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Abstract

Despite strong evidence of correlations between financial and medical statuses and

decisions, most of the existing models treat financial and health-related choices

separately. This paper bridges this gap by proposing a tractable dynamic framework

for the joint determination of optimal consumption, portfolio holdings, medical

expenditures and health insurance. We solve for the optimal rules in closed form

and capitalize on this tractability to gain a better understanding of the conditions

under which separation between financial and health-related decisions is sensible,

and of the pathways through which wealth and health determine allocations, welfare

and other variables of interest such as expected longevity or the value of health.

Furthermore we show that the model is consistent with the observed patterns of

individual allocations and provide realistic estimate of the parameters that confirm

the relevance of all the main characteristics of the model.

Keywords: Consumption, Health Expenditures and Insurance, Mortality and

Morbidity Risks, Portfolio, Values of Life and of Health.

JEL Classification. G11, I12.

∗We thank Antoine Bommier, Peter Bossaerts, Bernard Dumas, Darrell Duffie, Pierre-Thomas Léger,
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1 Introduction

A vast literature on the socioeconomic and health nexus shows that how wealthy and

healthy we are has a strong impact on both our financial and health-related decisions.1

In particular, this literature reveals that health is positively correlated with income,

consumption and risky asset holdings, and negatively correlated with health expenditures,

whereas it has a mixed effect on insurance coverage. On the other hand, an agent’s wealth

correlates positively will all these choice variables.

Taken together these stylized facts strongly suggest that any theoretical analysis of

financial and health related allocations should be undertaken as that of a joint decision

problem. Yet, aside from rare exceptions, the two are almost always analyzed separately.

At the risk of over-simplifying, health models abstract from financial investment choices

whereas health-related considerations are usually absent from financial models. This

segmentation might not be so problematic if it could be shown that the two types of

decisions are indeed separable. Unfortunately, in the absence of encompassing models,

separation cannot even be verified and, thus, should not be taken for granted. Otherwise,

segmented models can only provide a partial understanding of the intricate pathways

through which wealth and health determine allocations and welfare.

This paper bridges this gap by proposing a tractable dynamic model for the joint

determination of consumption, portfolio, health investment and insurance coverage. Our

modeling strategy innovates by combining two well-accepted, but otherwise segmented,

frameworks from the Financial and Health Economics literatures within a unified setup.

More precisely, we start from a standard Merton (1971) portfolio and consumption choice

problem with IID returns and append to this model an insurance choice model, as well as

a costly health investment decision à la Grossman (1972) in which better health improves

labor income as well as reduces the agent’s morbidity and mortality risks through a

decrease in the arrival rates of the corresponding shocks.

We solve the model analytically and show that it can generate patterns of con-

sumption, portfolio, health expenditures and insurance coverage that are consistent with

those observed empirically. In addition, our analytic solution allows us to determine the

conditions under which it is sensible to separate financial from health related decisions,

1See Smith (1999, 2007, 2009) for an enlightening survey and recent evidence. See also Section 4.2
for cross-sectional evidence from PSID data.
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and also provides a natural way of estimating the model. Capitalizing on this feature

we estimate the key parameters of the model using cross-sectional data from the Panel

Study of Income Dynamics (PSID) and find that our predicted rules are able to fit

the data with reasonable parameter values that confirm the relevance of all the model’s

main characteristics. Importantly, these estimates also indicate that the conditions for

separation are not met and therefore justify the need for a joint dynamic analysis of

financial and health-related decisions.

As is well-known (e.g. Shepard and Zeckhauser, 1984; Rosen, 1988; Bommier and

Rochet, 2006; Bommier, 2010, among others), the specification of preferences is delicate

in an endogenous mortality setting such as ours. In the standard time-additive framework

of Yaari (1965) and Hakansson (1969) utility is computed as a sum of discounted period

utilities up to the random time of death. This associates death with a utility level of

zero and, therefore, entails a counterintuitive preference for death over life when the

period utility is negative.2 Our approach to this problem innovates by resorting to a

class of recursive preferences that measure utility and consumption in the same metric

(Epstein and Zin, 1989; Duffie and Epstein, 1992b). With such preferences death is

associated with a consumption level of zero whereas life corresponds to strictly positive

consumption and, since preferences are monotonic, it follows that life is always preferred

to death, regardless of parameter values. Another distinctive feature of our preference

specification is that it assigns distinct risk aversion parameters to each of the three types

of risk (financial, morbidity and mortality) present in the model.3 This feature is referred

to as source-dependent risk aversion (Skiadas, 2007, 2009) and our paper constitutes the

first application of such preferences to the study of individual consumption, portfolio and

health-related choices in a dynamic setting.

In our model, health is subject to diminishing returns to scale and enters the agent’s

decision problem through two channels. The first channel is referred to as the budget

2This is in particular the case for power utility functions with relative risk aversion larger than 1,
as is often found in the finance literature, and for negative exponential utility functions. To avoid this
outcome, existing solutions include adding a sufficiently large positive constant to utility (see Rosen,
1988; Becker et al., 2005; Hall and Jones, 2007, among others) or simply restricting the relative risk
aversion of the power utility function to be smaller than one (Shepard and Zeckhauser, 1984). Another
possible solution is to equate death with full depreciation of the health stock and impose Inada conditions
on the flow utility of health (e.g., Yogo, 2009).

3A further benefit of recursive preferences is that it also disentangles sentiment towards risk from
attitudes towards time. This appears particularly relevant in a context where longevity risk can be
controlled. Indeed, the elasticity of intertemporal substitution is shown to be a strong determinant of
the responses of welfare and consumption to mortality risk.
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constraint channel and captures the fact that better health increases labor income, e.g.

through less frequent sick leaves and/or better access to promotions for more assiduous

workers. This explicit modeling of the health dependence of income departs from standard

approaches in which it is assumed that agents get direct utility from being healthy.4

The second channel is referred to as the risk channel and captures the fact that better

health lowers morbidity and mortality risks by reducing the arrival intensities of the

corresponding discrete shocks. In this dimension our model is more general than other

health risks models that typically consider a single endogenous risk.5 To gain some

intuition about the respective impact of these two channels, we start by abstracting from

the second by considering a model in which health risks are exogenous.

In this restricted version of the model, the arrival rates of mortality and morbidity

shocks are independent from the agent’s health and this feature allows us to derive closed

form solutions for the optimal rules. These closed form solutions in turn permit an

intuitive interpretation of the underlying economic mechanisms, and show that separating

financial and health-related decisions is sensible under exogenous health risks. More

precisely, our results show that the agent’s problem can be split into two parts: First, solve

for the optimal health expenditures by maximizing the present value of the agent’s income

net of health investments to determine the agent’s human capital. Second, compute the

optimal consumption, portfolio and insurance coverage to maximize the agent’s utility

given that his total wealth is equal to the sum of his financial wealth and human capital.

The model with exogenous health mortality and morbidity risks is very tractable

and captures some of the determinants of the agent’s decisions but, unfortunately, it

also displays some important shortcomings when confronted to the data. In particular,

it counter-factually entails that both health expenditures and insurance coverage are

wealth-independent as well as increasing in health, and that health and wealth are perfect

substitutes, contrary to recent evidence suggesting that the marginal utility of wealth

increases with health (e.g., Finkelstein et al., 2008, 2009, among others). Motivated by

theses shortcomings we then turn to an unrestricted version of the model in which the

agent’s health influences his decisions through both the budget constraint channel and

the risk channel.

4See for example Grossman (1972); Hall and Jones (2007); Edwards (2008) and Yogo (2008)
5See Hall and Jones (2007); Chang (2005) for models with endogenous mortality but exogenous

morbidity, and Picone et al. (1998); Edwards (2008) and Laporte and Ferguson (2007) among others for
models with endogenous morbidity but exogenous mortality.
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Allowing for health-dependent arrival rates of mortality and morbidity shocks endo-

genizes the agent’s health risks, and implies that the model can no longer be solved in

closed form. To circumvent this difficulty, we resort to a perturbation analysis that uses

the explicit solution of the restricted model as the starting point of a first order expansion

with respect to the parameters that govern the health dependence of the intensities

associated with mortality and morbidity shocks. This approach delivers an explicit

solution for the approximate optimal rules and thereby allows for a clear interpretation

of the marginal impact of endogenous morbidity and mortality risks on the agent’s

decisions. In particular, separating financial and health-related decisions is optimal as

long as mortality remains exogenous, but not otherwise. Furthermore, we show that the

unrestricted model fixes the shortcomings of the model with exogenous health risks and

can potentially explain the cross-sectional patterns found in the data.

To verify whether this is the case we estimate the quadrivariate system of optimal rules

derived from the theoretical model to identify a set of key parameters. The estimation

results, obtained using a sample of individuals drawn from PSID, attest that the model

with endogenous health risks offers a good in-sample fit of the observed allocations with

realistic parameter values and allow us to confirm the relevance of the main characteristics

of the model. In particular, our parameter estimates clearly show that agents’ preferences

are non time additive and display source dependent risk aversion. To investigate the out-

of-sample performance of the model we derive explicit expressions for life expectancy, as

well as the values of health and life, and then use the estimated parameters to compute

the prediction of the models regarding these quantities. The corresponding results are

realistic and compare favorably with received estimates in the literature. In particular,

we find that at the estimated parameters the model matches almost exactly the life

expectancy of an average agent. Overall, both in- and out-of-sample results convey

a similar message: Whereas a non-negligible part of morbidity and mortality risks is

attributable to endowed factors, agents can (and do) adjust both health-related risks

through health investments. However, our estimates confirm that these adjustments are

constrained by powerful convexities.

The three papers that are most closely related to our work are those of Edwards (2008),

Yogo (2009) and Hall and Jones (2007). Edwards (2008) studies financial decisions in

the presence of health risks, but he completely abstracts from health-dependent income
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and endogenous health risks. Moreover, his distributional assumptions on health are

quite different from ours since in his model sickness is uninsurable and requires constant

expenditures once incurred. Yogo (2009) is closer to us in that he also considers the

portfolio implications of a model where health investments are subject to diminishing

returns to scale. However, his focus on housing and the welfare gains of actuarially

fair annuities is quite different. Moreover, he models health as generating direct utility

flows instead of our health-dependent labor income approach. Similar to us Hall and

Jones (2007) also consider an endogenous mortality model with costly health investment

and positive service flows of health. However, they do not consider portfolio allocations

and their focus on the time series of aggregate health spending and longevity is very

different from ours. Importantly, these papers provide neither joint analytical solutions for

consumption, portfolio, health expenditures and insurance in the presence of endogenous

health risks, nor a structural estimation of these allocations.

The rest of this paper is organized as follows. We introduce the theoretical model in

Section 2. The solution to the model is discussed in Section 3. We present the empirical

evaluation of the model in Section 4, and provide concluding remarks in Section 5. The

proofs of all results are gathered in Appendix A. Appendix B outlines a general version of

the model where all coefficients can depend on the agent’s age, and Appendix C presents

an overview of the cross-sectional PSID data that we use in our estimation.

2 The model

This section describes an economic environment in which the agent has preferences

over lifetime consumption plans in the presence of partially controllable mortality and

morbidity risks.

2.1 Survival and health dynamics

Let Tm denote the random duration of the agent’s lifetime or, equivalently the agent’s

age at death, and Ht represent his health status at age t. Following Ehrlich (2000);

Ehrlich and Yin (2005) and Hall and Jones (2007), we model the agent’s mortality as the

first jump of a Poisson process Qm whose intensity depends on the agent’s health status.
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Specifically, the agent’s death intensity is defined to be

λm(Ht−) = lim
τ→0

1

τ
Pt [t < Tm ≤ t+ τ ] = λm0 + λm1H

−ξm
t− (1)

for some nonnegative constants λm0, λm1 and ξm ≥ 1 where Pt(·) is a conditional

probability and Ht− = lims↑tHs. The fact that the intensity function is decreasing in

health ensures that the survival probability:

Pt[Tm > t+ s] = 1{Tm>t}Et

[
e−

∫ t+s
t λm(Hτ−)dτ

]
(2)

is monotone increasing in the agent’s health status up to an exogenous ceiling that is

determined by the constant λm0 > 0. Intuitively, an agent may increase his survival

probability by investing in his health and still die from an exogenous shock that does

not depend on controllable health (e.g., an accident or certain types of cancer). Alterna-

tively, this incompressible part of the intensity can be interpreted as an endowed death

probability that is determined by environmental and/or biological factors.

The specification of the survival probability in (2) differs from those proposed in

the literature along three important dimensions. First, the incompressible part of the

death intensity is made constant rather than age-varying for tractability reasons (see

however Remark 1 below for time-varying extensions). Second, the endogenous part of

the death intensity is a function of the agent’s current health status rather than of his

current health investment. This assumption implies that the agent cannot freely alter

his survival probability by investing large amounts in times of sickness and, thus, reflects

the path dependence of health-related decisions. Third, the death intensity in (1) is a

function of a stochastic rather than a deterministic health process.

