the average idiosyncratic variance, also measured
with respect to the CAPM.!!

Table 1 presents a summary of the distribution of the time series of cross-sectional

dispersion of betas, its product with the squared return of the market portfolio (hence the

10We use previous period market capitalization and assume it is constant within the month.
UThis is measured as in equation (11) with just the market returns with both weighting schemes.
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bias itself) and the proportion of this bias with respect to the average idiosyncratic variance
at the end of every month. Although the cross-sectional dispersion of betas is sizable, once
it is multiplied by the squared return of the market portfolio, the size of the bias remains
Fgff v , 15 0.348% for the equal-weighted
scheme and 0.351% for the cap-weighted measure, co?nputed over the whole sample (July
1963 to December 2006). The 97.5 quantiles are 3.24 and 3.47 respectively.

On the other hand, the formal discussion about the properties of the CSV as a mea-

relatively small. The median of the distribution of

sure of idiosyncratic variance on section 2.4 also uncovered the fact that another bias (but
negative in sign) coming from the CSV weighting scheme concentration is also introduced.
Proposition 2 predicts two properties about this weighting bias: first, it should be negative
and minimal for an equally-weighted scheme. Second, it should be very small for a high
number of stocks. The beta-bias then is more likely to dominate the concentration-bias
when using an equal-weight scheme.

Using the explicit expression for this bias provided in Proposition 4 we estimate the
proportion of the size of this weights-concentration bias with respect to the average idiosyn-
cratic variances implied by the CAPM.!? In the last line of the upper and lower panels of
Table 1 we report quantiles of the distribution of this bias for both weighting schemes. The
corresponding medians are 0.030% and 0.426% for the EW and CW schemes respectively.
Since the bias is of opposite sign to the beta cross-sectional dispersion bias, we need to
assess the resulting overall bias.

We measure the total bias as the intercept of a regression of the CSV on the average
idiosyncratic variance estimated with respect to the CAPM or the Fama-French three-factor
model:

CSV = bias + Yopgge (wi) + G, (13)

where w; refers to the weighting scheme (equal-weight or market-cap) and model stands for
either the CAPM or the Fama-French three-factor model.

Table 2 reports summary statistics for regression (13). The bias of the CSV measured
with respect to standard asset pricing models is small in magnitude for both weighting
schemes (in the order of 107°). While it remains statistically significant, we can safely
consider that the impact of the bias remains immaterial for any practical purposes. Another
interesting finding is the sign of the bias. For the equal-weighted quantities, the sign of the
bias is positive, while it is negative for the cap-weighted ones. Therefore, the beta bias
dominates the weighting bias for equal-weighted averages in both models. This is consistent

with the prediction made by the theoretical analysis regarding the relative impact of the

12 A5 noted earlier, it would be straightforward to remove the impact of this bias by dividing the CSV
measure by the factor (1 — vaztl wft), equal to (1 - N%) in the EW case.
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weighting-bias for different weighting schemes. Regarding the model, the bias is larger when
the idiosyncratic variance is measured with respect to the Fama-French model instead of

the CAPM for both weighting schemes, as expected, but its magnitude remains negligible.

3.2 Comparison with Other Measures

In this section we compare the CSV measure to the afore-mentioned, more conventional,
measures of idiosyncratic risk (i.e., FF-based, CAPM-based and GS). To obtain these other
measures, we need to re-estimate the relevant factor model using a rolling window of one-
month worth of daily data to allow for time-variation in beta estimates (or total-variance
variation for the GS). In Table 3, we report summary statistics for the monthly time se-
ries of annualized idiosyncratic variances based on 516 observations from January 1964 to
December 2006.13

On the monthly series, the annualized means of the equally-weighted CSV, FF-based
and CAPM-based measures are 38.4%, 38.3% and 38.7%, respectively, while the EW GS
variance is 34.2%. The standard deviations are 8.5%, 8.6%, 8.7% for the CSV, FF-based
and CAPM-based measures and 7.0% for the GS measure. For the cap-weighted version,
the CSV, FF and CAPM idiosyncratic variance measures have an annualized mean of 8.5%,
7.6%, 8.0%, respectively and the GS measure mean is 11.2%. The standard deviations are
also closer for the CSV, FF and CAPM measures than for GS. Although GS argue that their
measure fundamentally constitutes a measure of idiosyncratic risk, with the idiosyncratic
component accounting for about 85% of the total EW average measure, it is strictly speaking
an average of total stock variance. Our CSV measure is very close to idiosyncratic variance
measures derived from traditional asset pricing models, confirming that the assumption
about beta homogeneity is not a major problem.

The cross-correlation matrix reported in Table 3 provides further evidence on the close-
ness of the CSV to the other model-based measures. Correlations are very high between
CSVEW and CAPMFEY (99.93%) and FFEW (99.75%, as well as between CSVEW and
CAPMCY (99.48%) and CSVEW and FFCW (98.56%). The high correlations between
the CAPM and the FF measures (99.88% and 99.18% for EW and CW respectively) also
indicate that adding factors does not drastically affect the estimation of idiosyncratic vari-
ance. Correlations between the GS measures and the other measures are always smaller but
remain close to 90% when considering the same weighting scheme. Correlations between
measures for different weighting schemes are much lower, irrespective of the estimation

method, indicating that the choice over the weighting scheme is fundamentally important

13n this section of the paper, we start the sample period in January 1964 to allow for direct comparison
with Bekaert et al. (2008). In the predictability section, we instead start the sample in July 1963.
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for estimating idiosyncratic variance, as stressed in our theoretical analysis in section 2.

Table 4 provides mean and standard-deviation estimates for the daily average idiosyn-
cratic variance measures. The mean of the EW CSV is 38.4%, practically equal to the
mean of EW idiosyncratic variance based on the FF model. For the cap-weighted measures,
the CSV has a slightly higher mean than the FF-based one. For the CSV daily series, the
standard deviation is higher than for the FF-based measure for both weighting schemes.
This is due to the different nature of the two series. The CSV only includes information
from the cross-section of realized returns, while the FF idiosyncratic variance is a persistent,
overlapping, rolling-window estimate. Each daily estimate of idiosyncratic variance for the
FF model differs from the previous one by only two observations out of the approximately
21 trading days included in a month (the first and last days).

The smoothness of the idiosyncratic variance estimates obtained with the rolling-window
methodology is illustrated in Figures 1 and 2, which plot daily CSV and FF idiosyncratic
variances for each weighting scheme respectively. It should also be noted that the estimation
of the FF-measure is computationally much more expensive than for the CSV measure,
which is based on observable quantities.

The lower panel of Table 4 presents cross-correlations for the daily series of idiosyncratic
variance measures. Although the coefficients are smaller than for the monthly series, the
relationship remains strong provided the comparison is done for the same weighting scheme:
82.6% and 73.9% for EW and CW measures respectively. The difference with the monthly
series correlations may again be explained by the presence of the smoothed estimation
procedure inherent to the FF-based measure. Overall, it appears that the CSV measure
is extremely close to CAPM or FF-based measures at the monthly frequency, when the
latter measures suffer from no particular bias, and that the CSV measure appears to be a
good and instantaneous proxy for idiosyncratic variance at the daily frequency, when the

standard measures are subject to artificial smoothing due to overlapping data.

3.3 Extracting Regimes in Idiosyncratic Risk

Bekaert et al. (2008) fit a Markov regime-switching model with a first-order autocorrelation
structure (see Hamilton (1989)) for the monthly series of idiosyncratic variance based on
the FF model. In this section, we want to estimate this model with our CSV measure both
at the monthly and daily frequencies. While we expect that the fit will be close to Bekaert
et al. (2008) for the monthly series given our previous results on the similarity of the series,
we want to verify whether such a model provides a similar fit for the daily series.

In this model, two regimes are indexed by a discrete state variable, s;, which follows

a Markov-chain process with constant transition probabilities. Let the current regime be
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indexed by ¢ and the past regime by ;7 and x; be the original idiosyncratic variance. In this

parsimonious model, x; follows an AR(1) model:

xp — p; = Q(xe1 — py) + oier, 1,5 € {1,2} (14)

The transition probabilities are denoted by p = Pls; = 1|s;1 = 1] and ¢ = P[s; =
2|s;-1 = 2]). The model involves a total of 7 parameters, {p1, 2, 01,02, ®, D, q}.

