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Abstract

We consider a model in which shareholders provide a risk-averse CEO with risk-taking in-

centives in addition to e¤ort incentives. We show that the optimal contract protects the CEO

from losses for bad outcomes, is convex for medium outcomes, and concave for good outcomes.

We calibrate the model to data on 727 CEOs and show that it can explain observed contracts

much better than the standard model without risk-taking incentives. An application to contracts

that consist of base salary, stock, and options yields that options should be issued in the money.

Moreover, we propose a new measure of risk-taking (dis)incentives that measures the required

pro�tability an additional risky project must exceed in order to be adopted by the CEO.
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1 Introduction

This paper addresses the question to what extent the inclusion of risk-taking incentives in the stan-

dard model of executive compensation helps to rationalize observed compensation practice qualita-

tively and quantitatively. Our point of departure is the Holmström (1979) model, where shareholders

wish to provide incentives to a risk-averse and e¤ort-averse CEO to induce him to work hard. This

model fails to rationalize observed compensation practice as Hall and Murphy (2002) and Dittmann

and Maug (2007) demonstrate, because it cannot explain convex contracts. In this paper, we augment

the standard model by assuming that shareholders take into account not only e¤ort incentives but

also risk-taking incentives when designing the compensation contract. We show that the augmented

model predicts a contract that is �at for poor performance, convex for medium performance, and

concave for high performance. We calibrate the optimal contract shape to the data and �nd that the

augmented model approximates observed contracts much better than the model without risk-taking

incentives.

The notion that shareholders might want to provide risk-taking incentives in addition to e¤ort

incentives goes back at least to Smith and Stulz (1985) and Haugen and Senbet (1981). CEOs not only

exert e¤ort and thereby shift the stock price distribution to the right, but they also make decisions

that a¤ect �rm value and �rm risk (i.e. location and dispersion of the stock price distribution).

Accordingly, there is ample empirical evidence that risk-taking incentives matter for CEOs�actual

risk-taking. Low (2009), for instance, investigates an exogenous increase in takeover protection. In

a di¤erences-in-di¤erences analysis, she �nds that those �rms with little CEO risk-taking incentives

experienced a sharp decline in �rm risk and �rm value.1 Hirshleifer and Suh (1992) and Feltham and

Wu (2001) show that optimal contracts are convex if they are designed to also provide risk-taking

incentives. Therefore, the obvious way to �x the standard model and to introduce convexity into the

optimal contract is the inclusion of risk-taking considerations.2

1Tufano (1996) and Knopf, Nam and Thornton (2002) show that CEOs respond to risk-taking incentives for hedging
decisions, Rajgopal and Shevlin (2002) for investment decisions, Coles, Daniel and Naveen (2006) and Tchistyi, Yermack
and Yun (2007) for capital structure decisions, and May (1995), Smith and Swan (2007), and Acharya, Amihud and
Litov (2008) for corporate acquisitions. DeFusco, Johnson and Zorn (1990) and Billett, Mauer and Zhang (2010)
investigate the reaction of stock and bond prices to �rst time equity grants and �nd that investors expect that these
grants a¤ect �rm risk.

2There are several alternative explanations for the convexity in CEO contracts. Oyer (2004) models options as a
device to retain employees when recontracting is expensive. Inderst and Müller (2005) explain options as instruments
that provide outside shareholders with better liquidation incentives. Edmans and Gabaix (2009) and Edmans et al.
(2009) show that convex contracts can arise in dynamic contracting models. Peng and Röell (2009) analyze stock price
manipulations in a model with multiplicative CEO preferences and �nd convex contracts for some parameterizations.
Dittmann, Maug, and Spalt (2010) show that optimal contracts are convex if the CEO is loss-averse. Hemmer, Kim,
and Verrecchia (1999) assume gamma distributed stock prices and �nd convex contracts, but Dittmann and Maug
(2007) show that these results are not robust.
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The CEO in our model not only exerts costly e¤ort but also determines the �rm�s strategy, i.e. he

makes decisions on issues like project choice, mergers and acquisitions, capital structure, or �nancial

transactions. The CEO is risk-averse and holds �rm equity that provides him with e¤ort incentives.