To describe the dynamics of the agent’s health status, let Qs denote a Poisson process

whose jumps capture shocks to the agent’s health, and I be a nonnegative predictable

process that represents the agent’s health investment.6 We assume that the agent’s health

6The constraint that health investment cannot be negative is standard in the health economics
literature. See for example Grossman (1972); Ehrlich and Chuma (1990); Chang (1996); Picone et
al. (1998); Ehrlich (2000); Edwards (2008); Hall and Jones (2007). It reflects the irreversibility of health
related expenditures and the fact that health is not a traded asset.
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status evolves according to

dHt = ((It/Ht−)α − δ)Ht−dt− φHt−dQst, H0 > 0, (3)

for some constants δ ≥ 0, and α, φ ∈ (0, 1) that represent the decay rate of health in the

absence of shocks, the degree of health adjustment costs and the fraction of health that is

lost upon suffering a shock. The above dynamics imply that the expected instantaneous

growth rate of health

Et− [dHt/Ht−] = ((It/Ht−)α − δ − φλs(Ht−)) dt (4)

is concave in the investment-to-health ratio. This implies that a given amount of health

investment has a larger impact on the agent’s health when he is currently unhealthy and

thus models decreasing returns to health investment.7

To capture the fact that morbidity shocks are less likely for healthier agents we assume

that the intensity with which these shocks occur is decreasing in the agent’s health status

and given by

λs(Ht−) = η +
λs0 − η

1 + λs1H
−ξs
t−

(5)

for some nonnegative constants such that λs0 ≤ η and ξs ≥ 1. Similar to (1) this

functional form implies that while the agent can lower the likelihood of health shocks by

investing in his health, he cannot reduce it further than

λs0 = lim
H→∞

λs(H)

which can be interpreted as an endowed probability of health shocks. Note that the

intensities of mortality and morbidity shocks imply very different risk characteristics as

the agent’s health deteriorates. In particular, and as illustrated by Figure 1, the agent’s

death intensity diverges to infinity, thus leading to certain death, as his health decreases

7Similar decreasing returns to health investments can be found in Ehrlich and Chuma (1990) and
Ehrlich (2000); Ehrlich and Yin (2005). An equivalent interpretation of (3) is that the agent is endowed
with a health production function that is linear in gross health investment Ig = IαH1−α but faces convex
adjustment costs that are given by I = H1−bIbg with b = 1/α > 1.
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Figure 1: Intensities of mortality and morbidity shocks
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Notes: Instantaneous intensities of mortality shocks (solid) and morbidity shocks (dashed) as

functions of the agent’s health status.

to zero whereas the intensity of morbidity shocks remains bounded and reaches a finite

maximal value given by η = λs(0).

2.2 Income, traded assets and budget constraint

We assume that the agent’s flow rate of labor income is given by an increasing function

of his current health status:

Yt = Y (Ht−) = y0 + βHt−

for some constants y0, β ≥ 0. A natural interpretation of this specification is that

employers offer higher wages to agents who are in better health and thus less subject

to be absent from work. Equivalently, a healthier agent misses less workdays and hence

receives higher labor income.8

8Since the benchmark model does not allow for age-dependent parameters (see however Remark 1
below) our income specification implies that the agent’s income depends on his health status even at old
age. This feature of the model is consistent with the findings of French (2005) that many elders find it
profitable to continue working after retirement.
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The financial market is frictionless and consists in two continuously traded securities:

a riskless bond and a risky stock. The price of the bond is ert for some constant rate of

interest r > 0 and the price of the stock evolves according to

dSt = µStdt+ σSStdZt, S0 > 0,

for some constant growth rate µ ≥ r and constant volatility σS > 0 where the process Z

is a standard Brownian motion.

In addition to the bond and the stock, we assume that the agent can invest in an

instantaneous health insurance contract. Specifically, at every point in time the agent

may purchase an actuarially fair contract that pays one unit of consumption if a health

shock occurs at the next instant and zero otherwise. The net pay-off of such a contract

to the agent is thus given by

xtdMst = xtdQst − xtλs(Ht−)dt

where the predictable process xt represents the chosen amount of coverage chosen, xtdQst

is the amount paid by the insurer in case of a shock, and xtλs(Ht−)dt represents the in-

stantaneous insurance premium paid by the agent. Since the agent should not be allowed

sell insurance contracts on his own health, the amount of coverage xt is constrained to

be nonnegative at all times.

Assume that the agent has some initial financial wealth W0, and let the predictable

processes c ≥ 0 and π ∈ R represent the amount he consumes and the amount he invests

in the stock. Under the usual self-financing requirement, the agent’s financial wealth then

evolves according to

dWt = (rWt− + βHt− − ct − It) dt+ πtσS (dZt + θdt) + xtdMst (6)

where the constant θ = (µ − r)/σS ≥ 0 is the market price of financial risk. This

budget constraint reveals two additional channels through which the agent’s health status

influences his decisions: An unhealthy individual faces not only a lower labor income but

also a higher health insurance premium because of the higher probability of health shock
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occurrence. Both of these channels concur to reduce resources available for consumption,

health expenditures and financial investments.

Remark 1 (Age dependent parameters) The model presented above assumes that

all the agent-specific parameters are constant. This assumption is imposed in order to

facilitate the exposition and interpretation of our results but can be relaxed at the cost

of more involved notation. We present in Appendix B a general version of the model

in which the intensity of shocks λm0, λm1, λs1, λs0 , η, the depreciation rate of health δ,

the fraction of health φ that is lost upon experiencing a health shock, and the health

sensitivity β of labor income are allowed to vary with the agent’s age.

2.3 Preferences

Starting with the seminal contributions of Yaari (1965) and Hakansson (1969), the

standard way of specifying preferences in the presence of mortality risk has been to

define the utility to an agent of age t of a consumption plan c as

Ut = 1{Tm>t}Et

∫ Tm

t

e−ρ(s−t)u(cs)ds (7)

for some nonnegative subjective rate of time preference ρ and some concave period utility

function u satisfying the usual regularity conditions.9

As pointed out by Shepard and Zeckhauser (1984) and Rosen (1988), the level of the

period utility has important implications in such a specification since adding a constant

to u changes the value that the agent places on longevity relative to consumption. Put

differently, in the presence of an uncertain and endogenous horizon, preferences are not

invariant to affine transformations as they are in the standard setting where the horizon

is non random and exogenous. This undesirable feature is due to the fact that (7)

attributes utility zero to death and, hence, implies that the utility of any consumption

schedule must be compared to zero to determine whether the agent is better off living or

dying. In particular, if the period utility is of the iso-elastic type:

u(c;ϑ) = c1−ϑ/(1− ϑ); c ≥ 0 (8)

9See for example Richard (1975); Shepard and Zeckhauser (1984); Rosen (1988); Ehrlich and Chuma
(1990); Ehrlich (2000); Becker et al. (2005); Edwards (2008); Hall and Jones (2007) and Yogo (2009).
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for some nonnegative constant ϑ 6= 1 then the agent’s preferences towards mortality

depend on whether the risk aversion parameter ϑ is smaller or larger than unity. In the

former, the utility of any consumption schedule is positive and it follows that the agent

prefers life to death. On the contrary, if ϑ > 1, as is often found in empirical studies, then

the utility of any consumption schedule is negative and the agent thus counterintuitively

prefers death to life irrespective of his current consumption level.10

In addition to this non-invariance, the time additive specification in (7) suffers from

two other important limitations. First, by summing up the utility of period consumption

up to the time of death, the time additive specification counter-intuitively assumes that

the agent is risk neutral towards mortality risk (see Bommier (2006)). Second, this

specification supposes that the agent’s risk preferences are entirely summarized by the

period utility function u and thus does not allow for different attitudes towards different

sources of risk. This last restriction is particularly important in the context of our model

because there is no ex-ante reason to believe that agents should be equally averse to

mortality, morbidity, and financial risks.

Motivated by the above discussion, and in particular by the fact that (7) cannot

reconcile an empirically plausible level of risk aversion with a sensible behavior towards

longevity risk, we will forgo the time additive specification and assume instead that

the agent has recursive preferences of the type proposed by Kreps and Porteus (1979);

Epstein and Zin (1989); Weil (1989) and Duffie and Epstein (1992b). As we show below,

an appropriate generalization of these preferences allows to remedy the above deficiencies

of the time additive specification while maintaining a tractable setup.

Let Ut = Ut(c) be the continuation utility to an agent of age t of a consumption

schedule c, denote the instantaneous volatility of this process by

σt =
1

dt
d〈U,Z〉t

10A similar problem arises for the negative exponential utility given by u(c) = − exp(−ac) for some
a > 0. To ensure sensible results, many authors consider nonnegative period utility functions for which
life is always preferred. Following this approach, Rosen (1988); Becker et al. (2005) and Hall and Jones
(2007) use a utility of the form v(c) = u(c) + b where b is chosen in such a way as to guarantee that v is
nonnegative. Unfortunately, such a constant exists only if u is bounded from below and it follows that
this approach cannot be used to accommodate the case where u is given by (8) for some ϑ > 1.
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and let

∆kUt = 1{dQkt 6=0}(Ut − Ut−)

represent the predictable jump in the agent’s continuation utility that is triggered by

a jump in either the mortality process (k = m), or the health shock process (k = s).

Generalizing the continuous-time recursive preference specification of Duffie and Epstein

(1992b) we assume that the continuation utility process, its volatility and its jumps satisfy

the recursive integral equation

Ut = 1{Tm>t}Et

∫ Tm

t

(
f(cτ , Uτ−)− γ|στ |2

2Uτ−
−

s∑
k=m

Fk(Uτ−, Hτ−,∆kUτ )

)
dτ (9)

where the constant γ > 0 measures the agent’s local risk aversion over static financial

gambles; the function

f(c, v) =
ρv

1− 1/ε

(
((c− a)/v)1− 1

ε − 1
)

is the standard Kreps-Porteus aggregator with elasticity of intertemporal substitution

ε > 0, subjective rate of time preference ρ > 0 and subsistence consumption level a ≥ 0;

and we have set

Fk(v, h,∆) = vλk(h)

[
∆

v
+ u(1; γk)− u

(
1 +

∆

v
; γk

)]
,

where u(x; γk) is the constant relative risk aversion utility function of equation (8) with

curvature indices 0 ≤ γm < 1 and γs ≥ 0.

The first two terms inside the integral on the right hand side of (9) correspond to

standard Kreps-Porteus preferences in a Brownian setting and encode, respectively, the

agent’s substitution behavior and his risk aversion towards the Brownian motion driving

financial market returns. By contrast, the last two terms are associated with mortality

(k = m) and morbidity shocks (k = s) and penalize the agent’s utility for exposure of

these sources of risks due to the fact that Fk is nonnegative. In particular, since (9) does

not include bequests11 the continuation utility vanishes at death, and it follows that the

11This assumption is imposed for tractability and can be justified by noting that while bequest motives
are potentially relevant in an endogenous mortality setting, panel data evidence suggests that their role in
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penalization for mortality risk satisfies

Φm =
Fm(Uτ−, Hτ−,∆mUτ )

λm(Hτ−)Uτ−
= u(1; γm)− lim

x→0
u(x; γm)− 1.

This expression reveals why the risk aversion parameter γm associated with mortality

risk must be strictly smaller than unity. Indeed, the penalization associated with death

would otherwise be infinite due to the fact that limx→0 u(x; γm) = −∞ for γm ≥ 1, and

the agent’s utility would therefore be undefined.

An important feature of our preference specification is that, since the risk aversion

parameters γ, γm and γs can be different, it not only disentangles the agent’s attitude

toward intertemporal substitution from his attitude towards risk but also allows to dis-

criminate among various sources of risk.12 This feature is referred to as source dependent

risk aversion (see e.g., Lazrak and Quenez, 2003; Skiadas, 2007, 2009) and our model

constitutes one of the first applications of such preferences to the study of portfolio,

consumption, and health-related choices.

A second essential property of our specification is that it guarantees unconditional

preference for life. Indeed, following Duffie and Epstein (1992b) it can be shown that

the homogeneity of the aggregator f and the penalty functions (Fm, Fs) implies that

continuation utility is homogenous of degree one so that utility and excess consumption

are is measured in the same units. In particular, the utility associated with a nonnegative

consumption schedule is nonnegative and, since death is by definition associated with zero

consumption in the absence of bequests, it follows that the agent sees his own mortality

as detrimental irrespective of whether his risk aversion towards financial risks (γ) and

morbidity risk (γs) are smaller or larger than unity.

2.4 The decision problem

The agent’s decision problem consists in choosing a portfolio, consumption, health insur-

ance and health investment strategy to maximize his lifetime utility. Accordingly, the

explaining the behavior of retired agents is debatable. In particular, Hurd (2002) finds no clear evidence
of a bequest motive behind savings decisions and Hurd (1987) finds no differences in the saving behavior
of the elderly who have children compared to those who don’t.