We first verify that the CSV and the FF-based measures give the same results for the
monthly series. The estimation results for the monthly series of the FFCW CSVEW  FFEW
and CSVEW are reported in the upper panel of Table 5. For corresponding weighting
schemes, the parameters in both regimes are similar between the two measures. For both
measures the low-mean, low-variance regime presents a higher probability of remaining in
the same state.

We then fit the same model to the daily time series and present the parameter estimates
in the lower panel of Table 5. It should be stressed that for our CSV measure, the parameter
values of the average level of idiosyncratic variance p in both regimes are found to be quite
close to the values obtained with the monthly series. This result suggests that the process
observed at the daily frequency is not just a noisy series, but actually captures the same
underlying process observed at the monthly frequency. This stands in sharp contrast with
the FF-based measure, for which the maximume-likelihood estimation procedure could not
recognize two regimes when daily data is used, as evidenced by the fact that the parameter
values for the mean level of idiosyncratic variance are basically the same for the two regimes.
This problem, combined with an autocorrelation parameter very close to one, is likely caused
by the overlapping data problem present in the daily FF measure, which corresponds to the
smoothing effect mentioned in the previous section.

In Figures 3 and 4 we plot the filtered probabilities (conditional on information up to time
t) of remaining in state 1 (high-mean and high variance regime), as well as the monthly CSV
and FF average idiosyncratic variance time series for the CW and EW weighting schemes,
respectively.!* At the monthly frequency, our measure and the FF-based measure appear to
be remarkably close for both the equal-weighted and cap-weighted schemes. Also, we find
that the dates of regime changes, marked by the filtered probabilities, are the same most of
the times for the cap-weighted and the equal-weighted measures.'> We also find that periods
in the higher-mean and higher-variance regime are more persistent for the equally-weighted

measure compared to the cap-weighted measure (except during the tech bubble period).

1These are estimates of the transition probabilities conditional to information up to time ¢ given all
sample data.

150ne notable exception is the regime change of 1980 : 05, which is present for the cap-weighted measure
and absent for the equally-weighted one.
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Overall, our filtered probability series resembles closely the one presented in Bekaert et al.
(2008) for the cap-weighted FF and Campbell et al. (2001) measures.!

The shaded areas in Figures 3 and 4, which time stamp the NBER recession periods,
indicate that the peaks in the probability of remaining in the high-mean high-variance regime
coincide most of the times with the contraction periods. Therefore, the CSV measure is
counter-cyclical, the dispersion of returns being high and quite variable when economic
growth subsides. In the next section, we want to analyze further the relation between the

CSV and other economic and financial variables.

3.4 CSV Relation with Economic and Financial Variables

To put this analysis in the proper context, we should go back to the very nature of idiosyn-
cratic risk. In an asset pricing model, it represents the risk that belongs specifically to an
individual firm, after accounting for the sources of risk that are common to all firms. In
the previous sections, we have shown that the cross-sectional variance of returns provides
a very good measure of this idiosyncratic risk, even if it ignores the risk exposures to the
usual common risk factors such as the market return or the Fama-French factors. Yet we
concluded our time series analysis of CSV by stressing its strong counter-cyclical behav-
ior. To pursue this analysis further we need therefore to rely on equilibrium models that
link returns to economic fundamentals. Recently, Bansal and Yaron (2004) have revived
consumption-based asset pricing models by showing that two sources of long-run risk —
expected consumption growth and consumption volatility as a measure of economic uncer-
tainty — determine asset returns. Further, Tédongap (2010) provides strong evidence that
consumption volatility risk explains a high percentage of the cross-sectional dispersion in
average stock returns for the usual set of size and book-to-market portfolios that have been
used in tests of asset pricing models. Another strand of literature based on the intertem-
poral CAPM or the conditional CAPM has linked the cross-section of expected returns to
other economic or financial variables such as the term spread, default spread, implied or
realized measures of aggregate returns variance, and many others.

While our CSV measure is based on the cross-sectional dispersion of realized returns over
the whole universe of traded stocks, as opposed to the cross-sectional dispersion of average
returns of a limited number of size and book-to-market portfolios, the same theoretical im-
plications should prevail. Therefore, we present below a simple correlation and graphical

analysis of the relation between the CSV and some of these key variables. For the economic

16The small difference might come from the fact that Bekaert et al. (2008) fit a model with two different
autocorrelation coefficients (one for each regime) as opposed to one. However, they find the two coefficients
to be fundamentally equal in both regimes, which supports using a more parsimonious model.
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variables, we chose consumption-growth volatility as a measure of economic uncertainty.
Following Bansal and Yaron (2004) and Tédongap (2010), we filter consumption-growth
volatility with a GARCH model. For consumption, we used FRED’s personal consumption
expenditures of non-durables and services monthly series, divided by the consumer price
index and the population values to obtain a per-capita real consumption series. We then
compute its growth rate from July 1963 to 2006.'” The second economic variable we con-
sider is inflation volatility, which we filter also with a GARCH process.'® For the financial
variables we use Welch and Goyal (2008)’s data for corporate bond yields on BAA and
AAA-rated bonds, long-term government bond yield and 3-months T-bill rate to estimate
the credit spread and term spread (as the difference between the first and the second rate in
both cases).! In Table 6 we report the correlations between the equally-weighted and cap-
weighted measures of cross-sectional variance and the five economic and financial variables
during the 1990-2006 period. We also explore some potential asymmetries by computing
the CSVEW for the positive and negative returns.

The highest correlation (0.401) is obtained between consumption growth volatility and
the equally-weighted measure CSVFW . In Figure 5 we plot the two series for the period
1990 to 2006. While the CSV series is much noisier than consumption-growth volatility, the
coincident movements between the two series are quite remarkable. After a high volatile
period just before 2000, both series show a marked downward trend after the turn of the
century. A reasonable explanation for this strong correlation is to think about a common
factor (aggregate economic uncertainty) affecting the idiosyncratic variance of each security.
Aggregating over all securities will make the CSV a function of economic uncertainty. In
intertemporal asset pricing models of Bansal and Yaron (2004), Bollerslev et al. (2009) and
Bollerslev et al. (2009), economic uncertainty is a priced risk factor that affects returns,
therefore providing a fundamental rationale for the observed correlation between CSV and
consumption growth volatility. This suggests that CSV should appear to be priced when a
Fama-MacBeth procedure is applied to a set of portfolios. We explore this issue in Section
5. The correlation of the cap-weighted CSV with consumption growth volatility is not as

high (0.241) since it puts more weight on large cap securities, which are in general less

1"The series IDs at the FRED’s webpage are, PCEND and PCES for “Personal Consumption Expen-
ditures: Nondurable Goods” and “Personal Consumption Expenditures: Services”, CPIAUCNS for “Con-
sumer Price Index for All Urban Consumers: All Items” and POP for “Total Population: All Ages including
Armed Forces Overseas”. Bansal and Yaron (2004) used the Bureau of Economic Analysis data available
at www.bea.gov /national/consumer_spending.htm on real per-capita annual consumption growth of non-
durables and services for the period 1929 to 1998. The series is longer but is available only at annual and
quarterly frequencies.

18For space considerations, we do not report parameter estimates for the two AR(1)-Garch(1,1) we esti-
mate. They are available upon request from the authors.

YData available at Amit Goyal’s webpage: http://www.bus.emory.edu/AGoyal/Research.html
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affected by economic uncertainty. Looking at the split between CSVEW+ and CSVEW~,
we see that the correlation is higher for the CSV when conditioning on the negative returns
(0.346). This suggests that return dispersion in bear periods is relatively more affected by
economic uncertainty.

The next most highly negatively correlated variable is inflation volatility (-0.367). Since
1998, inflation volatility seems to have been on an upward trend, while the cross-sectional
variance of returns has been sharply declining. This is clearly apparent in Figure 6. In
presence of higher inflation uncertainty, investors will move towards allocating more to
stocks relative to bonds in their portfolios, generating a general increase in stock returns
that reduces their cross-sectional variance. The T-bill rate is also relatively highly correlated
with CSVEW (0.302). In the type of equilibrium models we have referred to, the risk-free
rate, proxied here by the T-bill, will be a function of consumption growth volatility, hence
its positive relation with the cross-sectional variance.