If the contract does not provide su¢ cient risk-taking incentives, the CEO therefore chooses a strategy

that avoids risk and depresses �rm value. He might, for instance, pass up a pro�table but very risky

project, or might hedge his �rm�s risk at some cost. Shareholders can mitigate this ine¢ ciency by

providing risk-taking incentives such as rewarding the manager for extreme outcomes, but they must

be careful not to impair e¤ort incentives at the same time. While high stock price realizations are

an unmistakably good signal, low stock price realizations are ambiguous: they can be indicative

of low e¤ort (which is bad) or of extensive risk-taking (which is good, given that the CEO leans

towards ine¢ ciently low risk). The best way to provide e¤ort and risk-taking incentives therefore

is to reward good outcomes and not to punish bad outcomes, i.e. the optimal contract features a

limited downside.

The optimal contract in our model di¤ers markedly from the one in the standard model without

risk-taking incentives. As marginal utility rapidly declines with CEO wealth, the standard model

predicts that the CEO is punished severely for bad outcomes while he e¤ectively receives a �xed

wage for medium and good outcomes. In our model, however, �rms pay a �at wage for bad outcomes

and provide incentives only for medium and high outcomes. Due to decreasing marginal utility, the

payout function is convex for medium and concave for high outcomes.

We calibrate both models to the data on 727 U.S. CEOs and for each generate predictions about

the optimal payout function. We then compare the optimal with the observed payout function and

�nd that our model can explain observed contracts much better than the standard model without

risk-taking incentives. In particular, the average distance between observed contract and optimal

contract is 8:0% for our model compared to 28:8% for the model without risk-taking incentives.

We apply our model to contracts that consist of base salary, stock, and options and establish

that, according to the model, in-the-money options are preferable to the portfolio of stock and at-

the-money options that we observe in practice. On average in our sample, the strike price should be

74% of the �rm�s stock price at issue time. Compared to the observed portfolio contract, this in-the-

money option contract moves incentives from the tails to the center of the stock price distribution.

Incentives in the tails have either little e¤ect (for high payouts) or induce the CEO to avoid risk

(for low payouts). In contrast, steep payouts in the center of the distribution provide both e¤ort

and risk-taking incentives. When we take into account the tax penalties that apply to in-the-money
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options in the U.S., we obtain optimality of the observed portfolio contract for a majority of the

CEOs in our sample. Therefore, the universal use of at-the-money options, that is often seen as

evidence for managerial rent-extraction (see Bebchuk and Fried, 2004), is perfectly consistent with

e¢ cient contracting.3

Our calibration approach bridges the gap between theoretical and empirical research on execu-

tive compensation and allows us to test the quantitative (and not just the qualitative) implications of

di¤erent models. Moreover, this approach contributes to the empirical literature on CEO compensa-

tion as it circumvents the endogeneity problem that shareholders simultaneously determine �rm risk

and managerial incentives when they design the compensation contract. We model this endogeneity

and test the predictions of the model. Under the assumptions that contracting is e¢ cient and that

CEOs are e¤ort-averse and risk-averse, our results imply that the provision of risk-taking incentives is

a major objective in executive compensation practice. We can reject the hypothesis that risk-taking

incentives in observed contracts are a mere by-product of e¤ort incentives.

Another contribution to the empirical literature is a new measure of risk-taking (dis-)incentives

that combines the manager�s risk preferences with the shape of his compensation contract and that

we call risk-avoidance. It measures the required pro�tability an additional risky project must exceed

in order to be adopted by the CEO. The median risk avoidance in our sample is 1.25 for a risk-

aversion parameter of 2. Hence, the median CEO will adopt a project that increases �rm risk by

one percentage point if and only if it increases �rm value by at least 1.25%. The standard measure

for risk-taking incentives in the empirical literature is the vega of the CEO�s option portfolio (see,

e.g., Guay, 1999) or the utility-adjusted vega (see Lambert, Larcker, and Verrecchia (1991)). We

argue that risk-taking incentives not only depend on the (utility-adjusted) vega but also on the

(utility-adjusted) delta. While a negative utility-adjusted vega suggests that the CEO will pass up

risky, positive-NPV projects, this e¤ect is mitigated if the CEO has high (utility-adjusted) delta as

this means that he gains from taking positive-NPV actions. Consequently, our proposed measure of

risk-taking incentives is related to the ratio of utility-adjusted vega over utility-adjusted delta.

There are a few theory papers that also consider both e¤ort-aversion and risk-taking incentives in

models of executive compensation.4 To our knowledge, this paper is the �rst, however, to calibrate
3There is an ongoing debate in the literature on whether executive stock options do provide risk-taking incentives.