12Our specification is equivalent to the continuous-time Kreps-Porteus specification of Duffie and
Epstein (1992b) when γs = γm = γ and to time-additive iso-elastic utility when γs = γm = γ = 1/ε.
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agent’s indirect utility is defined by

V (Wt, Ht) = sup
(c,π,x,I)

Ut(c)

subject to the death intensity (1), the health process (3), the health shock intensity (5),

and the budget constraint (6), where Ut(c) is the continuation utility associated with the

lifetime consumption plan c through the recursive integral equation (9).

Since the uncertain duration of his lifetime cannot be hedged by trading in the

available assets, the agent faces incomplete markets. However, under the assumption

of Poisson mortality, his decision problem can be conveniently recast as an equivalent

infinite horizon problem with endogenous discounting and complete markets. Indeed,

using (2) and the law of iterated expectations, the continuation utility writes

Ut(c) = 1{Tm>t}Vt(c)

where the modified utility process Vt = Vt(c) solves

Vt = Et

∫ ∞
t

e−
∫ τ
t νm(Hv−)dv

(
f(cτ , Vτ−)− γ|στ |2

2Vτ−
− Fs(Vτ−, Hτ−,∆sVτ )

)
dτ. (10)

with

νm(H) = (1 + Φm)λm(H) =
λm(H)

1− γm
. (11)

This formulation of the agent’s objective brings to light the channels through which

health enters the decision problem. First, health can be interpreted as a durable good

that generates service flows through the income Y (H) net of insurance premium xλs(H).

Second, health determines the instantaneous probability of morbidity shocks and the

rate νm(H) at which the agent discounts future consumption and continuation utilities.

We show in the next sections how these two channels, that we refer to as the budget

constraint and the risk channel, interact to generate the optimal rules.

Remark 2 (Health-dependent preferences) Our formulation of the agent’s problem

closely parallels the widely used approach of specifying a health dependent utility and
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omitting health-dependent income.13 To see this, let c̄ = c − βH denote the agent’s

consumption in excess of his income, and rewrite the problem as

V (Wt, Ht) = sup
(c̄,π,x,I)

Ut(c̄+ βH),

subject to (1), (3), (5), and the modified budget constraint

dWt = (rWt− − c̄t − It) dt+ πtσ (dZt + θdt) + xtdMst.

Hence, abstracting from health-dependent income and solving the agent’s problem with

the non separable, health-dependent intertemporal aggregator

f̄(c,H, v) = f(c+ βH, v),

is equivalent to solving our formulation of the agent’s problem with health-independent

intertemporal aggregator and health-dependent income.

3 Optimal rules

This section derives the solution to our model. As explained above, the agent’s health

enters the problem through two channels: the risk channel and the budget constraint

channel. In order to gain intuition on the respective impact of these pathways, Section 3.1

starts by abstracting from the first channel to consider the budget constraint effects only.

Section 3.2 then turns to the more general case where the agent’s health influences both

his mortality and morbidity intensities in addition to his budget constraint.

3.1 Health independent mortality and morbidity

When λm1 = λs1 = 0 the mortality and morbidity intensities are constant and, as a

result, the agent’s objective function (10) is independent from his health. In conjunction

with market completeness, this implies that the problem is separable and can be solved

in two steps as in Bodie et al. (1992). First, the optimal health investment is computed

13Examples of studies that follow this approach include Grossman (1972), Ehrlich and Chuma (1990),
Picone et al. (1998), Ehrlich (2000), Edwards (2008), Hall and Jones (2007) and Yogo (2009).
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by maximizing the agent’s human wealth defined as the present value of his income net of

health investments. Second, the optimal portfolio, optimal health insurance and optimal

consumption schedule are obtained by solving the problem of an hypothetical agent who

has no income, but whose initial wealth is replaced by the total (i.e., financial plus human)

wealth of the original agent.

Since markets are complete, the present value of the health dependent part of the

agent’s income net of health investments can be computed as

P (Ht) = sup
I≥0

Et

∫ ∞
t

mt,τ (βHτ− − Iτ ) dτ

subject to the law of motion for health (3), where the nonnegative process

mt = exp

(
−rt− θZt −

θ2

2
t

)
(12)

is the stochastic discount factor induced by the prices of the bond, the stock and the

insurance contract, and we have set mt,τ = mτ/mt. The following proposition derives an

analytical solution to this first-step problem.

Proposition 1 Let λm1 = λs1 = 0, assume that

β < (r + δ + φλs0)
1
α (13)

and define

g(x) = β − (r + δ + φλs0)x− (1− 1/α) (αx)
1

1−α .

Then the present value of the agent’s income and the optimal health investment strategy

are explicitly given by

P0(H) = BH, (14)

I0t = (αP0H(Ht−))
1

1−αHt− = (αB)
1

1−αHt− = KP0(Ht−), (15)

where B is the unique nonnegative constant such that g(B) = 0 and g′(B) < 0.
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The restriction imposed by equation (13) is a transversality condition that limits the

health sensitivity of the agent’s income rate in order to guarantee that the present value

of his income is finite. The fact that this present value is linear in the agent’s health

status implies that the constant

B = P0(1) = P0H(1)

gives both the average and the marginal value of health and follows from the linearity of

income, the restriction to constant intensities, and the Cobb-Douglas specification of the

health adjustment technology.14

Having computed the present value of the agent’s income and the optimal health

investment strategy, we now turn to the determination of the optimal consumption,

portfolio and insurance strategy. Let

Nt = N0(Wt, Ht) = Wt + P0(Ht) +
y0 − a
r

(16)

denote the agent’s total (i.e., financial plus human) wealth net of minimal consumption

expenditures. Using the result of Proposition 1 together with the budget constraint (6)

and the definition of the constant B, it can be shown that the agent’s total wealth evolves

according to

dNt = (rNt− − ct)dt+ πtσS(dZt + θdt) + x̄tdMst (17)

where x̄t = xt − φP0(Ht−) and c̄t = ct − a represent the agent’s net exposure to health

shocks and his excess consumption. This implies that under exogenous mortality and

morbidity the indirect utility of an alive agent is given by

V0(Wt, Ht) = G(N0(Wt, Ht)) = sup
(c̄,π,x̄)

Vt(c) (18)

subject to the budget constraint for total wealth in equation (17). The solution to this

portfolio, insurance and consumption choice problem with recursive utility and source

dependent preferences can be obtained as a generalization of the results in Svensson

14See Uzawa (1969), Hayashi (1982) and Abel and Eberly (1994) for similar results in the investment
literature where this property is referred to as the equivalence between marginal and average q.
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(1989); Obstfeld (1994) and Smith (1996) among others. Using this solution to construct

the agent’s optimal rules delivers the following theorem.

Theorem 1 Let λm1 = λs1 = 0, assume that the transversality condition (13) as well as

A = ερ+ (1− ε)(r − νm0 + θ2/(2γ)) > max
(
0; r − νm0 + θ2/γ

)
(19)

hold true with νm0 = λm0/(1− γm) and define Θ = ρ(A/ρ)1/(1−ε) > 0. Then the indirect

utility function of an alive agent is

V0(W,H) = ΘN0(W,H), (20)

and generates the optimal consumption, portfolio, health insurance and health investment

strategies given by

c0t = a+ AN0(Wt−, Ht−), (21)

π0t = (θ/(γσS))N0(Wt−, Ht−), (22)

x0t = φP0(Ht−), (23)

and equation (15) where the agent’s human wealth P0(H) and total wealth N0(W,H) are

defined in equations (14) and (16).

As explained by Smith (1996) in a simpler context, the restriction imposed by (19)

serves two purposes. On the one hand, it guarantees that the marginal propensity to

consume A is strictly positive and, hence, that the optimal consumption plan is feasible.

On the other hand, it insures that the indirect utility coincides with the continuation

utility of the optimal consumption schedule as defined in (9) and, thus, constitutes a

transversality condition. The parametric form of the restriction is entirely standard (e.g.,

Svensson, 1989; Obstfeld, 1994; Smith, 1996), except for the presence of the constant

λm0/(1 − γm) > 0 that reflects the combined impact of mortality risk and the agent’s

aversion to that risk on the optimal consumption schedule.

Proposition 1 and Theorem 1 show that, due to the separation between health in-

vestment and the agent’s other decisions, exogenous morbidity and mortality have very

different effects on the optimal rules. Indeed, the morbidity parameters (φ, λs0) govern
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the marginal value of health and thereby determine the agent’s total wealth so that their

impact on the optimal rules must be analyzed through their effect on available resources.

By contrast, the mortality parameter λm0 does not affect the agent’s total wealth but

determines the sensitivity of the optimal rules to changes in the available resources.

To understand the effect of exogenous morbidity risk, consider the expected instan-

taneous growth rate of health (4). As shown by this equation, an increase in either the

health shock intensity λs0 or the fraction of health φ lost from such a shock is equivalent

to an increase in the rate δ + φλs0 at which the agent’s health status is expected to

depreciate in the absence of investment. Faster expected depreciation reduces the agent’s

human wealth by lowering the marginal value of health,15 and thus implies both lower

health investments and a lower amount of health insurance. In addition, a lower human

wealth leads to a lower total wealth and, thereby, triggers a decrease in the agent’s welfare,

consumption and risky portfolio since all are proportional to total wealth.

The human wealth (14) and health insurance (23) reveal that with exogenous mortality

and morbidity, it is always optimal for the agent to fully hedge health shocks. Indeed,

the dynamics of the health status and the expression for the optimal insurance coverage

imply that the net exposure to health shocks is:

∆sN0t = ∆sN0(Wt, Ht)

= 1{dQst 6=0}(N0(Wt− + x0t, Ht−(1− φ))−N0(Wt−, Ht−))

= 1{dQst 6=0}(x0t + ∆sP0(Ht−)) = 0,

so that the agent’s total wealth is insensitive to health shocks at the optimum. To

understand this result note that with exogenous mortality and morbidity the agent’s

only exposure to health shock risk comes from his income and observe that this risk does

carry a risk premium as the insurance contract is assumed to be actuarially fair. Since

the agent is risk averse he will not willingly expose himself to a risk for which he is not

remunerated, and it follows that he will choose his health insurance coverage in such a

way as to eliminate any exposure to that risk.

Turning to the impact of exogenous mortality risk, (19) and (21) reveal that an

increase in either the mortality risk parameter λm0 or the mortality risk aversion γm is

15See the appendix for a proof that the unique nonnegative constant B satisfying g(B) = 0 and
g′(B) < 0 decreases as the expected depreciation rate δ + φλs0 increases.
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equivalent to a decrease in the interest rate and thereby leads to two conflicting effects.

First, it implies that more resources are needed to fund a given level of future consumption

and thus encourages the agent to consume less today in order to maintain the same level

of future consumption. Second, it makes current consumption less costly relative to

future consumption and therefore leads to consume more today through a substitution

effect. When the agent’s elasticity of intertemporal substitution (EIS) ε is smaller than

unity, the first effect dominates and the agent reduces his consumption in response to an

increase in either mortality risk or his aversion to that risk. Conversely, when ε > 1 the

substitution effect dominates and the agent increases his consumption. Exact cancelation

of the two effects occurs when ε = 1 in which case mortality risk has no impact on the

optimal rules. By contrast, equation (20) and the definition of Θ imply that an increase

in either mortality risk or the agent’s aversion to that risk decreases the agent’s indirect

utility irrespective of his EIS. This result reflects the unconditional preference for life

implied by our preference specification and stands in stark contrast to the corresponding

result for time additive iso-elastic preferences where the impact of mortality on welfare

depends on whether risk aversion is greater or smaller than unity.

The expression for the optimal risky portfolio in (22) shows that the fraction of total

wealth invested in the risky stock depends neither on mortality risk nor on the agent’s

aversion to that risk, and only involves the market Sharpe ratio and the agent’s aversion

to financial risk. To understand this result observe that with exogenous mortality and

morbidity the agent’s investment opportunity set is constant, and recall from Richard

(1975) that in such a setting the optimal investment in risky assets is independent of

the distribution of the agent’s exogenous planning horizon. Consequently, the optimal

fraction of total wealth invested in the stock is given by the myopic demand θ/(γσS) and

decreases with the agent’s financial risk aversion but remains unaffected by changes in

either mortality risk or the agent’s aversion to that risk.

The optimal rules associated with exogenous mortality and morbidity capture some of

the determinants of the agent’s decisions but also display some significant shortcomings

when confronted to the data. In particular, recent evidence surveyed in Finkelstein et al.

(2008, 2009) indicates that the marginal utility of wealth is positively affected by health,

i.e. VWH > 0, but this property cannot obtain in the restricted version of model because,
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under exogenous mortality and morbidity, the marginal rate of substitution

VH(W,H)

VW (W,H)

∣∣∣∣
λm1=λs1=0

=
ΘP ′(H)

Θ
= B

is constant so that health and wealth are perfect substitutes. Similarly, there is ample

evidence to the facts that health investment and insurance are both increasing in wealth

and non-increasing in health (e.g Smith, 1999; Wu, 2003; Barros et al., 2008). But these

properties cannot be obtained within the restricted model as it predicts that the optimal

health investment and health insurance

I0t = (αB)
1

1−αHt−,

x0t = φP0(Ht−) = φBHt−

are independent of the agent’s wealth and increase with his health. To verify whether

these stylized facts can be compatible with a richer model we now relax the assumption

of exogenous shocks by considering the general case in which the intensity of mortality

and morbidity shocks is allowed to depend on the agent’s health status.