For the financial variables (credit spread and term spread), it is interesting to note that
the higher correlations are with the cap-weighted measures of the cross-sectional variance.
The signs are intuitive. Credit risk affects differently individual firm returns and therefore
tends to increase CSV, while a pervasive term spread risk will reduce dispersion by being
common to many securities due to a move of investors away from bonds into the stock
market.

Given that the cross-sectional variance is significantly linked with economic and financial
factors that have been shown to predict returns, we explore in the next section the predictive
power of CSV for aggregate returns at various frequencies, especially at daily frequencies,
since our measure of idiosyncratic variance allows us to measure CSV at any frequency
without any artificial smoothing effect. This is a main advantage over other methods of

recovering this idiosyncratic variance.

4 New Evidence on the Predictability of the Market
Return

There is an ongoing debate on the predictive power of average idiosyncratic variance for
average (or aggregate) stock market returns. Goyal and Santa-Clara (2003) find a signifi-
cantly positive relationship between the equal-weighted average idiosyncratic stock variance
and the cap-weighted portfolio returns for the period 1963:07 to 1999:12. They find that
their measure of average idiosyncratic (in fact total) variance has a significant relationship

with next month return on the cap-weighted portfolio. The regression in GS is as follows:

re = a+ Y + e, (15)
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W corresponds to GSEW. In a subsequent analysis, Bali et al. (2005) argue that

where vF
this relationship disappeared for the extended sample 1963:07 to 2001:12, and attribute
the relationship observed in GS to high-tech-bubble-type stocks (i.e., stocks traded on the
NASDAQ) and a liquidity premium. In a similar way, Wei and Zhang (2005) find that the
significance of the relationship found by GS disappeared for their sample 1963:07 to 2002:12
and argue that the presumably temporary result of GS was driven mainly by the data in the
1990s. Wei and Zhang (2005) criticize the fact that GS looked at the relationship between
an equally-weighted average stock variance and the return on a cap-weighted average stock
return, as opposed to an equally-weighted portfolio return. Moreover, both Bali et al.
(2005) and Wei and Zhang (2005) find no significant relationship between the cap-weighted
measures and the cap-weighted portfolio return in all three sample periods (ending in 1999,

2001 and 2002, respectively).

4.1 Monthly Evidence

In this section we confirm existing results and extend them in a number of dimensions,
including a longer sample period. The first panel in Table 7 presents the predictability
regression of equally-weighted variance measures on the cap-weighted return as in Goyal
and Santa-Clara (2003) and Bali et al. (2005) for their sample periods, as well as the

W corresponds

extended sample up to 2006:12. The regression is as in equation 15, where v/
to the EW CAPM-based measure and the CSV.?° For comparison purposes we start the
sample period in this section in 1963:07, as in Goyal and Santa-Clara (2003), Bali et al.
(2005) and Wei and Zhang (2005).

For the monthly series, we confirm that there is a significant positive relationship in the
first sample, and also that it weakens for the subsequent extended samples.?! The Newey
and West (1987) autocorrelation corrected t-stat for 12 lags of the § coefficient of both CSV
and the CAPM-based measures goes from 3.5 for the first sample period down to 0.9 for
the largest sample. Consequently, the adjusted R? goes from 1.3% down to 0.04%. This
result confirms the findings of Bali et al. (2005) and Wei and Zhang (2005) for the further
extended sample. In section 4.4 we propose a possible explanation for this puzzling result.

In the second panel of Table 7 we present the results of the regression between the
equally-weighted average return with the lagged equally-weighted idiosyncratic variance
measure, as given by:

i = a+ By e (16)

20As explained before, the monthly CSV is the average of its daily values during the month.

21'We found a similar result using the GS measure of equally-weighed average variance. We do not present
these regression results for the sake of brevity given that they generate a similar picture, which has also
been confirmed in Bali et al. (2005) and Wei and Zhang (2005).
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where vEW is taken as the CAPM-based average idiosyncratic variance or as the CSV

measure. In contrast with the former regression, the relationship is found to be significantly
positive for the three sample periods for both measures.??

In the third panel of Table 7 we present the results for the three sample periods of
the one-month-ahead predictive regression of the cap-weighted market portfolio using the
cap-weighted idiosyncratic variance return as a predictor. In this case, the beta of the
idiosyncratic variance is not significant for all three sample periods. This result confirms

the findings of Bali et al. (2005) and Wei and Zhang (2005) for the extended sample.

4.2 New Predictability Evidence at Daily Frequency

Prevailing measures used in the literature require a sample of past data to estimate addi-
tional parameters, constraining existing evidence to the monthly estimations. Fu (2009)
finds that high idiosyncratic volatilities of individual stocks are contemporaneous with high
returns, which tend to reverse in the following month. Huang et al. (2009) find that the
negative relationship between idiosyncratic variance and expected returns at the stock level
uncovered in Ang et al. (2006) and Ang et al. (2009) becomes positive after controlling for
the return reversals. This provides additional motivation for looking at the predictability
relation at a higher frequency than the monthly basis. Using the CSV as a proxy for ag-
gregate idiosyncratic variance allows us to check this relationship at the aggregate (market)
level in a more direct way (without having to control for reversals). Taking advantage of
the instantaneous nature of the CSV, we run the same predictability regression (16) on the
one-day-ahead portfolio return using the average idiosyncratic variance.

The upper panel of Table 8 shows that at a daily basis, this relationship is much stronger,
with (Newey-West corrected) t-stats of coefficients for the average idiosyncratic variance
across the three samples ranging between 4 and 4.7.

In the lower panel of Table 8 we report the results for the one-day-ahead predictive
regression on the cap-weighted pairs (CSV and market return) for which we find the relation
also to be positive and significant, but with a much more obvious deterioration of the t-stat
of the cap-weighted idiosyncratic variance coefficient, going from about 5.91 in the first

sample down to 1.97 for the longest sample. For this reason and for brevity, we now focus

22Wei and Zhang (2005) find a significantly positive relation between the equal-weighted GS measure and
the equal-weighted market return for the initial sample. They also test the robustness of the relation by
using an equally-weighted cross-sectional variance of monthly returns. They found a significantly positive
coefficient for predicting the equal-weighted portfolio return mainly for the long samples starting in 1928
but not for the sample going from 1963 to 2002. Note that our cross-sectional measures differ. Ours is an
average of the daily cross-sectional variances over the month. Theirs is the cross-sectional variance of the
returns computed over the month.
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on the relationship between aggregate idiosyncratic risk and the equal weighted market

return.??

4.3 Interpretation of Predictability results

Given this evidence on the predictability of average aggregate returns by idiosyncratic risk,
a natural question to ask would be: why does the relationship between the equal-weighted
measure and the cap-weighted differ across different sample periods?

Wei and Zhang (2005), Bali et al. (2005) argue that the relationship between idiosyn-
cratic risk and the market index first found by Goyal and Santa-Clara (2003) on the sample
ending in 1999:12 was driven by small stocks traded in the NASDAQ and the data coming
from the dot-com bubble period. Although we confirm their empirical findings for our sample
period, we disagree with their conclusion that the relationship between average idiosyncratic
risk and expected returns disappeared since the end of the dot-com bubble. Even though
it appears clear that NASDAQ companies played an important role in the relationship of
the equal-weighted average idiosyncratic variance with the average market-capitalization
expected return during the end of the 1990s, which (obviously) weakened after the burst
of the bubble, we find that the relationship between average idiosyncratic risk and future
average market returns is robust to choices of the sample period, provided that adequate
weighting schemes and horizons are chosen to test this inter-temporal relationship.

The transitory relationship between the equal-weighted average idiosyncratic variance
and the cap-weighted market index observed up to the end of the 1990, can be explained
by the heterogeneous and transitory nature of the omitted sources of risk captured by
idiosyncratic risk and its relation with the inflated valuation of several NASDAQ companies
during that period 24.

Some intuition behind the far more robust relationship between the equally-weighted
average idiosyncratic variance and the equally-weighted portfolio comes precisely from the
logic of standard asset pricing theory. As discussed in the introduction, there are multiple
reasons for which average idiosyncratic risk should be related to average returns, due to

the heterogeneous sources that may compose idiosyncratic risk. According to CAPM, only

23The corresponding results using a market cap-weighted scheme can be obtained from the authors upon
request.