Intuitively, this seems obvious as the value of an option increases with the volatility of the underlying asset (see, e.g.,
Haugen and Senbet (1981) or Smith and Stulz (1985)). However, Carpenter (2000), Ross (2004), and Lewellen (2006)
argue that stock options can make managers more averse to increases in �rm risk, so that stock options might be
counter-productive if risk-taking incentives need to be provided. Our paper shows that options are indeed part of an
optimal contract. They can be detrimental to risk-taking incentives, but wreak less havoc than stock. Having neither
stock nor options is not an alternative, because such a contract would not provide any e¤ort incentives.

4Lambert (1986) and Core and Qian (2002) consider discrete volatility choices, where the agent must exert e¤ort to
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such a model and to test its quantitative implications. In this way, we also contribute to recent

literature on calibrations of contracting models.5

We attribute the convexity in observed contracts to the provision of risk-taking incentives in this

paper, and we acknowledge that there are alternative explanations for the use of options in executive

compensation (see Footnote 2 above). The only alternative model that can be readily calibrated to

the data is Dittmann, Maug, and Spalt (2010) where the CEO is assumed to be loss averse. We

also calibrate this model to our data and �nd that its �t is comparable to the �t of our model. In

addition, we show that the loss-aversion model does not improve much when shareholders take risk-

taking incentives into account. The reason is that the standard loss-aversion model already predicts

convex contracts with similar risk-taking incentives as the observed contract.

Our analysis proceeds as follows. In the next section, we present our model and derive the shape

of the optimal contract. Section 3 describes the construction of the dataset, and Section 4 derives and

empirically analyzes our proposed measure of CEO risk-taking incentives. In Section 5, we present

our calibration method and our main results. In a nutshell, we numerically search for the cheapest

contract with a given shape that provides the manager with the same incentives and the same utility

as the observed contract. Section 6 provides robustness checks, and Section 7 analyzes the optimal

strike price in a standard option contract. Section 8 contains our analysis for the loss-aversion model,

and Section 9 concludes. The appendix collects some technical material.

2 Optimal contracting with risk-taking incentives

2.1 Model

We consider two points in time. At time t = 0 the contract between a risk-neutral principal (the

shareholders) and a risk-averse agent (CEO) is signed, and at time t = T the contract period

ends. The market value of the �rm at time t = 0 (after the contract details have been disclosed)

is P0 = E(PT ) expf�rfTg, where rf is the appropriate rate of return. At some point during the

gather information about investment projects. Feltham and Wu (2001) and Lambert and Larcker (2004) assume that
the agent�s choice of e¤ort simultaneously a¤ects mean and variance of the �rm value distribution, so they reduce the
two-dimensional problem to a one-dimensional problem. Two other papers (and our model) work with continuous e¤ort
and volatility choice: Hirshleifer and Suh (1992) analyze a rather stylized principal-agent model and solve it for special
cases. Flor, Frimor and Munk (2006) consider a similar model to ours but they work with the assumption that stock
prices are normally distributed while we work with the lognormal distribution. Hellwig (2009) and Sung (1995) solve
models with continuous e¤ort and volatility choice, but Hellwig (2009) assumes that the agent is risk-neutral and Sung
(1995) that the principal can observe (and e¤ectively set) volatility. In a di¤erent type of model, Manso (2007) also
establishes that optimal contracts must not punish bad outcomes when risk-taking (innovation) needs to be encouraged.

5See Dittmann and Maug (2007), Gabaix and Landier (2008), Edmans, Gabaix, and Landier (2008), and Dittmann,
Maug, and Spalt (2010).
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contract period (0; T ), the agent makes two choices. First, he chooses e¤ort e 2 [0;1) that results in

private costs C(e) to the agent and that a¤ects the �rm�s expected value E(PT ). Second, he chooses

a strategy s that a¤ects the �rm�s expected value E(PT ) and the �rm�s stock return volatility �. We

will refer to � interchangeably as ��rm risk�. We can therefore write E(PT ) = P0(e; s) expfrfTg and

� = �(s).6

Our model is in the spirit of Holmström (1979). The agent can costlessly destroy output or

in�ate volatility �, and the principal cannot observe the agent�s actions. As a consequence, the

manager�s wealth WT = w(PT ) only depends on the end-of-period stock price PT , and the wage

scheme w(:) is non-decreasing.

We think of the strategy s as a feasible combination of many di¤erent actions that a¤ect, among

other things, project choice, mergers and acquisitions, capital structure, or �nancial transactions.