3.2 Health dependent mortality and morbidity

When λm1 and λs1 are non zero the arrival rates of shocks In this case, one can no

longer determine the optimal heath investment independently of the optimal portfolio,

consumption and insurance strategies since the objective function in (10) now depends on

the agent’s health status through both the endogenous discount rate νm, and the health

shock penalty function Fs.

Resorting instead to the Hamilton-Jacobi-Bellman (HJB) and assuming sufficient

smoothness, the agent’s indirect utility solves

0 = max
(c,π,x,I)

D(c,π,x,I)V (W,H) + f(c, V (W,H))− γ(πσSVW (W,H))2

2V (W,H)
(24)

− λs(H)V (W,H) (u(1; γs)− u (κ(x,W,H); γs))− νm(H)V (W,H)
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where the differential operator

D(c,π,x,I) = ((πσS)2/2)∂WW +H((I/H)α − δ)∂H

+ (rW + πσSθ − c+ y0 + βH − I − xλs(H))∂W

is the continuous part of the infinitesimal generator of the state variables under the

strategy (π, c, x, I), and

κ(x,W,H) =
V (W + x,H(1− φ))

V (W,H)

represents the relative jump in the agent’s indirect utility induced by the occurrence of

a health shock. Maximizing the right hand side of the HJB equation reveals that, given

the indirect utility function, the optimal consumption, portfolio and health investment

can be computed as

c∗ = a+ V (W,H)

(
ρ

VW (W,H)

)ε
, (25)

π∗ =
(θ/σS)V (W,H)VW (W,H)

γVW (W,H)2 − V (W,H)VWW (W,H)
, (26)

I∗ = H

(
αVH(W,H)

VW (W,H)

) 1
1−α

, (27)

whereas the optimal health insurance is implicitly defined by

VW (W,H)

VW (W + x∗, H(1− φ))
= κ(x∗,W,H)−γs . (28)

Substituting these first order conditions into the HJB equation and simplifying the result

produces a nonlinear partial differential equation for the indirect utility. Unfortunately,

no closed form solution to this equation can be obtained except for the case of exogenous

mortality and morbidity considered in Section 3.1. Nonetheless, and as we now explain,

one can use the solution to this special case together with an asymptotic expansion to

construct an approximate solution to the general case.
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Assume that λk1 = ελ̄k1 for some fixed constants λ̄m1, λ̄s1 ≥ 0 and let us expand the

indirect utility of an alive agent around ε = 0 as

V (W,H) ≈ Vn(W,H) = V0(W,H) +
n∑
k=1

εk

k!
V (k)(W,H)

where n is an integer that represents the order of the expansion, V0 is the indirect utility

for the case of exogenous mortality and morbidity and the derivative

V (k)(W,H) =
∂kV (W,H)

∂εk

∣∣∣∣
ε=0

,

represents the k-th order correction to the indirect utility induced by the presence of

health-dependent mortality and morbidity. Substituting this approximation into the HJB

equation and expanding the result in powers of ε gives a sequence of partial differential

equations that can be solved recursively starting from the known function V0. Once

the correction terms have been computed up to the desired order, one can obtain an

approximation of the optimal portfolio, consumption, health investment, and insurance

coverage by substituting the above expansion into the first-order conditions (26), (25)

(27) and (28) and again expanding the result in powers of ε.

In order to implement this solution method it is necessary to select the accuracy of

the approximation by fixing the number of terms n to include in the expansion. Since the

intensity parameters λm1, λs1 are expected to be small,16 we can be reasonably confident

that the expansion method already delivers good approximations of the indirect utility

and optimal rules at the first order (n = 1). While higher order approximations can also

be computed, we will restrict ourselves to this first order solution because it allows for

an intuitive analysis of the optimal rules.

Theorem 2 Let

χ(x) = 1− (1− φ)−x,

F (x) = x(αB)
α

1−α − xδ − λs0χ(−x),

16The estimated value of the parameters λm1 and λs1 obtained through a structural estimation of the
optimal rules predicted by the model are of the order of 10−3. See Section 4.1 for details.
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assume that the transversality conditions (13) and (19), as well as

min (νm0, r)− F (1− ξs) > 0, (29)

A−max
(
0, r − νm0 + θ2/γ

)
− F (−ξm) > 0, (30)

hold true, and define a pair of negative functions by setting

Ls(H) = λs1φ (η − λs0) (F (1− ξs)− r)−1H−ξs

Lm(H) = λm1 ((1− γm)(F (−ξm)− A))−1H−ξm

where the constants B, A and Θ are defined as in Proposition 1 and Theorem 1. Up to

a first order approximation the indirect utility of an alive agent is

V1(W,H) = V0(W,H) + ΘLm(H)N0(W,H) + ΘLs(H)P0(H) (31)

and generates the approximate optimal consumption, portfolio, health insurance and health

investment strategy given by

c1t = c0t + A(1− ε)Lm(Ht−)N0(Wt−, Ht−) + ALs(Ht−)P0(Ht−),

π1t = π0t + (θ/(γσS))Ls(Ht−)P0(Ht−), (32)

x1t = x0t + χ(ξm)(1− 1/γs)Lm(Ht−)N0(Wt−, Ht−) (33)

+ χ(ξs − 1)Ls(Ht−)P0(Ht−)

I1t = I0t − (ξmK/(1− α))Lm(Ht−)N0(Wt−, Ht−) (34)

− ((ξs − 1)K/(1− α))Ls(Ht−)P0(Ht−)

where the constant K is defined as in (15).

The restrictions imposed by equations (29) and (30) are both transversality conditions

associated with the agent’s indirect utility and total wealth. The negative functions Lk

are first-order corrections to the optimal rules induced by endogenous health-related risks

and can be shown to be increasing in the agent’s health status.
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Given complete markets, it is also possible to derive an approximation for the agent’s

total wealth at the optimum under endogenous morbidity and morbidity as the present

value of the optimal consumption plan:

Proposition 2 Assume that the conditions of Theorem 2 hold and let

N∗t = Et

∫ ∞
t

mt,τc
∗
τdτ = W ∗

t + Et

∫ ∞
t

mt,τ (βH
∗
τ− − I∗τ )dτ

denote the agent’s total wealth at the optimum. Up to a first order approximation

N∗t ≈ N1t = N0(Wt, Ht) + Ls(Ht)P0(Ht)

where the functions P0(H) and Ls(H) are defined as in Proposition 1 and Theorem 2.

The marginal effect of endogenous morbidity on the agent’s welfare and decisions

can be isolated by imposing the restriction λm1 = Lm1 ≡ 0 in Theorem 2 and is

entirely summarized by the induced change in the agent’s total wealth highlighted in

Proposition 2. Indeed, a close inspection of Theorem 2 shows that under this restriction

the approximate indirect utility and optimal rules are the same as those of Proposition 1

and Theorem 1 except that the zero order total wealth N0(W,H) and human wealth

P0(H) are replaced by their first order counterparts:17

N1(Wt, Ht) = N0(Wt, Ht) + Ls(Ht)P0(Ht)

P1(Ht) = N1(Wt, Ht)−Wt = (1 + Ls(Ht))P0(Ht).

This shows that the separation between financial and health related decisions which

was obtained in the model with exogenous health risks carries over to the model with

endogenous morbidity shocks provided that mortality risk remains exogenous. It follows

that to understand the marginal impact of endogenous morbidity it suffices to study to

study its impact on the agent’s first order total wealth N1(W,H).

17This is immediate for the optimal consumption, optimal portfolio, and optimal insurance coverage.
For the optimal health investment the result follows by noting that under exogenous mortality the
approximate optimal health investment I1 in (34) is given by a first order approximation of the function
(αP1H)1/(1−α)H with respect to the morbidity parameter λs1 in a neighborhood of zero.
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Recall from Figure 1 that allowing for λs1 > 0 pushes the intensity of morbidity shocks

above its minimal level λs0. As can be seen from the fact that

N1(Wt, Ht)−N0(Wt, Ht) = P1(Ht)− P0(Ht) = Ls(Ht)P0(Ht) ≤ 0,

this higher likelihood of morbidity shocks lowers the agent’s total wealth and thereby

induces a proportional reduction in the indirect utility, the optimal consumption schedule

and the optimal portfolio. In addition, allowing for λs1 > 0 implies that the agent

can now partially control the likelihood of morbidity shocks by investing in his health.

This increases the benefits of health expenditures and prompts the agent to increase his

investment relative to the restricted model as can be seen from the fact that

I1t − I0t =
K

α− 1
(ξmLm(Ht−)N0t− + (ξs − 1)Ls(Ht−)P0(Ht−)) ≥ 0.

Comparing (23) to (33) shows that, even though it reduces the agent’s total wealth,

endogenous morbidity triggers an increase in the optimal amount of insurance coverage.

To understand this feature observe that the occurrence of a morbidity shock not only

lowers current health, but also increases the likelihood of even lower health levels in the

future. As a result, the amount

−∆sP1(Ht) = 1{dQst 6=0} (P1(Ht−)− P1(Ht−(1− φ)))

= −∆sP0(Ht) + 1{dQst 6=0}χ(ξs − 1)Ls(Ht−)P0(Ht−),

that the agent stands to loose from a morbidity shock is larger than its zero order

counterpart−∆sP0(Ht) and this induces him to increase his demand for insurance relative

to the restricted version of the model with exogenous health shocks.

Imposing the restriction λs1 = Ls1 ≡ 0 in Theorem 2 and Proposition 2 allows to

single out the marginal impact of endogenous mortality and reveals that up to a first order

approximation the agent’s total wealth is independent of mortality risk, be it endogenous

or not. Unlike endogenous morbidity, the effects of endogenous mortality therefore cannot

be traced back to changes in total wealth, but rather in how the optimal rules respond

to available resources. In that respect, endogenous mortality invalidates the separation
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between financial and health-related decisions that was obtained in both the restricted

model, and the model with exogenous mortality but endogenous morbidity.

As shown by the solid curve in Figure 1 allowing for λm1 > 0 raises the agent’s death

intensity above its minimal level λm0. Because our preference specification entails a strict

preference for life, this higher death probability is unambiguously welfare reducing i.e.

V1 < V0 in (31). For the same reason, and because longevity risk can now be partially

adjusted, the agent will try to mitigate a higher death intensity by increasing his health

investment. As in the restricted version of the model, the agent may choose to offset a

lower quantity of life by a higher quality of life, i.e. by increasing current consumption.

Whether or not this occurs depends entirely on the EIS: the agent increases consumption

relative to the restricted model with exogenous health risks if ε > 1, and decreases it

otherwise. Exact cancellation of the income and substitution effects occurs when ε = 1

in which case the optimal consumption is independent of mortality risk.

Comparing (22) and (32) shows that mortality risk, be it endogenous or not, has

no first order impact on the optimal portfolio. As in the restricted model this can be

explained by the fact that optimal portfolios are independent of discounting in the absence

of hedging motives. Indeed, the marginal impact of endogenous mortality is computed by

performing an expansion around the case of exogenous mortality and morbidity. Since the

optimal health status associated to that case does not covary with the Brownian motion

driving the stock returns it follows that the dynamic hedging demand is zero and hence

that the optimal stock holdings remain unaffected by mortality risk. On the contrary, the

fact that health is subject to morbidity shocks and influences the agent’s discount rate

gives rise to a dynamic hedging component in the optimal demand for insurance. This

dynamic hedging component is given by

x1t − x0t = χ(ξm)(1− 1/γs)Lm(Ht−)N0t−

and implies that, in the presence of endogenous mortality, the agent will not select his

insurance coverage so as to make his total wealth insensitive to morbidity shocks. Indeed,

upon the occurrence of a morbidity shock the agent’s total wealth experiences a jump
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that is given by

∆s(Wt + P0(Ht)) = 1{dQst 6=0}(x1t − φP0(Ht−))

= 1{dQst 6=0}(x1t − x0t) = χ(ξm)(1− 1/γs)Lm(Ht−)N0t−.

This jump is negative, indicating that the agent remains optimally exposed to health

shocks, whenever his risk aversion to morbidity risk γs is lower than one, positive whenever

γs is larger than one, and zero if and only γs = 1 in which case the agent’s preferences

are myopic towards morbidity risk.18

The unrestricted version of the model with endogenous mortality and morbidity

generates much richer comparative statics than the restricted version of the model and

can potentially address all of its shortcomings. In particular, the unrestricted model

predicts that, in accordance with the data, the optimal health investment increases with

the agent’s financial wealth, and that the marginal utility of wealth increases with the

agent’s health. Moreover, the unrestricted model can be consistent with the empirical

comparative statics of the optimal health insurance coverage, the optimal consumption

and the optimal portfolio under appropriate parametric restrictions. Verifying whether

or not these restrictions are satisfied requires an empirical analysis of the model to which

we now turn.