24The strongest omitted factors in that period (call it the irrational.com factor), partially captured by the
equally weighted idiosyncratic variance, started to be increasingly represented in the market-cap index, due
to the suddenly-higher market capitalization of precisely the group of companies carrying this temporarily
strong omitted factor. The posterior reversal of the situation (i.e., the burst of the bubble) subsequently
explains the sharp fade in the relationship between the average idiosyncratic variance and the market-
cap portfolio, precisely due to the posterior sudden deterioration of the market capitalization of most
stocks carrying this irrational.com factor, and hence notably reducing their representation in the market-
capitalization index.
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systematic risk should explain future returns. However, if during a certain period of time
there exists anomalies of any kind (priced omitted risk factors) that, presumably, are not
proportionally reflected in the current market capitalization of the companies carrying these
factors, then the omitted sources of risk are more likely to explain the returns of a portfolio
where all kinds of firms are represented in a similar manner, such as the EW as opposed to
a portfolio where big companies are proportionally better represented than smaller ones.
Along these lines, Pontiff (2006) argues that idiosyncratic risk is the largest holding cost
borne by rational arbitrageurs in their pursuit of mispricing opportunities. This theory
implies that the current level of idiosyncratic risk should predict returns since it should
measure the amount of current mispricing opportunities present in the market. Assuming
that the same mispricing opportunities disappear in the long run, it appears more likely to
observe this relationship between idiosyncratic variance and returns over very short horizons.
Moreover, all things being equal, large-cap stocks are less likely to present misspricing and
hence the predictability implied by this theory would be more likely to be present on the
equal-weighted index return rather than the cap-weighted index return, as we observed in
predictive regressions at daily and monthly horizons.?> The sign of the relationship is not
predicted by Pontiff’s theory in general, because it depends on whether the average (equal
or cap-weighted) portfolio is over- or under-priced (it predicts a positive sign for underpriced

stocks and a negative sign for overpriced stocks).

4.4 Robustness Checks

In this section, we test further explore the relationship documented in the former section in
several dimensions. We first want to place the return predictability by idiosyncratic variance
in the context of the literature of the risk-return trade-off. Most of the literature on this
topic is based on a linear regression between return and volatility. We want to see if including
the return variance in the regression changes the predictability results. Second, we test the
robustness of the relationship in the presence of an option implied volatility measure. Third,
we further test the predictability relationship at quarterly and annual horizons. Finally, we
look for the potential asymmetry in the relationship between idiosyncratic variance and
future average returns, when the cross-sectional variance is split in two and is computed
for returns above or below the mean. Such an asymmetry often exists for positive and
negative returns in the volatility modeling of financial time series. The reported presence of

asymmetries will provide us with a motivation for extending the cross-sectional dispersion

25Tt is well known that large cap stocks are more liquid than small-cap stocks, which implies a higher
number of people trading them and usually a higher number of analysts looking at them. Together with
less constraints to short-selling, we expect a higher price efficiency for large cap stocks.
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measure to the third moment and find this measure is related with average idiosyncratic

skewness and has strong predictive power of the average market return.

4.4.1 Inclusion of Return Variance

In order to check wether the relationship between the market portfolio expected return and
the aggregate level of idiosyncratic variance (which we document at the monthly and daily
frequency) is robust to the inclusion of the variance of the market portfolio, we run the

following joint regression:
ril = a+ BCSV,+9Var (rf") + ey (17)
We also run the univariate regression:
ri =a+9Var (rff") + €. (18)

For the monthly estimations of Var (rtEW) we use the realized sample variance over the
month (from daily returns). For daily estimations we fitted an AR(1)-EGARCH(1,1) model
on the overall sample.?® In the first two panels of Table 9, we report regression results at
the monthly and daily frequency of both (17) and (18). In the latter univariate regression,
the variance of the equally-weighted portfolio returns does not appear to be significant in
explaining the average future returns at the monthly and daily frequencies.

In the regression from equation (17), the coefficient of Var (rf"), ¥, is negative and
non-significant at the monthly frequency. At the daily frequency, the coefficient ¥ was still
found to be negative and (marginally) significant. The significance of the C'SV coefficient
remains valid for both monthly and daily frequencies, and if anything improves slightly after
the inclusion of the equally-weighted portfolio variance.

The latter two panels of Table 9 present the regression results at the monthly and daily
frequency of both (17) and (18) but using the cap-weighted index and CSV equivalents. The
relationship at the daily horizon becomes non significant after the inclusion of the realized
variance of the market cap-weighted index. At the monthly horizon the relationship remains
non significant.

In Table 10, where we report the quarterly and annual predictability with and without
the market variance, we confirm that the equally-weighted cross-sectional variance does not
forecast future average returns at low frequencies. However, for the cap-weighted measure of

CSV, we observe predictability over the period 1963 to 2006 when it is joined with market

26Using the overall sample to estimate the parameters would only give the portfolio variance an advantage
to predict future returns. However, from the results we see that even when using such forward-looking
estimates for Var (TFW), the significance of the CSV remains strong.
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variance. The sign is negative while the market variance enters with a positive sign as
predicted by the benchmark risk-return trade-off?”

One fair remark on the results of the predictability regressions is that the relationship
using equal-weighted measures only holds at shorter horizons (i.e. daily and monthly).
However, this result is in line with Pontiff (2006)’s interpretation of idiosyncratic risk as a
barrier for arbitrageurs and with the evidence presented by Fu (2009) at the stock level,
who finds that high idiosyncratic volatilities of individual stocks are contemporaneous with

high returns, which tend to reverse in the following month.

4.4.2 Inclusion of Market Realized Variance and Implied Variance

Other measures of variance have been used in trying to link market returns to a measure of
market risk. Implied variance (V' I1X?) has been used as a forward-looking measure of market
variance in addition to realized variance (the sum of squared returns at higher frequency
than the targeted frequency for the measure of variance)*. We use these measures in Table
11 along with both CSV measures for daily and monthly predictability. We repeat the
exercise in Table 12 for quarterly and annual frequencies. For these regressions we start the
sample in 1990 for data availability for the implied volatility.

Results are similar to the ones in the previous section with market variance. For CSVEW
we observe predictability at high-frequency but not at low frequency, while it is the opposite
for CSVEW . For the daily estimates with CSVEW | we find a R? of almost 5% when we
include all three measures of variance, and all coefficients are significant. But the remark-
able result, undocumented until now to our knowledge, is the very high R? obtained at
quarterly and annual frequencies for the C'SVE" measure. When using CSVEY alone as
a predictor we obtain R2%s of 4% and 26% at quarterly and annual frequencies, respectively.
Adding the implied variance brings the R?s to almost 19% and 29%. If instead one uses the
realized variance instead of implied variance the R?s are close to 11% and 34%. In all these
predictability regressions, the sign of the C'SVE"W variable is negative.

Guo and Savickas (2008) argue that average idiosyncratic volatility is negatively related
to future stock market returns possibly because of its negative correlation with the aggre-

gate book-to-market ratio.?? If idiosyncratic volatility is measured from a CAPM model

27See also Guo and Savickas (2008) for similar results.

28For example, for the monthly variance, one will sum the daily squared returns, while for the daily
variance, it is customary to use five-minute or one-minute squared returns.

29The argument starts by considering average idiosyncratic volatility as a proxy for changes in the oppor-
tunity set related related to technological shocks. They argue that technological innovations have two effects
on the firm’s stock price: they tend to increase the level of the firm’s stock price because of growth options
and they also tend to increase the volatility of the firm’s stock price because of the uncertainty about which
firms will benefit from the new opportunities. The final argument is to say that the book-to-market ratio
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then it will capture the missing book-to-market factor. This explanation runs counter to
our previous findings regarding the very high correlation between the measures of idiosyn-
cratic volatility based on the CAPM and the Fama-French models. The two series were
almost identical. A more appealing explanation may be to think of cross-sectional variance
as a measure of dispersion of returns reflecting the dispersion of opinions among market
participants. The negative sign of this relationship at quarterly and annual horizons in
the presence of market variance as the second predictor (and also at monthly horizons in
the presence of implied variance as the second predictor) is consistent with the model of
Cao et al. (2005), in which dispersion of opinions among investors is positively related to
stock market volatility but negatively related to conditional excess stock market returns.
Furthermore, one may argue that differences of opinions forge themselves over a period of
time and hence this effect is more likely to be present at horizons longer than a day.