Part of the strategy could be, for instance, an R&D project that increases value and risk. Another

part could be �nancial hedging of some input factor which would reduce value and risk. Due to its

richness, we do not model the agent�s choice of strategy in detail. Instead we assume that the contract

chosen by the �rm does not make the CEO risk-seeking, and we show in our empirical analysis below

that this assumption always holds.7 Therefore, the CEO chooses an action that minimizes �rm risk

� given expected value E(PT ), or equivalently that maximizes expected value E(PT ) given risk �.

Let es(e; �) denote the strategy that maximizes expected value E(PT ) given e¤ort e and volatility �.
Then the agent�s choice of e¤ort e and strategy s is equivalent to a choice of e¤ort e and volatility �:

E(PT ) = P0(e; es(e; �)) expfrfTg = P0(e; �) expfrfTg: In the remainder of this paper, we therefore

work with the reduced form of our model where the agent chooses e¤ort e and volatility �.

We assume that there is a �rst-best �rm strategy s�(e) that maximizes �rm value (given e¤ort

e). Let ��(e) := �(s�(e)) denote the (minimum) �rm risk that is associated with this strategy. If

the agent wants to reduce risk to some value below ��(e), he can do so in two ways. Either he

drops some risky but pro�table projects (e.g., an R&D project), or he takes an additional action that

6 In our model, e¤ort only a¤ects expected value but not �rm risk whereas strategy a¤ects both value and risk.
Other models (e.g. Feltham and Wu, 2001) assume that the agent only chooses e¤ort and that e¤ort a¤ects value and
risk. The main di¤erence between Feltham and Wu (2001) and our model in this respect is that our model allows the
CEO to a¤ect value and risk independently of each other.

7More formally, we assume that the CEO�s expected utility declines when volatility � increases. This assumption is
intuitive: A risk-averse CEO whose wealth is linked to �rm-value is averse to an increase in �rm risk �. Providing risk-
taking incentives by making the contract more convex (while keeping e¤ort incentives and the CEO�s utility constant) is
costly. Therefore, �rms will never increase risk-taking incentives beyond the optimal point where the CEO is indi¤erent
to �rm risk.
While this assumption is intuitive, we cannot show it formally. The reason is that the costs of an increase in risk-

taking incentives given that e¤ort incentives and utility are held constant cannot be written in closed-form. However,
our empirical results below are consistent with this assumption. In particular, we �nd that risk-taking incentives are
always costly.
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reduces risk but also pro�ts (e.g., costly hedging). In both cases, a reduction in volatility � leads to

a reduction in �rm value E(PT ). We therefore assume that P0(e; �) is increasing and concave in �

as long as � < ��(e). In the region above ��(e), �rm value P0(e; �) is weakly decreasing in �; it is

�at if the agent can take additional risk at no costs (e.g., with �nancial transactions). Finally, we

assume that the stock price P0(e; �) is increasing and concave in e (given volatility �).

We assume that the end-of-period stock price PT is lognormally distributed:

PT (uje; �) = P0 (e; �) exp
��
rf �

�2

2

�
T + u

p
T�

�
; u � N (0; 1) : (1)

Here, rf is the risk-free rate, and P0(e; �) = E(PT (uje; �)) expf�rfTg is the expected present value

of the end-of-period stock price PT .8

The manager�s utility is additively separable in wealth and e¤ort and has constant relative risk

aversion with parameter 
 with respect to wealth WT :

U (WT ; e) = V (WT )� C (e) =
W 1�

T

1� 
 � C (e) : (2)

If 
 = 1, we de�ne V (WT ) = ln(WT ). Costs of e¤ort are assumed to be increasing and convex in

e¤ort, i.e. C 0(e) > 0 and C 00(e) > 0. We normalize C(0) = 0. There is no direct cost associated with

the manager�s choice of volatility. Volatility � a¤ects the manager�s utility indirectly via the stock

price distribution and the utility function V (:). Finally, we assume that the manager has outside

employment opportunities that give him expected utility U .