4 Empirical performance

We adopt a dual approach in order to assess the empirical performance of the endogenous

health risks model. First, we perform in Section 4.1 a structural estimation of the model

and use the resulting parameter estimates to compute predicted rules that are compared

to the observed allocations in Section 4.2. Second, we use our estimated parameters to

compute the expected longevity, and the values of health and life, and contrast these

results with received estimates in the literature in Section 4.3.

18Note that while the exposure of the agent’s total wealth to morbidity shocks can be positive, negative
or zero depending on the value of his morbidity risk aversion parameter, the exposure of his indirect
utility ∆sV1(Wt, Ht) = −1{dQst 6=0}χ(ξm)(1− χ(ξm))ΘLm(Ht−)2N0t− is strictly negative for all positive
values of the morbidity risk aversion parameter.
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Throughout our empirical analysis, we rely on a sample of 30’961 individuals drawn

from the Panel Study of Income Dynamics (PSID). The construction of our sample is

detailed in Appendix C and summary statistics are presented in Table 1.

4.1 Parameter identification

The econometric model corresponding to the approximate optimal rules in Theorem 2

can be written as:

Dj =
(
βN + βmH

−ξm
j

)(
Wj +BHj +

y0 − a
r

)
+
(
βP + βsH

−ξs
j

)
BHj + εj, (35)

where D′j = (cj, πj, xj, Ij) denotes the decisions of agent j = 1 in our sample, εj ∈ R4 is

an error term, and the theoretical restrictions on the coefficients βN , βm, βP , βs ∈ R4 are

summarized as follows:

D βN βm βP βs

c A A(1− ε)Lm(1) 0 ALs(1)

π θ
γσS

0 0 θ
γσS

Ls(1)

x 0 χ(ξm)
(

1− 1
γs

)
Lm(1) φ χ(ξs − 1)Ls(1)

I 0 −ξmK
1−α Lm(1) K −(ξs−1)K

1−α Ls(1)

(36)

The structural estimation of the above model is challenging for two reasons. First the

model is characterized by a large number of parameters (4 budget constraint parameters,

5 preference parameters and 10 survival and health dynamics parameters). Second, the

model involves important nonlinearities in both variables and parameters as can be seen

from (35) and (36). As a result of these difficulties it appears that all the parameters

of the model cannot be simultaneously identified and we therefore decided to calibrate

a subset of the parameters. Specifically, we calibrate the financial parameters (r, µ, σS)

as well as the subjective discount rate ρ, the minimal consumption a, and the health

independent part of income y0 at realistic values from the financial economics literature.

Next, a thorough search procedure was used for the calibration of the health sensitivity

of income β, the risk aversion to health shocks γs, the maximum illness intensity η, and

the two convexity parameters ξm, ξs.
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Given this calibrated subset of eleven parameters, we resort to a Maximum Likelihood

estimation of the quadrivariate system given by (35) and (36) for the remaining eight

parameters. In estimating this system we use the wealth of individuals scaled by 10−4

and encode the individual self-reported health levels using a scale from 1.5 (Poor health)

to 3.5 (Excellent health) with an increment of 0.5. To guarantee theoretical consistency,

the estimation is performed subject to the transversality conditions (13), (19), (29), (30),

and the auxiliary restriction (41) that is discussed below, and ensures that life expectancy

predicted by the model is finite. We report the calibrated and estimated parameters in

Table 2. Importantly, all our estimates are significant at standard levels, and all the sign

and required theoretical restrictions are satisfied.

The calibrated financial parameters in Panel A are conventional. In particular, we

set the interest rate to r = 0.048, the expected stock return to µ = 0.108 and the

stock volatility to σS = 0.20 so that the market price of risk is θ = 0.30. Turning to

the preference parameters in Panel B, we fix the minimal consumption a = 0.69 at a

slightly higher level than health-independent revenues y0 = 0.68. The calibrated value

of the subjective discount rate ρ = 0.05 is standard for PSID studies,19 and we set the

aversion to morbidity risks γs = 7.4 at a relatively high, but nonetheless reasonable, level.

Since the latter is greater than one, our estimation results are consistent with a positive

dynamic hedging demand in health insurance. Our estimate for the aversion to financial

risk, γ = 2.6, is very realistic (e.g., Mehra and Prescott, 1985), and much lower than γs.

The estimated aversion to mortality risk, γm = 0.68, is lower than one as required by the

model and implies an important penalization for mortality risk Φm = γm/(1−γm) = 2.16

that corresponds to a threefold increase of the endogenous discount rate in (11). Finally,

the low estimate of the elasticity of intertemporal substitution ε = 0.65 is consistent

with previous estimates in the literature20 and indicates that agents tend to decrease

consumption in response to an increase in mortality risk.

In Panel C, the calibrated values of the parameters ξm = 1.8 and ξs = 4.9 point

towards significant convexities in adjustment of health-related risks. The maximal health

shock intensity η = 50 ensures that the agent is near certain to become sick as health falls

to zero (see Figure 1). The exogenous death intensity parameter λm0 = 0.024 reproduces

19See Alan and Browning (2010, Tab. 7) or Alan et al. (2009, Tab. IV) for recent examples.
20See Engelhardt and Kumar (2009); Lee (2008); Biederman and Goenner (2008); Saltari and Ticchi

(2007); Vissing-Jørgensen (2002), among others for recent EIS estimates.
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a maximal remaining longevity of 42 years (see the discussion in Section 4.3.1), whereas

the exogenous sickness intensity λs0 = 1.21 corresponds to one event every 10 months

for perfectly healthy agents. Given these calibrated values our estimates for the the

endogenous intensity parameters λm1 = 0.002 and λs1 = 0.02 are low, but both significant.

This validates the approximation method we use to solve the model, and also confirms

that the model with endogenous health risk is preferable. Furthermore, the fact that both

ξm < ξs and λm1 < λs1 is consistent with the intuition that mortality risk is more difficult

to adjust than morbidity risk. The estimated share of health lost upon experiencing a

health shock φ = 1.1% is nontrivial and represents twice the depreciation rate of health

δ = 0.55%. Finally, the estimated value of the Cobb-Douglas parameter α = 0.77 points

towards strong convexities in the health adjustment process.

These structural parameter estimates provide key insights into the main features of

the model. First, the parameters of the mortality and morbidity intensities allow us

to gauge the relevance of the endogenous and exogenous health risks. While a sizeable

share of these risks is captured by the incompressible part of the arrival rates, we find

that agents can indeed adjust both types of risks through health improving investments.

Second, the parameters that govern the dynamics of health confirm that health is subject

to both proportional depreciation and morbidity shocks, and show that while agents can

adjust their health through investment they face strongly diminishing returns in doing

so. Finally, the estimated risk aversion parameters confirm that agents have non time-

additive preferences that display source dependent risk aversion.

4.2 Predicted and observed allocations

In order to compare the predictions of the estimated model to the observed rules we

proceed as follows. First, we use the parameter values of Table 2 to calculate the

predicted consumption, portfolio, insurance and health investment at the observed health

and wealth levels for all agents in our sample. Second, we compute the predicted sample

average in each health and wealth quintile and contrast those with the data averages.

Table 3 shows the results for consumption and portfolio holdings while Table 4 shows the

results for health insurance and health investment.
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The observed consumption schedules in Panel A.1 are clearly increasing in both health

and wealth.21 The estimated consumption in Panel A.2 reproduces the signs of the

gradients and provides a reasonable fit, keeping in mind the caveats for the implied PSID

consumption data.22 Similarly, the observed stock holdings in Panel B.1 are increasing in

both health and wealth.23 Both the levels of observations and the signs of the health and

wealth gradients are well captured by the estimated model in Panel B.2. Interestingly, the

estimated model predicts negative stock holdings positions for poor and unhealthy agents

and large stock holdings for poor but healthy agents. While the former may indicate that

poor and unhealthy agents engage is risk shifting activities, the latter is likely a reflection

of the well-known “participation puzzle” according to which low-wealth individuals do

not take active positions in stock markets (e.g. Vissing-Jørgensen, 2002; Brav et al., 2002;

Gormley et al., 2010). Health-related risks alone are apparently unable to account for

this salient feature of the data.

Turning to medical variables, Panel C.1 of Table 4 shows that in accordance with

previous studies the observed health insurance increases in wealth but is non monotonic

in health.24 The predicted insurance levels in Panel C.2 correctly capture these features

but are lower than observed, indicating that other elements that we abstracted from,

such as employer-provided health plans, are possibly at stake. Finally, the observed

health expenditures in Panel D.1 fall sharply in health and increase in wealth.25 Once

again the estimated model in Panel D.2 performs reasonably well in reproducing both

the range of observations and the signs of gradients.

Overall, we find that the calibrated and estimated parameters satisfy the theoretical

restrictions, and are realistic. Furthermore, the comparison of fitted versus actual data

shows that the model is able to reproduce both observed allocations and comparative

statics with respect to health and wealth.

21See among others Smith (1999); Gertler and Gruber (2002); Domeij and Johannesson (2006) for the
effect of health on consumption, and Gourinchas and Parker (2002); Dynan et al. (2004); Jappelli and
Pistaferri (2010) for the effect of wealth.

22As discussed in Appendix C, the observed consumption is implied from a small number of measures
(food, utility and transportation), and therefore likely measured with considerable error.

23See among others Rosen and Wu (2004); Berkowitz and Qiu (2006); Coile and Milligan (2009) for
the effect of health on portfolio holdings, and Brunnermeier and Nagel (2008); Calvet and Sodini (2010);
Wachter and Yogo (2010) for the effect of wealth.

24Cardon and Hendel (2001); Kaestner and Kaushal (2003); Barros et al. (2008); Yang et al. (2009);
Khwaja (2010) discuss health and wealth effects on the demand for insurance.

25See Smith (1999); Wu (2003); Gilleskie and Mroz (2004); Smith (2007); Barros et al. (2008); Yang
et al. (2009); Marshall et al. (2010) for evidence and discussion of health and wealth effects on health
expenditures.
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4.3 Additional performance measures

To further assess the quantitative performance of our estimated model, we now investigate

its predictions concerning the value of health, the expected longevity of agents and the

value that they attribute to additional years of life expectancy.

4.3.1 Value of health, expected longevity and value of life

The explicit expression for the indirect utility in (31) makes it possible to compute the

implied value of health and longevity by determining the amount of wealth that an agent

would be willing to give-up to improve either his health or his life expectancy. In the

spirit of the Hicksian compensating variation, we define the value of n additional units

of health as the solution

wh = wh(n,Wt, Ht)

to the indifference equation

V (Wt − wh, Ht + n) = V (Wt, Ht). (37)

The following proposition relies on an expansion technique similar to that of Theorem 2

to derive a first order approximation for the value of health.

Proposition 3 (Value of health) Assume that the conditions of Theorem 2 hold true

and define a pair of nonnegative functions by setting

Jm(n,H) = Lm(H + n)− Lm(H),

Js(n,H) = Ls(H + n)P0(H + n)− Ls(H)P0(H).

Then up to a first order approximation the value of n units of health is

wh(n,Wt, Ht) = nB + Jm(n,Ht)N0t + Js(n,Ht), (38)

where the constant B and total wealth N0t are defined as in Proposition 1.
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To determine the value of longevity that is implied by the model, we compute the

amount of wealth w` that the agent would be willing to give-up to increase his life

expectancy by a fixed amount. More precisely, if

`(W,H) = `(W,H; (λm0, λm1)) = E[Tm]

denotes the life expectancy of an alive agent with wealthW , health statusH and mortality

parameters (λm0, λm1), then we define the value of n additional years of expected lifetime

as the solution

w` = w`(n,W,H)

to the indifference equation

V (W − w`, H; (λ∗m0, λm1)) = V (W,H; (λm0, λm1)) (39)

where the modified incompressible death intensity λ∗m0 = λ∗m0(n,W,H) is computed in

such a way as to guarantee that the agent’s life expectancy after the transfer has increased

by exactly n years:

`(W − w`, H; (λ∗m0, λm1)) = n+ `(W,H; (λm0, λm1)). (40)

The following proposition relies on an expansion technique similar to that of Theorem 2

to derive first order approximations for both the life expectancy and the value of life

implied by the theoretical model.