More generally, we may interpret the CSV as measuring the hedging terms in an in-
tertemporal CAPM model. In this regard, it is interesting to see that the positive risk-
return trade-off at the aggregate level, i.e., the relationship between market volatility and
expected returns, becomes significant only when taking into account the presence of the
omitted factors as captured by the CSV. It is also interesting to note that the interactions
of the CSV with the realized variance of the market take place at longer horizons (quarterly
and annual), while its interactions with implied variance (V1X?) tend to be more important

at shorter horizons.

4.4.3 Asymmetry in the Cross-Sectional Distribution of Returns

We now explore for a potential asymmetry in the relationship between idiosyncratic variance
and future average returns, when the cross-sectional variance is split in two and is computed
for returns above or below the mean.

This asymmetry may be the result of the leverage effect put forward by Black (1976)
since we are considering individual firms in the cross section. We also mentioned in an
earlier section that consumption volatility risk affects differently small and large firms or
value and growth firms. Therefore, we explore i) whether the predictability power is the
same for the CSV of returns to the left and right of the center of the returns’ distribution,
i1) whether the relationship is driven by one of the sides and #i7) whether the relationship
with both sides would have the same sign on their coefficient. In order to do this, we define
the CSV," as the cross-sectional variance of the returns to the right of the cross-sectional
distribution (i.e., meaning the cross-section distribution that includes all stocks such that
W

)

T > TtE and conversely define the C'SV,™ as the cross-sectional variance of the returns to

captures these investment opportunities
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the left of the cross-sectional distribution (i.e., meaning the cross-section distribution that

includes all stocks such that r; < rZ"). Then we run the following regression:

rE = a+ BTCSVE + BT OSV] + €. (19)

Table 13 presents the results of regression (19) for daily, monthly, quarterly and annual
estimates, and shows a couple of interesting findings. First, splitting the CSV into right and
left sides of the cross-sectional distribution made the adjusted R? of the predictive regression
jump from 0.8% to 1.17% on monthly data and from 0.6% to 1.36% on daily data. Second,
there is an asymmetric relationship between the CSV of the returns to the right and left
of the cross-sectional distribution and the expected market return: the coefficient of the
CSV,t is positive while the one of C'SV,™ is negative in both daily and monthly regressions.
However, the coefficients (of both right and left CSVs) are significant only on the daily
regression. The summary statistics of the predictive regression on the cap-weighted index
using the equivalent cap-weighted CSV measures, displayed in the lower panel of Table 13,
are qualitatively similar to the results on the equal-weighted measures.

These findings suggest that a measure of asymmetry of the cross-sectional distribution
would be relevant in the context of exploring the relationship between market expected
returns and aggregate idiosyncratic risk. Another key advantage of the CSV measure is
that it can be easily extended to higher-order moments. We consider below the skewness of
the cross-sectional distribution of returns and assess its predictive power for future returns.
To the best of our knowledge, this additional factor, which appears as a natural extension
of the CSV for measuring idiosyncratic risk®’, is entirely new in this context.3! We follow
Kim and White (2004) and use a quantile-based estimate (see Bowley (1920)), generalized
by Hinkley (1975), as a robust measure of the skewness of the cross-sectional distribution

of returns:>?

F_l(l — Oél) + F_1<Oél> — 2@2
F11—oq)+ F1(al)
for any a; between 0 and 0.5 and @ = F~!(0.5). The Bowley coefficient of skewness is

RCS =

(20)

a special case of Hinkley’s coefficient when a7 = 0.25 and satisfies the Groeneveld and

Meeden (1984)’s properties for reasonable skewness coefficients. It has upper and lower
bounds {—1,1}.

30We show formally in an appendix available upon request from the authors that there is a link between
idiosyncratic skewness and the skewness of the cross-sectional distribution of returns.

3L At the stock level, Kapadia (2009) uses cross-sectional skewness to explain the puzzling finding in Ang
et al. (2006) that stocks with high idiosyncratic volatility have low subsequent returns.

32The usual non-robust skewness measure of the cross-section of returns is highly noisy compared to the
proposed robust measure, especially at the daily frequency.
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In Table 14, we report the results of predictive regressions at the daily and monthly
frequencies where we add the robust measure of the cross-sectional skewness to the equally-
weighted CSV. The first observation is that the CSV coefficients are very close to the values
estimated with the CSV as the only regressor (0.4 for the daily frequency and 0.25 for
the monthly one). The t-stats are also almost identical to the ones found in the CSV
regressions. However, skewness appears to be a major contributor to the predictability of
returns since the R? increases significantly compared to the regressions with CSV alone.
At the daily frequency, the adjusted R? increases to a value of 5.8%. At the monthly
frequency, it is still 4.6%. This large increase in predictability when adding skewness suggests
that macroeconomic or aggregate financial shocks affect asymmetrically the distribution of

returns.

5 Is Average Idiosyncratic Risk Priced?

According to Merton’s ICAPM, a factor that predicts stock returns in the cross section
should also predict aggregate market returns (see Campbell (1993)). By the reverse argu-
ment, motivated by the predictability power of (equal-weighted) cross-sectional variance on
the average return in the market, we explore in this section whether the CSVEW | interpreted

as a risk factor, is rewarded and commands a premium in the cross-section.

5.1 CSV Quintiles’ Premium

Using daily excess returns every month we run the following regression for each stock :3

Ty = Qa+ ﬁi,csvcs‘/tEW' (21)

At the end of every month in the sample, we sort stocks using the CSVEW factor loading,
Besv, and form equally-weighted and cap-weighted quintile portfolios. We calculate the
average return during the overall period for each quintile and the average return difference
(i.e., premium) between the first quintile and each of the other four quintiles.

The results for the equally-weighted quintile portfolios are displayed in the upper panel
of Table 15 and in the lower panel for the cap-weighted quintiles. As we can see from this
table, all premia are significantly different from zero and economically meaningful. The
difference between the first quintile (the one with higher sensitivity) and the second, third
and fourth quintile, is around an annualized 30%, while the difference with the fifth quintile

is around 15%. This result suggests that the relationship of the CSV and stock returns

33We use stocks with non missing values during the current month.
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might not be best described in the simple linear form, which is in line with the asymmetric
effect found in section 4.4, with the quantities CSV*+ and CSV ™.

5.2 Fama-MacBeth Procedure

In order to use the standard set of assets in the asset pricing literature, we extract daily
returns data from Kenneth French data library on their 100 (10x10) and 25 (5x5) size/book-
to-market portfolios for the period July 1963 to December 2006. Then we run every calendar

month the following regression for each portfolio:3*
Tig =« + B@,xmktXMKT;f + ﬂi,smbSMBt + ﬁi,hmlHMLt + ﬁi,csvcsv;:EW' (22)

Using the recorded factor loading, § (monthly) time series, we run the following cross-
sectional regression every month on the next month’s excess returns and record the ~ coef-

ficients:

T;;LJrl =% + ry:vmktﬁi,zmkt(t) + Wsmbﬁi,smb(t) + fyhmlﬁi,hml@) + IYCS”L)Bi,CSU(t» (2?))

We finally test whether the average ~ coefficients are statistically different from zero.
In order to take into account possible serial correlation in the coefficients, we compute the
t-statistic using Newey and West (1987) standard errors with 4 lags (same number of lags
as in Ang et al. (2009)).

We use four sets of assets: 100 (10x10) size/book-to-market equally-weighted portfolios
and cap-weighted weighted portfolios, and 25 (5x5) size/book-to-market equally-weighted
and cap-weighted portfolios. For each of them, we use the CSVEW as the fourth risk factor.
The first two panels of Table 16 present the corresponding Fama-MacBeth regression results.
The table displays the annualized coefficients and standard errors (multiplied by 12 from the
original monthly values), as well as their corresponding autocorrelation-corrected t-stat and
the average R?. We find the v coefficient for CSVEW to be positive and significant when we
use the 100 and 25 size/book-to-market Fama-French equally-weighted portfolios. However,
it is not significant when we use the 25 market cap-weighted portfolios and marginally
significant for the 100 market cap-weighted portfolios (although positive in both cases). This
later result, again, is not entirely surprising considering that the cross-sectional variation in

returns is reduced through the market-capitalization adjustment.