8We follow Dittmann and Maug (2007) and assume that either there is no premium for systematic risk or that the
�rm has no exposure to systematic risk, so that the risk-free rate rf is the appropriate stock return. This assumption
allows us to abstract from the agent�s portfolio problem, because in our model the only alternative to an investment in
the own �rm is an investment at the risk-free rate. If we allowed the agent to earn a risk-premium on the shares of his
�rm, he could value these above their actual market price, because investing into his own �rm is then the only way to
earn the risk-premium. Our assumption e¤ectively means that all risk in the model is �rm-speci�c.
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2.2 Optimal contract

In order to implement a given e¤ort e� and level of volatility ��, shareholders solve the following

optimization problem:

min
WT

E [WT (PT )je�; ��] (3)

subject to
dWT (PT )

dPT
� 0 for all PT (4)

E [V (WT (PT ))je�; ��]� C(e�) � U (5)

fe�; ��g 2 argmax fE [V (WT (PT ))je; �]� C(e)g (6)

Hence, shareholders choose the wage schedule WT (PT ) that minimizes contracting costs subject to

three constraints: The monotonicity constraint (4), the participation constraint (5), and the incentive

compatibility constraint (6). We replace (6) with its �rst-order conditions

dE [V (WT (PT ))je; �]
de

� dC
de

= 0; (7)

dE [V (WT (PT ))je; �]
d�

= 0: (8)

We discuss the validity of the �rst-order approach (i.e. that (6) can indeed be replaced by (7) and (8))

in detail in Appendix A. We call condition (7) the e¤ort incentive constraint and (8) the volatility

incentive constraint.

Proposition 1. (Optimal contract): The optimal contract that solves the shareholders�problem

(3), (4), (5), (7), and (8) has the following functional form:

dV (W �
T )

dWT
=

8<: c0 + c1 lnPT + c2(lnPT )
2 if ln(PT ) > � c1

2c2

c0 � c21
4c2

if ln(PT ) � � c1
2c2

(9)

where c0, c1, and c2 depend on the distribution of PT and the Lagrange multipliers of the optimization

problem, with c2 > 0. For constant relative risk aversion, we obtain

W �
T =

8<:
�
c0 + c1 lnPT + c2(lnPT )

2
�1=
 if ln(PT ) > � c1

2c2h
c0 � c21

4c2

i1=

if ln(PT ) � � c1

2c2

(10)

The proof of Proposition 1 and full expressions for the parameters c0, c1, and c2 can be found in

Appendix B. To develop an intuition for the optimal contract (10) it is instructive to look �rst at the

7



optimal contract without risk-taking incentives. This contract has the form W 

T = c0 + c1 lnPT and

is globally concave as long as 
 � 1 (see Dittmann and Maug, 2007). The comparison shows that

risk-taking incentives are provided by the additional quadratic term c2(lnPT )2. This term makes the

contract more convex and limits its downside, two features that make risk-taking more attractive for

a risk-averse agent. To satisfy the monotonicity constraint, the downward sloping part of the wage

function due to the quadratic term is replaced by a �at wage. The resulting contract (10) is �at

below some threshold eP = expf� c1
2c2
g, convex and increasing for some region above this threshold,

and �nally concave, because the concavity of the logarithm dominates the convexity of the quadratic

term asymptotically.

3 Data set

We use the ExecuComp database to construct approximate CEO contracts at the beginning of the

2006 �scal year.9 We �rst identify all persons in the database who were CEO during the full year

2006 and executive of the same company in 2005. We calculate the base salary � (which is the sum

of salary, bonus, and "other compensation" from ExecuComp) from 2006 data, and take information

on stock and option holdings from the end of the 2005 �scal year. We subsume bonus payments

under base salary, because previous research has shown that bonus payments are only weakly related

to �rm performance (see Hall and Liebman, 1998).10

We estimate each CEO�s option portfolio with the method proposed by Core and Guay (2002)

and then aggregate this portfolio into one representative option. This aggregation is necessary to

arrive at a parsimonious wage function that can be calibrated to the data. Our model is static and

therefore cannot accommodate option grants with di¤erent maturities. The representative option is

determined so that it has a similar e¤ect as the actual option portfolio on the agent�s utility, his

e¤ort incentives, and his risk-taking incentives. More precisely, we numerically calculate the number

of options nO, the strike price K, and the maturity T so that the representative option has the

same Black-Scholes value, the same option delta, and the same option vega as the estimated option

portfolio.11 In this step, we lose �ve CEOs for whom we cannot numerically solve this system of

9We do not perform our analysis for a more recent year for two reasons. First, we cannot construct our sample
consistently for 2007, because there was a signi�cant change in the reporting standard in 2006; some �rms reported
according to the new standard while other �rms still used the old standard. Second, we did not choose 2008 or 2009 to
avoid using data from the �nancial crisis.
10We do not take into account pension bene�ts, because they are di¢ cult to compile and because there is no role

for pensions in a one-period model. Pensions can be regarded as negative risk-taking incentives (see Sundaram and
Yermack, 2007, and Edmans and Liu, 2010), so that we overestimate risk-taking incentives in observed contracts.
11Appendix F contains more details about this algorithm. We take into account the fact that most CEOs exercise their
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three equations in three unknowns.