Proposition 4 (Life expectancy and value of life) Assume that the conditions of

Theorem 2 hold true and that

1/κ0 = λm0 − F (−ξm) > 0. (41)

Then up to a first order approximation, the agent’s life expectancy and the value of n

additional years of life expectancy are given by

`(Wt, Ht; (λm0, λm1)) = (1/λm0)(1− κ0λm1H
−ξm
t ), (42)
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and

w`(n,Wt, Ht) = (1− q∗(n))N1t + q∗(n)Q∗(n,Ht)N0t (43)

where N1t is the approximation of the agent’s total wealth given in Proposition 2 and the

functions q∗(n) ∈ (0, 1) and Q∗(n,H) are defined by

q∗(n) =

(
A

A∗(n)

) 1
1−ε

,

Q∗(n,H) = λm1

(
R∗(n) +

1

(1− γm)(F (−ξm)− A∗(n))

)
H−ξm − Lm(H),

with

A∗(n) = A+
1− ε

1− γm

(
nλ2

m0

1 + nλm0

)
,

R∗(n) =
n

(1− γm)A∗(n)

(
λm0

1 + nλm0

)2
κ0 + κ0λm0(n+ κ0)

1 + nλm0(1− κ0λm0)
,

and the functions F (−ξm) and Lm(H) are defined in Theorem 2.

4.3.2 Empirical estimates

Taking the parameter estimates of Table 2, we compute the value of health (38), remaining

expected lifetime (42), and the value of one year of additional life expectancy for all agents

in our sample at the observed health and wealth levels. The sample averages are then

computed per wealth quintiles and health status and are reported in Table 5. We report

comparisons with other estimates in the literature in Table 6.

The first panel of Table 5 shows that the willingness to pay for a unit increment

in health status is non trivial, with an average value of 8% of annual income, and that

consistent with economic intuition the value of health increases in wealth and falls rapidly

as the agent’s wealth deteriorates. When compared to our estimates for the marginal

value of health B = $3’066, the reported values of health indicate that between 0.50 (for

healthy agent) and 0.75 (for unhealthy agent) of the value of health can be attributed

to the capacity in adjusting health-related risks (Jm, Js). These estimates are also quite

realistic in view of received estimates in the literature. For example, Smith (2005) uses

survey data to compute the willingness to pay in percent of annual income to prevent a
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given relative decrease in health from an excellent health state. In our model, the same

willingness to pay can be computed as

wh (αHe,W, (1− α)He) /Y

where α is a given percentage change, He = 3.5 denotes the benchmark state of excellent

health and Y denotes the observed annual income level. As reported in Panel A of

Table 6, the estimated values obtained from the model provide a close match of both the

observed levels and the observed gradients.

The remaining life expectancies reported in Panel B of Table 5 are also very realistic.

Indeed, the average age in our sample is 44 and when restricted to the 789 agents

of that age, the unconditional expected lifetime26 is 80.84 years, halfway between the

national values of 78.22 years for males and 82.17 for females aged 44 (Social Security

Administration, 2007). Moreover, we find that longevity is independent of the wealth

level, and increases when health improves. Both facts are consistent with previous

empirical findings.27 The fact that stock holdings and life expectancy both increase with

the agent’s health implies that, in accordance with the horizon effects documented by ?

among others, stock holdings and longevity are positively related. Finally, we note that

the magnitude of the health gradient implied by our estimated parameters is realistic.

In particular, Panel B of Table 6 compares our estimates of longevity to those obtained

by Lubitz et al. (2003) for agents aged 70 and shows that the estimated health gradients

provide a close match of the observations.

The third panel of Table 5 shows that the willingness to pay for an additional year of

life expectancy is significant, with an average value of 12% of annual income. Interestingly,

this panel shows that while the value of life is increasing in wealth, it is either increasing

or decreasing in health depending on whether agents are poor or rich. To understand this

mixed effect recall from Section 3 that a decrease in the exogenous mortality intensity

impacts the agent’s utility through two channels. First, a decrease in λm0 implies an

increase in the marginal utility of wealth and health at order zero and thereby prompts

healthier agents to pay more for a given reduction. Second, a decrease in λm0 lowers the

26The expected lifetime of an agent is obtained by summing the agent’s age and his remaining life
expectancy computed according to (42).

27See Benitez-Silva and Ni (2008, Table 4) and Hurd et al. (2001, Table 20).
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utility penalty associated to endogenous mortality and, because of convexity, this effect

becomes relatively more pronounced as the agent’s heath deteriorates. As shown by the

figures in Table 5 the net effect increases with the agent’s health for poor agents and

decreases for rich agents. This result shows that the mortality control feature associated

with endogenous mortality is more important for rich agents than it is for poor agents

who are more focused on the budget constraint effects of health.

Overall, we conclude that the model offers a remarkable empirical performance. In

particular, the predicted rules evaluated at realistic estimated parameters are plausible,

both in terms of levels and of comparative statics, and the model also generates accurate

predictions for the values of life and longevity, as well as for life expectancy.

5 Conclusion

This paper shows that the complex interactions between financial and health-related

statuses and allocations can be jointly explained by a parsimonious model that combines

two baseline frameworks from the Health and Financial Economics literature with a novel

specification of health-related risks, and preferences.

The analytical solutions that we obtain and estimate are easy to interpret and confirm

that endogenous mortality and morbidity risks, a positive health elasticity of labor

income as well as convex health adjustment costs, and recursive preferences with source-

dependent risk aversion are all key ingredients in better understanding how risks and

resources condition financial and health-related choices.
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Table 1: Descriptive statistics of the PSID sample

Variable Mean Std. Dev. Min Max

Age 44.18 15.51 16 101

Health 2.79 0.54 1.5 3.5

Wealth $28’356 $79’293 $0 $1’183’728

Income $41’199 $58’502 $0 $3’290’784

Consumption $9’838 $10’126 $1 $433’838

Stocks $15’139 $70’194 $0 $1’157’273

Health insurance $522 $903 $0 $15’879

Health expenditures $541 $2’195 $0 $120’704

Notes: This table presents summary statistics for the main variables in the sample of 30’961

individuals that we use in our estimation. Nominal variables are in dollars while the self-

reported health status is encoded using a discrete scale between 1.5 (Poor health) and 3.5

(Excellent health) with an increment of 0.5 between two consecutive health status.
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Table 2: Calibrated and estimated structural parameters

Estimated

Symbol Interpretation Calibrated Value (Std. Error)

Panel A. Budget constraint

β health dependence in income 0.020

y0 health independent income 0.68

r risk-free rate interest 0.048

µ expected risky return 0.108

σS std. error risky returns 0.20

Panel B. Preferences

a minimal consumption 0.69

ρ subjective discount rate 0.05

γs aversion to morbidity risk 7.40

γ aversion to financial risk 2.5968 (0.0292)

γm aversion to mortality risk 0.6834 (0.0384)

ε elasticity intertemp. subst. 0.6465 (0.0523)

Panel C. Survival and health dynamics

ξm mortality intensity convexity 1.80

ξs morbidity intensity convexity 4.90

η max. exog. morbidity intensity 50.00

λm0 min. exog. mortality intensity 0.0237 (0.0043)

λs0 min. exog. morbidity intensity 1.2098 (0.1125)

λm1 endo. mortality intensity parameter 0.0017 (0.0008)

λs1 endo. morbidity intensity parameter 0.0198 (0.0012)

φ depreciation upon health shock 0.0110 (0.0012)

δ deterministic health depreciation rate 0.0055 (0.0013)

α Cobb-Douglas param. health process 0.7742 (0.0085)

Notes: The estimated parameters are Maximum Likelihood estimates for the quadrivariate

system (35) subject to the theoretical restrictions (36), (13), (19), (29), (30), (41).
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Table 3: Actual and predicted financial variables (in $)

Health Wealth quintiles

1 2 3 4 5

Panel A.1 Consumption: Data

Poor 3’635 4’899 8’374 9’328 12’048

Fair 4’441 6’084 9’603 11’475 13’764

Good 5’919 7’109 9’702 12’139 14’327

Very good 6’403 7’299 10’057 11’815 15’065

Excellent 6’697 7’130 10’284 12’164 15’516

Panel A.2 Consumption: Predicted

Poor 6’801 6’803 6’836 7’080 10’661

Fair 6’955 6’958 6’993 7’246 10’287

Good 7’031 7’035 7’072 7’327 10’347

Very good 7’087 7’091 7’130 7’395 10’579

Excellent 7’137 7’141 7’181 7’444 10’739

Panel B.1 Stock holdings: Data

Poor 0 3 30 1’687 54’529

Fair 0 2 83 2’261 64’712

Good 0 2 186 3’062 60’876

Very good 0 4 170 3’310 70’450

Excellent 0 8 201 3’893 82’408

Panel B.2 Stock holdings: Predicted

Poor −1’809 −1’750 −995 4’572 86’380

Fair 1’277 1’347 2’093 7’566 73’278

Good 2’780 2’857 3’640 9’018 72’591

Very good 3’892 3’978 4’784 10’289 76’350

Excellent 4’876 4’962 5’791 11’184 78’949

Notes: The observed rules are sample averages using pooled data from PSID (30’961 individuals)

described in Appendix C. Predicted rules are sample averages of the optimal rules of Theorem 2

evaluated at the parameter values of Table 2 and using individual PSID data on wealth and

health. All reported values are expressed in dollars.
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Table 4: Actual and predicted health-related variables (in $)

Health Wealth quintiles

1 2 3 4 5

Panel C.1 Health insurance: Actual

Poor 260 279 560 818 1’192

Fair 209 226 573 897 1’112

Good 223 280 445 689 1’040

Very good 244 280 448 660 958

Excellent 213 262 429 556 917

Panel C.2 Health insurance: Predicted

Poor 315 316 324 382 1’245

Fair 163 164 168 203 616

Good 132 132 136 158 426

Very good 130 131 133 150 350

Excellent 139 139 141 153 309

Panel D.1 Health expenditures: Data

Poor 951 655 2’368 1’933 5’218

Fair 448 440 789 808 1’746

Good 306 322 402 616 1’001

Very good 215 271 362 503 915

Excellent 176 198 277 343 612

Panel D.2 Health expenditures: Predicted

Poor 610 611 613 782 2’990

Fair 249 250 262 350 1’407

Good 152 153 161 219 903

Very good 120 121 127 169 681

Excellent 109 110 115 146 544

Notes: The observed rules are sample averages using pooled data from PSID (30’961 individuals)

described in Appendix C. Predicted rules are sample averages of the optimal rules of Theorem 2

evaluated at the parameter values of Table 2 and using individual PSID data on wealth and

health. All reported values are expressed in dollars.
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Table 5: Predicted life expectancy and predicted values of health and life

Health Wealth quintiles

1 2 3 4 5

Panel A. Value of health (in $)

Poor 5’699 5’713 5’898 7’263 27’324

Fair 2’882 2’890 2’979 3’634 11’491

Good 2’143 2’149 2’202 2’566 6’868

Very good 1’878 1’881 1’915 2’148 4’937

Excellent 1’758 1’761 1’784 1’936 3’847

Panel B. Remaining life expectancy (in years)

Poor 27.76

Fair 33.53

Good 36.35

Very good 37.84

Excellent 38.93

Panel C. Value of longevity (in $)

Poor 445 476 877 3’837 47’322

Fair 729 754 1’021 2’976 26’458

Good 834 855 1’068 2’533 19’849

Very good 900 919 1’100 2’335 17’153

Excellent 959 975 1’136 2’184 15’352

Notes: The value of health wh in Panel A is the willingness to pay for n = 0.5 additional

unit of health (corresponding to a change in polytomial status) computed according to (38).

The remaining life expectancy ` in Panel B is the life expectancy computed according to (42).

The value of longevity w` in Panel C is the willingness to pay for n = 1 year of additional

life expectancy computed according to (43). All the reported quantities are sample averages

computed at the parameters values of Table 2 using individual PSID data on wealth and health.
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Table 6: Comparisons of the model predictions with other estimates

Panel A. WTP in % of income to avoid reduction in health

α Smith (2005) Estimated median wh/Y

6.0% 1.8% 2.2%

13.0% 3.4% 4.9%

22.0% 9.4% 8.9%

28.0% 14.5% 11.9%

40.0% 18.8% 19.7%

Panel B. Expected conditional longevity

Health Lubitz et al. (2003) Estimated mean `

(base age 70) (base age 44.18)

Poor 79.2 71.9

Fair 81.3 77.7

Good 82.6 80.5

Very Good 83.4 82.1

Excellent 83.8 83.1

Notes: Panel A: Smith (2005, Tab. 2 and 3, p. 518 and 521) and the estimated median of

wh(αHe,W, (1−α)He)/Y conditional upon non-zero income and base health He = 3.5. Panel B:

Lubitz et al. (2003, Fig. 2, p. 1052) and the estimated mean of the sum of the base age and the

expected remaining lifetime `(H) calculated from (42).
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A Proofs

To simplify the presentation of the proofs we assume throughout this appendix that the

agent’s subsistence consumption a and the health independent part of his income y0 are

both equal to zero. Since the agent faces complete markets when solving the modified

problem (10), the general case can be obtained from this one by adding a to the optimal

consumption and the present value

Et

∫ ∞
t

mt,τ (y0 − a)dτ =
y0 − a
r

of the corresponding cash flow streams to the agent’s financial wealth.