34As before, XMKT stands for excess market return, SMB and HML are the size and book to market
Fama-French factors, also directly extracted from Kenneth French data library.
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6 Conclusion

In this paper we formally introduce an instantaneous cross-sectional dispersion measure as
a proxy for aggregate idiosyncratic risk that has the distinct advantage of being readily
computable at any frequency, with no need to estimate other parameters. It is therefore a
model-free measure of idiosyncratic risk. We extensively show how this measure is related
to previous proxies of idiosyncratic variance, such as the Goyal and Santa-Clara (2003) mea-
sure and measures relative to the classic Fama and French (1993) and CAPM models, which
have been previously shown to be very close to the Campbell et al. (2001) proxy as well. We
confirm previous findings of Goyal and Santa-Clara (2003), Bali et al. (2005) and Wei and
Zhang (2005) on the monthly predictability regressions for the extended sample period using
our cross-sectional measure and more standard measures of idiosyncratic variance. We find
that the results are robust across these measures. Thanks to the instantaneous nature of
our measure, we are able to extend to daily data the evidence on the predictability power of
idiosyncratic variance on the future market portfolio return. We provide a statistical argu-
ment to support the choice of an equally-weighted measure of average idiosyncratic variance
as opposed to a market-cap weighted and explain why both empirically and theoretically
such a measure should forecast better the equal-weighted market return. We also showed
that this cross-sectional measure displays a sizable correlation with economic uncertainty;,
as measured by consumption growth volatility, and with several economic and financial
variables. One additional advantage of our measure is that it generalizes in a straightfor-
ward manner to higher moments and we showed that the asymmetry of the cross-sectional
distribution is a very good predictor for future returns. We leave for further research an
exhaustive analysis of the properties of the skewness of cross-sectional return distribution as
a measure of average idiosyncratic skewness. We also leave for further research an empirical

analysis of the CSV measure using international data.
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A Proof of Proposition 1

Consider the factor model decomposition

N Ny

(we)

Ty = E witﬁitFt‘l'E WitEit
i—1 i=1

and

Nt Nt
Tit — T§Wt) = (Bit - Z wjtﬁjt) Fy+en— Z Wit jt

j=1 j=1
Under the homogeneous betas assumption, we have
Nt
Tit — Tt(“’t) =&t — Z WjtEjt (24)

=1

and therefore

e Ny 2 Ny

wy) 2

|:T7;t — Ty } = & + E wjtgjt — 26# E wjtgjt
Jj=1

j=1
so that

Ny )
C'SVt(wt) = Z Wit (Tz't - ngWi))
i=1

N N 2 Nt N
2
= E witEit—l— E W€ jt —2 E E W Wit €t € 5t
i=1 j=1 i=1 j=1

Noting that
N 2 Ny N
E W tE 5t :g E WjtWitEitE jt
j=1 i=1 j=1

we finally have:
Ny Ny 2
CS‘/t(U)t) — Z witgft — (Z wjtgjt)
i=1 i=1

We now argue that the term Zivztl wji€j¢ converges to 0 for increasingly large numbers
of stocks. To show this, we need to use a recent result by Cuzick (1995) regarding the

Marcinkiewcz—Zygmund strong law of large numbers for weighted sums of i.i.d. variables:

N
1
N Z an;X; — 0 almost surely (25)

=1

33



when {X, Xy, N > 1} is a sequence of i.i.d. random variables with E (X) =0, E|X| < oo

and {ay;, 1 <i < N, N > 1} is an array of constants uniformly bounded satisfying®

sup |ayi| < o0. (26)

Here we take ayy = Nywy and X; = ¢;. For the result (25) to hold ay; needs to be
uniformly bounded and to satisfy condition (26). We therefore restrict our attention to non-
trivial weighting schemes, ruling out the situation such that the index is composed by a single
stock. Please note that this condition together with the fact that ). w; = 1 implies N, > 1
and also restrict the weights to be (strictly) positive at every given point in time. Hence, a
weighting scheme (wy), is defined as a vector process which satisfies 0 < wy; < 1V 4,¢. This
condition seams reasonable since our focus is to measure idiosyncratic risk in the market.

By definition, the weighting scheme w;; and ap;; is uniformly bounded by N; and the
following condition holds,

O<wy<1Vi,t (27)

Multiplying by N, we get

0 < Nywy < Ny
0 < Nywy < 00
0 < any < oo

lani| < oo Vit

which implies that condition (26) holds. Thus, for a positive weighting scheme from the

strong law of large numbers for weighted sums of i.i.d. variables, it follows that:

N

E Wiy — 0 a.s.,
—1 Ni—00

1=

Using similar arguments, and the homogeneous idiosyncratic second moment assump-

tion, F [e4] = o2 (t), we obtain that for a strictly positive weighting scheme, w;, and i.i.d.

Eis
N
2 2
E wye; — o2 (t) almost surely
—1 Ni—o0
1=

Using these results, we finally have that:

Nt*)OO

N )
s V;(wt) = Z'Uh‘t <7"it - Tiwt)> — o2 (t) almost surely.
i=1

35See Theorem 1.1, particular case of Cuzick (1995).
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B Properties of the CSV Estimator

B.1 Bias of the CSV Estimator

Under the factor model decomposition (1) and equation (2) and using the homogeneous

beta assumption, we have:

Nt
Tit — rtwt = (ﬁzt ijt5]t> Fy+ i — Z WjtEj¢ = Eit — Z W€ jt (28)
=1

Replacing result (28) in equation (3) we have as before:
CS‘/;(wt Z wltalt Z Z Wt Wit Eit€ jt (29)
i=1 j=1

By definition of a strict factor model, E [g;e;,] = 0 for i # j, and E(e};) = oZ.. Applying

the expectation operator in equation (29) we get:

N
E [Csvf“’”] =3 wuo? Z wlo? (30)
=1

The second term in (30) implies that the CSV would tend to underestimate the average
idiosyncratic variance. Considering the equal-weighted scheme where w; = 1/N; Vi, (30)

simplifies into
Ny

1) 1
E[CSVEY] = (1—-) = ol (t
SV N;) Ni = .®
and we obtain:

EW
E[CSV, Nﬁoo Ntz it

B.2 Variance of the CSV Estimator

Let w; and g4 be column vectors of the weighting scheme and residuals respectively and
Oy = wywy, Ay = diag (wy), Ny X Ny matrices, and denote 3¢ the variance covariance matrix
of the residuals, which is diagonal for a strict factor model.

For a finite number of stocks in the case where F; # r(**)| we have from equation (29):

t t
(wy)
CSV, E wagh — Y > wiiwacusy

=1 j=1

Letting QQ; = Ay — 2, C'SV; can be written in matrix form, as follows:
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CSV ™) = Qe (31)

Using the quadratic structure of the CSV and assuming normal residuals, we have (see for
instance Kachman (1999))3

Var (e,Quer) = 2tr (QeX7Q4X7) (32)

Under the assumption of a strict factor model, i.e. pf;, = 0 Vi # j, equation (32)

simplifies to:

Var (CSV“”) —QZUH wi (1 — w;) —i-ZZtthltwjtaat o, (33)

=1 j#i
Assuming an upper bound for the individual idiosyncratic variances, denoted as &,

equation (33) yields to the following inequality (replacing each variance for its upper bound)

N, 2N N
Var (Cgvt(wt)> <262 (Z w§t> +Y wh -2 wh | (34)
i=1 i=1 i=1

When w; = 1/Ny, equation (34) simplifies to

N —1 1
Var (CSV") < 25%, ( = ) <26t (ﬁ> . (35)
t t

For a large number of stocks,

Var (CSV;W) <254 (Nit) 0 (36)
C Relaxing the Assumption of Homogenous Betas

The assumption that §; = [, for all 7 is obviously a simplistic one and is done only for

exposure purposes. Starting with the single factor decomposition on the definition of the

36The operator tr stands for the trace of a matrix, which is the sum of the diagonal terms.
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CSV we have:

Ny )
CSVt(wt) = Zwit (Tit — Tﬁwt)>
i=1
Ne N N 2
= sz’t [(6# - ijtﬁjt) Fy+ey — Z wjtfjt]
i=1 j=1 i=1
Nt Nt 2 Nt Nt 2
= th Z Wit (ﬁit — Z wjtﬁjt) + Z Wit (52'1& - Z wit£jt> +
i=1 j=1 i=1 i=1
Nt Nz Nt
2F, Z Wit (@ - Z wjtﬁjt) <5it - Z’wjt%?jt>
i=1 j=1 i=1

After simple rearrangement of terms we get:

N, Ny 2 N N; Ny
(we) _ 2 2
CSV, ™" = F, E Wit | Bir — g wieBie |+ g WitEp — E g Wt Wit €€ jit
i=1 j=1 i=1 i=1 j=1

Nt Nt
+ 2F; Z wieir(Bir — Z wjiBjt)
i1 j=1

Applying the expectation operator and assuming a strict factor model, the last expression

simplifies so as to yield:
E|CsV™| = B [RCSVE| + 3 wac?, = Y uiod,
Under an equal-weighting scheme, we finally have:

E[CSVPY] = F [chsvf] + (1 - N%) % > a2,
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D Tables and Figures

Table 1: Estimates of the biases due to the cross-sectional dispersion of betas and
weight concentration: This table contains a summary of the distribution of the following
time series: the cross-sectional dispersion of betas C’SV;B , estimated with respect to the
CAPM at the end of every month using daily returns; the average idiosyncratic variance

0% with respect to the CAPM; the product of the average return of the market portfolio

€t
squared, F?, and the beta dispersion, C'S V;ﬂ ; the proportion of the product FZC'S Vtﬁ to agt
and the proportion of Zw?tagit to aft. The upper panel corresponds to the equal-weight
scheme (CSVEW) and the lower panel to the market-cap weighting (CSVEW). All figures

are daily. The period is July 1963 to December 2006.

Equal-Weighted Q25 Qa5 Q50 Qs Qo735
CSvyP 0.282  0.970 1.563  3.022 11.437
o2 (%) 0.043  0.065 0.103  0.241 0.485

F2CSVE(%)  6.57e-07 6.92¢-05 3.84e-04 0.001  0.005
EOSVR () 0001 0078 0348 0890 3.240

’LU2 172
M(%) 0.014 0.020 0.030  0.054 0.154

Cap-Weighted Q2.5 (25 Q50 Q75 Qo7.5
csvy 0.075  0.309 0451  0.704  3.079
o2 (%) 0.009  0.020  0.030  0.042 0.153

F2OSVA(%)  1.83e-07 2.30e-05 1.09e-04 2.77e-04 0.001
FEOSVE () 48504 0.080 0351 0930  3.472

’LU2 0'2
%(%) 0.173 0.281 0.426 0.637  1.463
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Table 2: Total bias associated with CSV: This table reports the output summary
of the regression CSV** = bias + V02,4 (wi) + ¢, where o2, .., (w;) represents monthly
estimates of the weighted average idiosyncratic variance estimated using the corresponding
model (either CAPM or FF). The average and the C'SV are computed with either the
cap-weighted scheme (CW) or the equal-weighted one (EW). The period is July 1963 to

December 2006.

CAPMEW  FPFEW  CAPMCY  FFCW

Bias 120605 2.23¢:05 -2.09¢-05 -3.74e-05
NW t-stat  1.986 2.382 -2.849 -4.767
Std. dev.  3.05e-06  5.86e-06  2.04e-06  3.50e-06
W 0.983 0.988 1.125 1.242
NW t-stat  153.819  100.162  39.259 39.226
Std. dev.  0.002 0.003 0.005 0.009
(%) 99.866  99.503  98.946 97.117

Table 3: Comparison of monthly measures of idiosyncratic variance: The upper
panel of this table contains the annualized mean and standard deviation of the monthly
time series for the CSV, the average idiosyncratic variance based on the CAPM and the
Fama-French models and the average Goyal and Santa-Clara (2003) variance measure as in
equations (4), (11) and (12) using both EW and CW weighting schemes. The lower panel
presents the cross-correlation matrix among these variables. The period is January 1964 to

December 2006.
CSVEW FFEW  CAPMEW GSEW CSVveW FFCW  CAPMCW  GSW

Mean 0.384 0.383 0.387 0.342 0.085 0.076 0.080 0.112
Std.Dev. 0.085 0.086 0.087 0.070 0.020 0.016 0.018 0.029
Correlation CSVEW FFEW —CAPMEW GSEW CSVEW  FFCW  CAPMCW GSEM
100.00 99.75 99.93 95.44 72.16 74.98 72.83 61.25
100.00 99.88 93.67 68.53 72.16 69.46 56.75
100.00 94.78 70.62 73.66 71.47 59.83
100.00 82.38 82.88 82.36 76.60
100.00 98.56 99.48 92.64
100.00 99.18 88.17
100.00 92.13
100.00
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Table 4: Comparison of daily measures of idiosyncratic variance: The upper panel
of this table contains the annualized mean and standard deviation of the daily time series
for the CSV and the average idiosyncratic variance based on the Fama-French model as
in equations (4) and (11) using both weighting schemes. The lower panel presents the

cross-correlation matrix among these variables. The period is January 1964 to December
2006.

CSVEW FREW CSyewW  FRpew

Mean 0.384  0.383 0.085 0.078
Std.Dev.  0.021 0.019 0.005 0.004
Correlation CSVEW pFpEW  CSyew  ppcw
100.00  82.63 60.33 63.96

100.00  52.12 72.55

100.00  73.95

100.00

Table 5: Regime-Switching Parameters: This table contains the parameter estimates
of the Markov regime-switching model specified in equation 14 for the CSV and the average
idiosyncratic variance based on the FF model as in equations (4) and (11) using both, equal-
weighted and cap-weighted schemes. The upper panel corresponds to monthly estimates and
the lower panel to daily estimates. p; is the average level of the variable on regime ¢, o; is
the standard deviation level of the variable on regime i, ¢ is the autocorrelation coefficient,
p and q are the probabilities of remaining in regimes 1 and 2 correspondingly. The period
is January 1964 to December 2006.
Monthly series CSVEW FpEW  COSyewW  ppew

i 0.401 0.363 0.107 0.115
fho 0.299 0.275 0.065 0.061
o1 0.067 0.062 0.029 0.021
02 0.010 0.009 0.004 0.003
) 0.980 0.981 0.839 0.839
p 0.839 0.823 0.857 0.906
q 0.963 0.951 0.980 0.990

Daily series CSVEW  pFpEW  COSyew  ppew
0.446 0.261 0.110 0.048
0.304 0.262 0.064 0.048
0.036 2.04e-04 0.009 4.89e-05
0.003 0.002 0.001 3.60e-04
0.965 1.000 0.825 1.004
0.695 0.962 0.778 0.870
0.956 0.838 0.970 0.809

oo e S9TE
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Table 6: Correlations between the monthly series of several measures of cross-
sectional variance and economic variables. The sample period is January 1990 to

December 2006.

CSVEW CcsyeW  COSyEWE  COSyEW-

Consumption-Vol  0.401 0.241 0.184 0.346
Credit-Spread 0.177 0.268 0.098 0.165
Term-Spread -0.086 -0.135 -0.107 -0.219
Inflation-Vol -0.367 0.019 -0.137 -0.097

T-bill Rate 0.302 -0.043 0.091 0.164
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Table 8: Daily predictability Regression on CRSP broad market portfolio with
average idiosyncratic variance measures: The upper panel presents the results of a one-
day ahead predictive regression of the excess equal-weighted daily portfolio returns, denoted
by rPW, on the daily lagged equal-weighted cross-sectional variance denoted as C'SVEW
estimated as in equation (4) for three sample periods. The lower panel presents the results
of the predictive regression on the cap-weighted market portfolio using the cap-weighted
CSV. The intercept, the regression coefficient corresponding to the CSV, the standard error
of the regression coefficients denoted by std, the Newey-West corrected t-stats (30 lags) and

the adjusted coefficient of determination denoted by R are reported. The sample periods
are 1963:07 to 1999:12, 1963:07 to 2001:12 and 1963:07 to 2006:12.