We take the �rm�s market capitalization P0 from the end of the 2005 �scal year. While our

formulae above abstract from dividend payments for the sake of simplicity, we take dividends into

account in our empirical work and use the dividend rate d from 2005. We estimate the �rm�s stock

return volatility � from daily CRSP stock returns over the �scal year 2006 and drop all �rms with

fewer than 220 daily stock returns on CRSP. We use the CRSP/Compustat Merged Database to

link ExecuComp with CRSP data. The risk-free rate is set to the U.S. government bond yield with

�ve-year maturity from January 2006.

We estimate the non-�rm wealth W0 of each CEO from the ExecuComp database by assuming

that all historic cash in�ows from salary and the sale of shares minus the costs of exercising options

have been accumulated and invested year after year at the one-year risk-free rate. We assume that

the CEO had zero wealth when he entered the database (which biases our estimate downward) and

that he did not consume since then (which biases our estimate upward).12 To arrive at meaningful

wealth estimates, we discard all CEOs who do not have a history of at least �ve years (from 2001 to

2005) on ExecuComp. During this period, they need not be CEO. This procedure results in a data

set with 727 CEOs.

[Insert Table 1 here]

Table 1 provides an overview of our data set. The median CEO owns 0.32% of the stock of

his company and has options on an additional 0.92% of the company�s stock. The median base

salary is $1.04m, and the median non-�rm wealth is $12.0m. The representative option has a median

maturity of 4:4 years and is well in the money with a moneyness (K=P0) of 72%. Most stock options

are granted at the money in the United States (see Murphy, 1999), but after a few years they are

likely to be in the money. This is the reason why the representative option grant is in the money for

90% of the CEOs in our sample. In the interest of readability, we call an option with a strike price

K that is close to the observed strike price Kd an "at-the-money option." Consequently, we call an

option grant "in-the-money" only if its strike price K is lower than the observed strike price Kd.

stock options before maturity by multiplying the maturities of the individual option grants by 0.7 before calculating
the representative option (see Huddart and Lang, 1996, and Carpenter, 1998). In these calculations, we use the stock
return volatility from ExecuComp and, for the risk-free rate, the U.S. government bond yield with 5-year maturity from
January 2006. Data on risk-free rates have been obtained from the Federal Reserve Board�s website. For CEOs who
do not have any options, we set K = P0 and T = 10 (multiplied by 0.7) as these are typical values for newly granted
options.
12These wealth estimates can be downloaded for all years and all executives in ExecuComp from

http://people.few.eur.nl/dittmann/data.htm. They have also been used by Dittmann and Maug (2007) and Dittmann,
Maug, and Spalt (2010).
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We require that all CEOs in our data set are included in the ExecuComp database for the years

2001 to 2006, and this requirement is likely to bias our data set towards surviving CEOs, namely

those who are older and richer and who work in bigger and more successful �rms. Table 1 Panel B

describes the full ExecuComp universe of CEOs in 2006. Compared to this larger sample, our CEOs

are, on average, one year older and work in bigger �rms (+$450m) with better past performance

(1:3% higher return during the past �ve years). In a robustness check below, we analyze in how far

this selection bias a¤ects our results.

The only parameter in our model that we cannot estimate from the data is the manager�s

coe¢ cient of relative risk aversion 
. We use 
 = 3 in most of our analysis and provide robustness

checks for 
 = 0:5 and 
 = 6. This range includes the risk-aversion parameters used in previous

research.13

4 Measuring Risk-taking Incentives

In the empirical literature on executive compensation, risk-taking incentives are usually measured by

the vega of the manager�s equity portfolio, i.e. by the partial derivative of the manager�s wealth with

respect to his own �rm�s stock return volatility.14 An exception are Lambert, Larcker and Verrecchia

(1991) who work with what we call the "utility adjusted vega", i.e. the partial derivative of the

manager�s expected utility with respect to stock return volatility. However, there is another e¤ect of

volatility on managerial utility that - to the best of our knowledge - has been ignored in the empirical

literature on risk-taking incentives. Depending on whether or not the CEO has too little or too much

incentives to take risk, a rise in volatility respectively increases or decreases �rm value and, due to

the CEO�s equity portfolio, managerial utility. In this subsection, we derive this result formally from

our model and propose a new measure of risk-taking incentives that combines the two e¤ects.