Proof of Proposition 1. Let Q denote the risk neutral measure defined by

dQ

dP

∣∣∣∣
t

= ertmt.

where m is the state price density process of equation (12). Using the independence

between market and morbidity shocks it is immediate to show that the function P0 is

given by

P0(Ht) = sup
I≥0

EQ

∫ ∞
0

e−rs(βHτ− − Iτ )dτ = sup
I≥0

E

∫ ∞
0

e−rs(βHτ− − Iτ )dτ

and satisfies the Hamilton-Jacobi-Bellman equation

rP0 = βH + λs0(P0((1− φ)H)− P0) + max
I≥0

(((I/H)α − δ)HP0H − I)

subject to the transversality condition

lim
t→∞

EQ[e−rtP0(H0t)] = 0

where H0 denotes the path of the agent’s health under the optimal strategy. The

dynamics of H and the linearity of the objective function imply that P0 is increasing

and homogenous of degree one with respect to health so that the value function and
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optimal investment policy are given by

P (H) = BH,

I0(H) = H(αP0H(H))
1

1−α = H(αB)
1

1−α ,

for some nonnegative constant B that solves

0 = β − (r + δ + φλs0)B + max
x≥0

(xαB − x)

= β − (r + δ + φλs0)B − (1− 1/α)(αB)
1

1−α = g(B),

subject to the transversality condition

lim
t→∞

E[e−rtBH0t] = 0,

where

dH0t = H0t−

(
(αB)

α
1−α − δ

)
dt− φH0t−dNt

denotes the path of the agent’s health under the candidate optimal strategy. Using the

above dynamics in conjunction with basic properties of Poisson processes we obtain

E[e−rtBH0t] = eg
′(B)tBH00, t ≥ 0,

and it follows that the transversality condition is equivalent to g′(B) < 0. Straightforward

analysis shows that g satisfies g(0) = r + δ + φλs0 > 0 as well as

g′(0) = −(r + δ + φλs0) < 0

and attains a unique minimum over the positive real line whose value is given by

min
x≥0

g(x) = β − (r + δ + φλs0)
1
α .

Under condition (13), this minimal value is negative and it follows that there exists a

unique nonnegative B such that g(B) = 0 and g′(B) < 0. �
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Properties of B. Let R = r + δ + φλs0. By definition B = B(R) > 0 solves the non

linear equation given by

g(R,B(R)) = β −RB(R)− (1− 1/α)(αB(R))
1

1−α = 0.

and satisfies gB(R,B(R)) < 0. In particular, we have

B(R) ≤ Bo(R) = argmin
x≥0

g(R, x) = R
1−α
α /α

and since

B′(R) =
gR(R,B(R))

gB(R,B(R))
=

B(R)/R

(B(R)/Bo(R))
α

1−α − 1
≤ 0

we conclude that B is decreasing in R. �

Proof of Theorem 1. When the intensity of Poisson shocks is health-independent, the

agent’s problem is equivalent to that of equation (18) with initial capitalN0t = N0(Wt, Ht).

In particular, the value function and optimal controls are given by

V0(W,H) = G(N0(W,H))

and

c0t = k∗t ,

π0t = p∗tN0t,

x0t = x∗t + φP0(Ht−),

I0t = (αB)
1

1−α ,

where (p∗, x∗, k∗) denote the optimal portfolio proportion, optimal insurance coverage

and optimal consumption for the problem defined by

G(Nt) = sup
(p,x,k)

Vt(k)
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subject to

dNt = rNt−dt+ ptNt−σ(dZt + θdt) + xtdMst. (44)

Following Svensson (1989) and Duffie and Epstein (1992a,b) among others we have that

the Hamilton-Jacobi-Bellman equation associated with the latter problem is

0 = max
(p,x,k)

D(p,x,k)
N G(N) + f(c,G(N))− γ(pNσSGN(N))2

2G(N)

− λs0G(N) (u(1; γs)− u (b(x,N); γs))− νm0G(N)

subject to the transversality conditions

lim
t→∞

E[e−νm0tG(N0t)] = lim
t→∞

EQ[e−rtN0t] = 0 (45)

where N0 denotes the path of the process N under the optimal strategy, the second order

differential operator

D(p,x,k)
N = ((pNσS)2/2)∂NN + (rN + pNσSθ − k − xλs0(H))∂N

is the continuous part of the infinitesimal generator of the process N under the portfolio,

insurance and consumption strategy (p, x, k) and we have set

b(x,N) =
G(N + x)

G(N)
.

The specification of the agent’s preferences and the dynamics of the controlled process

in equation (44) imply that G is increasing and homogenous of degree one. Using these

properties in conjunction with the HJB equation, we obtain that the value function and

the optimal strategy are given by G(N) = ΘN and

p∗t = θ/(γσS),

x∗t = 0,

k∗t = ρεΘ1−εN0t−,
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for some nonnegative constant such that

ρεΘ1−ε = ερ+ (1− ε)
(
r − ν0m + θ2/(2γ)

)
This equation admits a well-defined solution if and only if the constant A of equation (19)

is strictly positive. In this case, Θ = ρ(A/ρ)
1

1−ε and substituting this into the definition

of the optimal consumption plan we conclude that

c0t = AN0t−,

π0t = (θ/(γσS))N0t−,

x0t = φP0(Ht−)

as required. To complete the proof we need to show that under condition (19) the above

solution satisfies (45). Using equation (44) and the definition of the candidate optimal

strategy we obtain that the agent’s disposable wealth evolves according to

dN0t = N0t(r − A)dt+N0t(θ/γ)(dZt + θdt)

= N0t(r − A)dt+N0t(θ/γ)dẐt

where Ẑ is a risk neutral Brownian motion. Combining this expression with well-known

results on the expectation of the geometric Brownian motion gives

EQ[e−rtN0t] = e−AtN00,

E0[e−ν0mtG(N0t)] = e(r−νm0−A+θ2/γ)tΘN00,

and it follows that condition (19) is necessary and sufficient for both the feasibility of c0

and the validity of the transversality conditions. �

Proof of Theorem 2. The Hamilton-Jacobi-Bellman equation associated with the agent’s

optimization problem is given by equation (24) subject to

lim
t→∞

EQ[e−rtW ∗
t ] = 0, (46)

54



and

lim
t→∞

E
[
e−

∫ t
0 νm(H∗τ−)dτV (W ∗

τ , H
∗
τ )
]

= 0, (47)

where the processes (W ∗, H∗) denote the agent’s wealth and health status under the

optimal strategy. Maximizing the HJB equation gives the candidate optimal strategy of

equations (25)–(28) and substituting these back into equation (24) shows that the HJB

equation can be written as

νm(H)V = D∗V + f(c, V )− γθ2V V 4
W

2(γV 2
W − V VWW )2

− λs(H)(u(1; γs)− u(κ(x∗,W,H); γs))V (W,H)

where

D∗ = ((I∗/H)α − δ)H∂H +
1

2
(π∗σS)2∂WW

+ (rW + π∗σSθ + βH − c∗ − I∗ − x∗λs(H))∂W

is the continuous part of the differential operator associated to the process (H,W ) under

the candidate optimal strategy, and x∗ is implicitly defined by

κ(x∗,W,H)−γs =
VW (W + x∗, (1− φ)H)

VW (W,H)
. (48)

Consider the first order approximations given by

V (W,H) ≈ V1(W,H) = V0(W,H) + εVε(W,H) (49)

and

x∗(W,H) ≈ x1(W,H) = x0(W,H) + εxε(H,W ) (50)
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where V0 is the value function for the case of health independent mortality and morbidity,

and the unknown functions

(xε, Vε)(W,H) =
(
x(1), V (1)

)
(W,H) =

∂(x∗, V )

∂ε
(W,H)

∣∣∣∣
ε=0

are the first order corrections induced by the presence of health-dependent mortality

and morbidity. Substituting these approximation into equation (48) and expanding the

resulting expression to the first order in ε shows that the first order correction to the

optimal insurance coverage is given by

xε =
1

Θ

(
Vε − Vε(W + x0, H(1− φ)) +

N0

γs
(VεW (W + x0, H(1− φ))− VεW )

)
.

On the other hand, substituting the approximations (49), (50) into the HJB equation

and expanding the result to the first order in ε shows that the first order correction to

the value function solves

νm0Vε = D0Vε + fV (c0, V0)Vε +
θ2

2γ
(Vε − 2N0(W,H)VεW )− ν̄m1H

−ξmVε (51)

− λ̄s1Θ(η − λs0)φBH1−ξs + λs0(Vε(W + x0, H(1− φ))− Vε)

where

D0 = ((I0/H)α − δ)H∂H +
1

2
(π0σS)2∂WW

+ (rW + π0σSθ + βH − c0 − I0 − x0λs0)∂W

is the continuous part of the differential operator associated to the optimal strategy of

the health-independent intensity case, and we have set

ν̄m1 =
λ̄m1

1− γm
.
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Similarly, substituting the approximations (49), (50) into equations (25)–(27) and ex-

panding the resulting expressions shows that up to a first order approximation

π∗ = π0 +
εθ

γ2σSΘ
(γVε +N0(VεWWN0 − γVεW )) (52)

c∗ = c0 + ε(ρ/Θ)ε(Vε − εVεWN0), (53)

I∗ = I0 +
ε

(1− 1/α)Θ
Iα0 H

1−α(BVεW − VεH) (54)

where the functions π0, c0 and I0 are defined as in Proposition 1 and Theorem 1. An

educated guess suggests that the first order correction to the agent’s value function should

be of the form

Vε(W,H) = Cm1N0(W,H)H−ξm + Cs1P0(H)H−ξs

for some constants Cm1, Cs1. Substituting this ansatz into equation (51), matching terms

and solving for the constants shows that

Ck1 = ΘL̄k(1), k = m, s,

where we have set L̄k = Lk/ε and the functions Lk are defined as in the statement.

Using these constants together with equations (52), (53), (54) then gives the approximate

optimal policy reported in the statement and it only remains to show that a suitable

approximation of the transversality conditions is satisfied.

Consider first the transversality condition for the value function in equation (47) and

expand the quantity inside the expectation to the first order in ε. This gives

e−
∫ t
0 νm(H∗s−)dsV (W ∗

t , H
∗
t ) ≈ e−νm0tΘN0t (55)

+ εe−νm0t

(
Vε(W0t, H0t) + Θ∇N0t + ν̄m1ΘN0t

∫ t

0

H−ξm0τ− dτ

)

where the processes (W0, H0) denote the agent’s wealth and health under the optimal

strategy of the benchmark case in which ε = 0, and

∇N0t = lim
ε→0

N0(W ∗
t , H

∗
t )−N0(W0t, H0t)

ε
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denotes the derivative of the process N0(W ∗
t , H

∗
t ) with respect to ε at the origin. Using

the definition of the approximate optimal strategy in conjunction with straightforward

(but lengthy) algebra it can be shown that

d∇N0t = ∇N0t
dN0t

N0t

− (A− r + F (1− ξs))L̄s(H0t−)P0(H0t−)dt

− A(1− ε)L̄m(H0t−)N0tdt+ (θ/γ)L̄s(H0t−)P0(H0t−)(dZt + θdt) + dMt

for some discontinuous martingale M with initial value equal to zero. Integrating this

equation and using the fact that

dN0t

N0t

= (r − A)dt+ (θ/γ)(dZt + θdt) (56)

we find that

∇N0t = N0t

(∫ t

0

L̄s(H0τ−)P0(H0τ−)

N0τ

(C1dτ + C2dZτ )−
∫ t

0

C3L̄m(H0τ−)dτ + M̂t

)

where M̂ is a discontinuous martingale with initial value equal to zero and

C1 = r − A− F (1− ξs) + (θ2/γ)(1− 1/γ),

C2 = θ/γ,

C3 = (1− ε)A. (57)

Taking expectations on both sides and using equation (56) together with basic properties

of Poisson processes, the definition of F and the fact that

E

[
N0t

∫ t

0

(Xτdτ + YτdZτ )

]
= E

∫ t

0

e(r−A+θ2/γ)(t−τ)N0τ (Xτ + Yτ (θ/γ))dτ

for any sufficiently integrable predictable processes, we obtain

e−νm0tE[∇N0t] =
C3N00L̄m(H00)

F (−ξm)
e(r−νm0−A+θ2/γ)t

(
eF (−ξm)t − 1

)
+ L̄s(H00)P0(H00)

(
e(r−νm0−A+θ2/γ)t − e−(νm0−F (1−ξs))t

)
.
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Similarly, using the definition of the functions N0 and Vε together with equation (56) and

basic properties of Poisson processes we obtain

e−νm0tE [N0t] = e(r−νm0−A+θ2/γ)tN00

e−νm0tE [Vε(W0t, H0t)] = e−(νm0−F (1−ξs))tΘL̄s(H00)P0(H00)