Daily series 63:07-99:12  63:07-01:12  63:07-06:12

Forecasting " CSVEW CSVEW CSVEW
Intercept -1.58e-04 -1.40e-04 -1.29e-05
NW t-stat -0.785 -0.714 -0.071

Std 1.09e-04 1.10e-04 1.04e-04
Coefficient 0.544 0.483 0.411
NW t-stat 4.711 4.515 4.000

Std 0.060 0.055 0.051

R (%) 0.883 0.788 0.573

Forecasting r¢" csvew cSyew cSsyew

Intercept -0.001 -1.88e-04 -1.65e-04
NW t-stat -3.521 -0.791 -0.737

Std 1.41e-04 1.23e-04 1.19e-04
Coefficient 3.404 1.189 1.151
NW t-stat 5.919 1.948 1.966

Std 0.385 0.251 0.248

R (%) 0.831 0.220 0.186
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Table 13: Predictability Regression on CRSP broad market index with right and
left CSV measures: The upper panel presents the results of a one-day, one-month, one
quarter and one year ahead predictive regressions of the excess equal-weighted portfolio
returns, denoted by rZ% on the daily or monthly (correspondingly) lagged equal-weighted
cross-sectional variance of the returns to the right (higher than) of the cross-sectional dis-
tribution mean (which is actually rZ") denoted as CSV* and the cross-sectional variance
of the returns to the left (lower than) the mean of the cross-sectional distribution rZ",
denoted as C'SV~. The lower panel presents the results of the predictive regressions on
the cap-weighted market index using the cap-weighted CSV measures as predictors. The
intercept, the regression coefficients corresponding to the CSV*' and C'SV~, the standard
error of the regression coefficients denoted by Std, the Newey-West corrected t-stats and
the adjusted coefficient of determination denoted by R are reported. The sample period is

1963:07 to 2006:12.
Forecasting r*"  Daily®"  Monthly®" Quarterly™ Annual®"

Intercept 0.001 0.003 0.014 0.050
NW t-stat 3.944 0.727 0.822 1.069
Std 1.10e-04 0.004 0.017 0.076
CcSvV+* 0.488 0.375 -0.042 -0.288
NW t-stat 3.360 2.400 -0.282 -0.845
Std 0.038 0.161 0.190 0.403
CcSsvV— -1.200 -0.486 0.824 1.701
NW t-stat -3.551 -1.129 0.842 1.346
Std 0.142 0.432 0.902 1.610
R (%) 1.552 1.114 -0.595 -1.862
Forecasting r“"  Daily®V  Monthly®Y Quarterly®"  Annual®V
Intercept -1.12e-04 0.008 0.020 0.107
NW t-stat -0.588 2.753 2.656 2.147
Std 1.16e-04 0.003 0.010 0.043
csSv+ 4.942 0.071 -0.163 -2.354
NW t-stat 3.546 0.054 -0.254 -1.669
Std 0.528 1.983 0.914 1.824
CcSvV- -2.842 -1.302 -0.870 1.227
NW t-stat -2.736 -0.879 -0.672 0.869
Std 0.669 2.233 1.477 2.527
R (%) 0.785 -0.069 -0.849 1.215
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Table 14: Daily and Monthly predictability with skewness for r“": This table
presents the results of one-day and one-month ahead predictive regressions of the excess
equal-weighted daily portfolio returns, denoted by r®". The first explanatory variable is
lagged estimate of the equal-weighted CSV estimated as in equation (4); The second ex-
planatory variable is the robust estimate of skewness estimated as in equations (20). The
intercept, the corresponding regression coefficients together with their Newey-West auto-
correlation corrected t-stats (with 30 lags for daily and 12 lags for monthly) and standard

errors are reported. R denotes adjusted coefficient of determination. The regression is
reported for the main sample period from 1963:07 to 2006:12.
Daily horizon  Coeff.  t-stat Std.Dev. R (%)

Intercept -3.7e-005 -0.234 0.000 5.833
CSVEW 0.402 4.013 0.053
Skewness 0.004 20.190 0.000

Monthly horizon Coeff. t-stat Std.Dev. Ez(%)

Intercept 0.000 0.107 0.004 4.587
CSVEW 0.250 2.518 0.102
Skewness 0.078 4.458 0.017
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Table 15: Quintiles premium. The upper panel present the results for equal-weighted quin-
tile portfolios and the lower panel on cap-weighted quintile portfolios. The first column
presents the (arithmetic) average return annualized on quintiles formed at the end of every
month on CSVEW’s coefficient estimated with one month of daily returns. The second
column presents the average return difference of the first quintile with every other quin-
tile. The third column presents the p-value of the test of the difference to be significantly
positive. The sample period is July 1963 to December 2006.
EW Quintiles Quintile Return Q1 — Q;  p-value(%)

Q1 0.390 0.00e4-00
Q2 0.083 0.307 0.00e4-00
Q3 0.044 0.346 0.00e+00
Q4 0.050 0.340 0.00e4-00
Qs 0.237 0.154 0.130
CW Quintiles Quintile Return Q1 — Q;  p-value(%)
Q1 0.383 0.00e+-00
Q2 0.087 0.296 0.00e4-00
Qs 0.036 0.347 0.00e+-00
Q4 0.047 0.335 0.00e4-00
Qs 0.247 0.136 0.725
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Table 16: This table displays the average values, standard errors and Newey-West corrected
t-stats for the coefficients in the Fama-MacBeth regression run every month in the sample,
using the 3 Fama-French factors and CSVEW on 100 and 25 size/book2market Fama-
French equally-weighted (first two panels) and cap-weighted (last two panels) portfolios. It
also displays the average R? across subsamples of Fama-MacBeth regressions. The sample

period is July 1963 to December 2006.

100-EW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0.223  -0.067 0.029 0.048  0.005  24.657
SE 0.024 0.016 0.012 0.012  0.002
tstat 9.222 4173 2.320 3.916  2.847

25-EW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0278  -0.133 0.042 0.064 0.009  51.962
SE 0.028 0.021  0.017 0.016  0.003
tstat 9.969  -6.447 2480 3.927  2.703

100-CW Portfolios Intercept XMKT SMB HML CSVEW  R2(%)
v 0.155 -0.007 0.004 0.037  0.003  24.262
SE 0.023 0.017 0.012 0.013  0.002
tstat 6.896  -0.421 0.323 2.762  1.909

25-CW Portfolios Intercept XMKT SMB HML CSV®Y  R2(%)
v 0.175  -0.034 0.010 0.048 0.004  50.815
SE 0.024 0.021 0.016 0.016  0.003
tstat 7.417  -1.624 0.625 2910  1.395
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Figure 1: Cap-weighted idiosyncratic variances, daily estimation: The white line is the time
series of the cap-weighted idiosyncratic variance with respect to the FF model estimated
daily as in equation 11. The darker line shows the time series of the cap-weighted version
of CSV estimated daily as in equation 5. The sample period is January 1964 to December
2006.
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Figure 2: Equally-weighted idiosyncratic variances, daily estimation: The white line is the
time series of the equal-weighted average idiosyncratic variance with respect to the FF
model estimated daily similar to equation 11. The darker line shows the time series of the
CSVEW estimated daily as in equation 4. The sample period is January 1964 to December
2006.
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Figure 3: Filtered probabilities and cap-weighted C'SV, monthly estimation: The red line
plots the filtered probability of the C.SVEW being in the high-mean high-variance regime of
a Markov regime-switching model specified in equation 14. The blue line shows the monthly
time series of the C'SVEW estimated at the end of each month as the average of the daily
estimations (as in equation 4) during the month. The shaded areas are the NBER recessions.
The sample period is July 1963 to December 2006.
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Figure 4: Filtered probabilities and equal-weighted C'SV monthly estimation: The red line
plots the filtered probability of the C'SVEW being in the high-mean high-variance regime of
a Markov regime-switching model specified in equation 14. The blue line shows the monthly
time series of the C'SVFW estimated at the end of each month as the average of the daily
estimations (as in equation 4) during the month. The shaded areas are the NBER recessions.
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Figure 5: Monthly time series of CSVEW on the right-hand axis and Consumption Volatility
on the left-hand axis. The sample period is January 1990 to December 2006.

56



T
Inflation-Vol

Inflation-Vol
CSsv

0.04

1k 0.02

| | | | | | |
1990 1993 1995 1998 2001 2004 2006

Figure 6: Monthly time series of C'SV*W on the right-hand axis and Inflation Volatility on
the left-hand axis. The sample period is January 1990 to December 2006.
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