In our model, risk-taking incentives are described in the volatility incentive constraint (8). This

constraint can be rewritten as

E

�
dV (WT )

dWT

dWT

dPT

dPT
d�

���� e; �� = 0 (11)

13Lambert, Larcker, and Verrecchia (1991) use values between 0.5 and 4. Carpenter (1998) and Hall and Murphy
(2000) use 
 = 2. Hall and Murphy (2002) use 
 = 2 and 3.
14See, among others, Guay (1999), Rajgopal and Shevlin (2002), Knopf, Nam and Thornton (2002), Habib and

Ljungqvist (2005), and Coles, Daniel and Naveen (2006).
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Substituting in the derivative of the stock price PT with respect to volatility � from (1) yields

, E

�
dV (WT )

dWT

dWT

dPT

�
dP0
d�

PT
P0
+ PT

�
��T + u

p
T
������ e; �� = 0: (12)

As dP0=d� is not random, we can rearrange (12) as

PPSua
dP0
d�

= ��ua; (13)

where PPSua := E
�
dV (WT )

dWT

dWT

dP0

���� e; �� = E � dV (WT )

dWT

dWT

dPT

PT
P0

���� e; �� (14)

and �ua := E

�
dV (WT )

dWT

dWT

dPT
PT

�
��T + u

p
T
����� e; �� : (15)

Here, PPSua is the utility adjusted pay-for-performance sensitivity, or the utility adjusted delta,

which measures how much the manager�s expected utility rises for a marginal stock price increase.

Likewise, �ua is the utility adjusted vega, i.e. the marginal increase in the manager�s expected utility

for a marginal increase in volatility - assuming that �rm value P0 stays constant.

The �rst order condition (13) equates marginal bene�ts to marginal costs of an increase in

volatility from the agent�s point of view. The bene�ts stem from an increase in �rm value dP0=d� in

which the manager participates via his incentive pay PPSua. The costs are given by the decrease of

the manager�s utility ��ua due to higher volatility. Hence, the agent will take an action if only if its

bene�ts exceed its cost, i.e if

PPSua
dP0
d�

> ��ua , dP0
d�

1

P0
> � �ua

PPSua
1

P0
: (16)

We therefore de�ne the incentives to avoid risk as

� := � �ua

PPSua
1

P0
: (17)

Appendix F contains a step by step user�s guide on how to numerically calculate risk avoidance �.

Equation (17) de�nes a hurdle rate: � is the required increase in �rm value per increase in �rm

risk that any new project must ful�ll in order to be adopted by the CEO. Consider a project that

would increase �rm risk by one percentage point, e.g., from 30% to 31%, and let � = 2. Then the

agent takes this project only if it increases �rm value by at least 2%. All positive NPV projects that

generate less than 2% increase in �rm value for each percent of additional risk will be passed up.

On the other hand if � < 0, the agent has incentives to take on risky projects with negative NPV.
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In the above example of a project that increases �rm risk by one percentage point, � = �2 means

that the agent is willing to undertake this project as long as it does not destroy more than 2% of

�rm value. If � = 0, the CEO is indi¤erent to �rm risk and will therefore implement all pro�table

projects irrespective of their riskyness. We refer to � as incentives to avoid risk or risk avoidance,

and to �� as risk-taking incentives.

Our main conceptual result is that the utility adjusted vega alone is not the best measure of

risk taking incentives, but that it should be scaled by the utility adjusted delta. To understand why

this scaling is necessary, �rst consider the case where vega is negative, and so the manager wishes to

avoid risky, positive-NPV projects. However, this e¤ect is mitigated if the CEO has a high delta as

this means that he gains from taking positive-NPV actions. Second, consider the case where vega is

positive, and so the manager has an incentive to take risky projects even if they are negative-NPV.

Again, this e¤ect is mitigated if the CEO has a high delta as it means that he is hurt by taking

negative-NPV actions. Regardless of the sign of vega, the incentives to take too little or too much

risk are o¤set by a high delta, so the measure of risk-taking incentives depends on the ratio of vega

to delta.