+ e(r−νm0−A+θ2/γ+F (−ξm))tΘN00L̄m(H00)

e−νm0tE

[
N0t

∫ t

0

H−ξm0τ− dτ

]
=
N00H

−ξm
00

F (−ξm)
e(r−νm0−A+θ2/γ)t

(
eF (−ξm)t − 1

)
and it now follows from equation (55) that the transversality condition for the approxi-

mate value function holds if and only if

r − νm0 − A+ θ2/γ < 0, (58)

r − νm0 − A+ θ2/γ + F (−ξm) < 0, (59)

F (1− ξs)− νm0 < 0. (60)

Let us now turn to the agent’s wealth. To verify that an approximate version of the

transversality condition (46) holds we start by observing that

W ∗
t = N0(W ∗

t , H
∗
t )− P0(H∗t ). (61)

Expanding both sides of this identity as ε approaches zero shows that up to a first order

approximation the agent’s optimal wealth is given by

W ∗
t ≈ N0t − P0(H0t) + ε(∇N0t −B∇H0t)

where the process defined by

∇H0t = lim
ε→0

(
H∗t −H0t

ε

)
= H0t

∫ t

0

(
C4
N0τ L̄m(H0τ−)

H0τ

+ C5
L̄s(H0τ−)P0(H0τ−)

H0τ−

)
dτ

with

C4 = −ξmK/((1− α)B),

C5 = −(ξm − 1)K/((1− α)B),
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represents the directional derivative of the agent’s health process along the optimal

strategy as ε → 0. Taking expectations under the risk neutral probability measure on

both sides of equation (61) and using the fact that

∇N0t

N0t

=

∫ t

0

L̄s(H0τ−)P0(H0τ−)

N0τ

((C1 − θC2)dτ + C2dẐτ )−
∫ t

0

C3L̄m(H0τ−)dτ + M̂t

for some risk neutral Brownian motion Ẑ and some discontinuous risk neutral martingale

M̂ with initial value zero together with the same arguments as above we deduce that

EQ[e−rtW0t] = EQ[e−rt(N0t −BH0t)] = e−AtN00 − e−(r−F (1))tBH00,

EQ[e−rt∇N0t] = L̄s(H00)P0(H00)
(
e−At − e−(r−F (1−ξs))t

)
− C3

N00L̄m(H00)

F (−ξm)

(
e−(A−F (−ξm))t − e−At

)
,

EQ[e−rt∇H0t] = C ′4N00L̄m(H00)
(
e−(A−F (−ξm))t − e−(r−F (1))t

)
+ C ′5L̄s(H00)P0(H00)

(
e−(r−F (1−ξs))t − e−(r−F (1))t

)
for some constants C ′4, C ′5 and it follows that the approximate transversality condition

for wealth holds if and only if

A > 0, (62)

r − F (1) > 0, (63)

r − F (1− ξs) > 0, (64)

A− F (−ξm) > 0. (65)

Combining the restrictions (58), (59), (60), (62), (63), (64), (65) with those imposed in

Theorem 1 produces the restrictions of the statement and completes the proof. �

Proof of Proposition 2. Under the conditions of the statement we have that the agent’s

total is given by

N∗t = W ∗
t + Et

∫ ∞
t

mt,τ (βH
∗
τ− − I∗τ )dτ = EQ

t

∫ ∞
t

e−r(τ−t)c∗τdτ .
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Expanding both sides of the above expression as ε approaches zero we find that up to a

first order approximation the agent’s total wealth is given by

N∗t ≈ N0t + εA

∫ ∞
t

e−r(τ−t)EQ
t [∇N0τ ]dτ (66)

+ εA

∫ ∞
t

e−r(τ−t)EQ
t [(1− ε)N0τ L̄m(H0τ−) + L̄s(H0τ−)P0(H0τ−)]dτ .

Using the same arguments as above we obtain

EQ
t [e−r(τ−t)∇N0τ ] = L̄s(H0t)P0(H0t)

(
e−A(τ−t) − e−(r−F (1−ξs))(τ−t)

)
− C3

N0tL̄m(H0t)

F (−ξm)

(
e−(A−F (−ξm))(τ−t) − e−A(τ−t))

and

EQ
t [e−r(τ−t)N0τ L̄m(H0τ−)] = e−(A−F (−ξm))(τ−t)N0tL̄m(H0t),

EQ
t [e−r(τ−t)L̄s(H0τ−)P0(H0τ−)] = e−(r−F (1−ξs))(τ−t)N0tL̄s(H0t)P0(H0t)

where the constant C3 is defined as in (57). Plugging these expressions into equation (66)

and computing the resulting integrals then shows that the agent’s total wealth satisfies

N∗t ≈ N0t + εL̄s(H0t)P0(LsH0t) = N0t + Ls(H0t)P0(H0t)

and completes the proof. �

Proof of Proposition 3. Consider an agent with wealth W , health H and intensity

parameters (λm0, λs0, ελm1, ελs1) and denote by

wh(ε) = wh(n,W,H, ε)

the value to this agent of n additional units of health. Expanding equation (37) to the

first order as ε decreases to zero and using the definition of V0 we obtain

0 ≈ Θ(nB − wh(0)) + εΘ(Vε(W − wh(0), H + n)− Vε(W,H)− w′h(0)).
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Setting both terms on the right to zero and using the definition of Vε shows that up to a

first order approximation the value of n additional units of heath is

wh(n,W,H, ε) ≈ nB + Jm(n,W,H)N0(W,H) + Js(n,W,H)

and completes the proof. �

Proof of Proposition 4. Consider first the computation of the expected lifetime. Using

basic properties of point processes we have that

`(W,H) = E

∫ ∞
0

e−
∫ τ
0 λm(H∗s−)dsdτ

where H∗ denotes the agent’s health along the optimal path. Expanding both sides of

the above expression to the first order as ε approaches zero gives

`(W,H) ≈ E

∫ ∞
0

e−λm0τ

(
1 + ελ̄m1

∫ τ

0

H−ξm0s ds

)
dτ =

1− κ0λm1H
−ξm

λm0

where H0 denotes the agent’s health under the optimal strategy of the benchmark case

with health independent intensities and the second equality follows from the assumptions

of the statement and basic properties of Poisson processes.

Let us now turn to the computation of the value of life. Consider an agent with

intensity parameters (λm0, λs0, ελm1, ελs1), denote by

w`(ε) = w`(n,W,H, ε)

the value to this agent of n units of additional life expectancy and by

λ∗m0(ε) = λ∗m0(n,W,H, ε)

the solution to equation (39). Expanding equations (39) and (40) to the first order and

using the approximation of the life expectancy derived in the first part gives

0 ≈ n+ 1/λm0 − 1/λ∗m0(0)− ε

− ε
(

d

dε
(1/λ∗m0(ε))

∣∣∣∣
ε=0

+
κ0λ̄m1H

−ξm

λm0

− λ̄m1H
−ξm

λ∗m0(0)(λ∗m0(0)− F (−ξm))

)
,
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and

0 ≈ Θ∗(W − wl(0) + P0(H))− V0(W,H)− ε (Vε(W,H) + Θ∗w′l(0))

+ ε

(
dΘ∗

dλ∗m0(0)

dλ∗m0(ε)

dε

∣∣∣∣
ε=0

+ Θ∗(W − wl(0) + P0(H))L̄m(H) + Θ∗L̄s(H)P0(H)

)
,

where we have set

Θ∗ = ρ
ε

1−εA(n)
1

1−ε = ρ
ε

1−ε

[
ερ+ (1− ε)

(
r − λ∗m0(0)

1− γm
+
θ2

2γ

)] 1
1−ε

.

Setting the terms on the right to zero and using the definition of Vε allows to solve for

the unknowns w`(0), w′`(0), λ∗m0(0), (λ∗m0)′(0) and simplifying the resulting expansion of

the value life gives the formula reported in the statement. �

B Age dependent parameters

In this appendix we briefly discuss a generalization of the model in which the intensity

parameters λm0, λs0 , λ̄m1, λ̄s1, η, the depreciation rate of health δ, the fraction of health

φ that is lost upon experiencing a health shock, and the health sensitivity β of labor

income are allowed to vary with the agent’s age.

The difference between such a model and the one we considered in the text is that

instead of depending only on wealth and health the value function and optimal strategy

now also depends on the agent’s age. Despite this added dependence the model can still

be solved using an first order approximation but the functions P0, Lm and Ls will now be

age and health-dependent rather than just health-dependent. In particular, the analog

of Theorem 1 is given by:

Theorem 3 Let λm1 = λs1 = 0, define

νm0(t) = λm0(t)/(1− γm)
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and assume that there exist strictly positive solutions A and B to the ordinary differential

equations

A′(t) = A(t)2 −
(
ερ+ (1− ε)

(
r − νm0(t) + θ2/(2γ)

))
A(t), (67)

B′(t) = (r + δ(t) + φ(t)λs0(t))B(t) + (1− 1/α)(αB(t))
1

1−α − β. (68)

such that

lim
t→∞

(r − ν0(t) + θ2/(2γ)− A(t)) < 0, (69)

lim
t→∞

((αB(t))
α
a−α − r − δ(t)− φ(t)λs0(t)) < 0. (70)

Then the indirect utility function of an alive agent is

V0(t,W,H) = Θ(t)N0(t,W,H) = Θ(t)

(
W +B(t)H +

y0 − a
r

)
,

and generates the optimal consumption, portfolio, health insurance and health investment

strategies given by

c0t = a+ A(t)N0(t,Wt−, Ht−),

π0t = (θ/(γσS))N0(t,Wt−, Ht−),

x0t = φ(t)B(t)Ht−,

I0t = (αB(t))
1

1−αHt−

with Θ(t) = ρ
ε

1−εA(t)
1

1−ε .

Proof. The proof is similar to that of Theorem 1 and therefore is omitted. �

Theorem 4 Let

χ(t, x) = 1− (1− φ(t))−x,

F (t, x) = x(αB(t))
α

1−α − xδ(t)− λs0(t)χ(t,−x),
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assume that there exist strictly positive solutions A, B to the ordinary differential equa-

tions (67), (68) such that (69), (70) and

lim
t→∞

(F (t, 1− ξs)−min(r, ν0m(t))) < 0,

lim
t→∞

(F (t,−ξm)−max(0, r − ν0(t) + θ2/(2γ))− A(t)) < 0,

hold true and define

Lm(t,H) =

∫ ∞
t

e−
∫ τ
t (A(s)−F (s,−ξm))dsλm1(τ)H−ξm/(γm − 1)dτ ,

Ls(t,H) =

∫ ∞
t

e−
∫ τ
t (r−F (s,1−ξs))dsλs1(τ)φ(τ)B(τ)(λs0(τ)− η(τ))H1−ξs .

Up to a first order approximation the indirect utility of an alive agent is

V1(t,W,H) = V0(t,W,H) + Θ(t)Lm(t,H)N0(t,W,H) + Θ(t)Ls(t,H)

and generates the approximate optimal consumption, portfolio, health insurance and health

investment strategy given by

c1t = c0t + A(t)(1− ε)Lm(t,Ht−)N0(t,Wt−, Ht−) + A(t)Ls(t,Ht−),

π1t = π0t + (θ/(γσS))Ls(t,Ht−),

x1t = x0t + χ(t, ξm)(1− 1/γs)Lm(t,Ht−)N0(t,Wt−, Ht−)

+ χ(t, ξs − 1)Ls(t,Ht−)

I1t = I0t − (ξmK(t)/(1− α))Lm(t,Ht−)N0(t,Wt−, Ht−)

− ((ξs − 1)K(t)/(1− α))Ls(t,Ht−)

with K(t) = α
1

1−αB(t)
α

1−α .

Proof. The proof is similar to that of Theorem 2 and therefore is omitted. �

C Data

We rely on a sample of 30’961 individuals obtained by pooling the 1999, 2001, 2003, 2005,

and 2007 waves of the Panel Study of Income Dynamics (PSID, http://psidonline.isr.umich.edu/).

65

http://psidonline.isr.umich.edu/


All nominal variables correspond to per-capita values (i.e., household values divided by

household size) scaled by 10−4. The explanatory variables used in the estimation of the

model are the agents’ wealth and health which are constructed from the PSID data as

follows:

Health We associate values of 1.5 (poor health), 2.0 (fair), 2.5 (good), 3.0 (very good)

and 3.5 (excellent health) to the self-reported health variable corresponding to the

household head.

Wealth We use financial wealth defined as risky plus riskless assets. Risky assets

are stocks in publicly held corporations, mutual funds, investment trusts, private

annuities, IRA’s or pension plans. Riskless assets are checking accounts plus bonds

plus remaining IRA’s and pension assets.

The observed portfolios, consumption, health expenditure and health insurance used in

the estimation are constructed from the PSID data as follows:

Portfolio Value of financial wealth held in risky assets.

Consumption The consumption measure that we rely on is inferred from the food,

utility and transportation expenditures available in PSID, using the Skinner (1987)

method with the updated shares of Guo (2010).

Health expenditures Total out-of-pocket expenditures paid by household on hospital,

nursing home, doctor, outpatient surgery, dental expenditures, prescriptions in-

home medical care.

Health insurance Total amount paid for health insurance premium.
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