Table 2, Panel A displays descriptive statistics for the incentives to avoid risk � in the observed

contract for �ve values of risk aversion 
. In all cases, risk avoidance � is positive for most CEOs; for


 � 3 it is positive for virtually all CEOs. The results in Table 2 are therefore consistent with our

assumption that the contracts chosen by the �rm do not make CEOs risk-seeking. For 
 = 3, the

average � is 1:87 and the median is 1:75. This implies that the average CEO in our sample passes

up risky positive NPV projects if they increase �m value by less than 1:87% per percentage point

of additional volatility. For lower values of risk aversion 
, risk-avoidance is lower. For 
 = 0:5, the

average and median � are 0:19.

[Insert Table 2 here]

While risk-avoidance � is zero in the �rst-best optimum, it is positive in the second-best optimum

as risk-taking incentives are costly. It is di¢ cult to judge, however, what a plausible optimal level

for � is, because the optimal level depends on the availability of risky projects: a �rm that has only

few risky projects will not bene�t much from an increase in risk-taking incentives. Nevertheless, a

median � of 1:75 for 
 = 3 appears large when taking into account that CEO pay typically makes

up only about 1% of �rm value (see the median of �value of contract�and ��rm value�in Table 1).

A potential reason is that CEOs are less risk averse (see Graham, Harvey, and Puri, 2009), so that
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 < 3. We still use 
 = 3 as the base case in this paper because it is a conservative choice; the �t

of our model to the data improves as 
 decreases. Another reason why risk avoidance � is high in

Table 2, Panel A is that major shareholders might not be well diversi�ed and therefore want to take

ine¢ ciently low risk (see Faccio, Marchica, and Mura, 2010).

5 Empirical Results

In this section, we calibrate the optimal contract (10) to the data and evaluate how well it approxi-

mates observed contracts. We assume that shareholders want to implement a certain action fe�; ��g

and that they have done so in the observed contract.15 Under this assumption, we can reformulate

the shareholder�s optimization problem (3) to (6) as follows (see Appendix D for the derivation):

min
c0;c1;c2

E [W �
T (PT jc0; c1; c2)] (18)

subject to E [V (W �
T (PT jc0; c1; c2))] = E

h
V (W d

T (PT ))
i

(19)

PPSua(W �
T (PT jc0; c1; c2)) = PPSua(W d

T (PT )) (20)

�(W �
T (PT jc0; c1; c2)) = �(W d

T (PT )); (21)

whereW d
T (PT ) = �

d+ndSPT+n
d
OmaxfPT�Kd; 0g is the observed contract (d for "data") that we con-

struct from the data as described in Section 3. Intuitively, we search for the contractWT (PT jc0; c1; c2)

with shape (10) that achieves three objectives. First it provides the same e¤ort and risk-taking incen-

tives to the agent as the observed contract (conditions (20) and (21)). Second it provides the agent

with the same utility as the observed contract (condition (19)), and third it is as cheap as possible for

the �rm (objective (18)).16 If our model is correct and descriptive of the data, the cheapest contract

found in this optimization will be identical to the observed contract. If the new contract di¤ers

substantially, the observed contract is not e¢ cient according to the model: it is possible to �nd a

cheaper contract that implements the same e¤ort and the same strategy as the observed contract.

In this case, either compensation practice is ine¢ cient or the model is incorrect. In both cases, the

15This calibration method has �rst been used by Dittmann and Maug (2007). It is the �rst stage of the two-stage
procedure in Grossman and Hart for the e¤ort/volatility level implemented by the observed contract. We cannot repeat
this task for alternative e¤ort/volatility levels, because this would require knowledge of the production and the cost
function. Therefore we cannot analyze the optimal level of e¤ort or volatility (i.e., the second stage in Grossman and
Hart, 1983).
16Note that we have as many constraints in problem (18) to (21) as we have parameters, so that there are no degrees

of freedom left to minimize costs. Therefore, we solve a system of three equations (19) to (21) in three unknowns
for every CEO in our sample. The resulting contract has the optimal shape and therefore must be cheaper than the
observed contract.
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Figure 1: The �gure shows end of period wealth WT for the observed contract (dotted line), the
optimal CRRA contract with risk-taking incentives (solid line), and the optimal CRRA contract
without risk-taking incentives (dashed line) for a representative CEO whose parameters are close to
the median of the sample. The parameters are � = $1:1m, nS = 0:33%, nO = 0:57% for the observed
contract. Initial non-�rm wealth is W0 = $15:6m. P0 = $2:8bn, � = 27:9%, and K=P0 = 49%,
T = 4:2 years, rf = 4:4%, d = 1:8%. All calculations are for 
 = 3.

model is not descriptive of the data.

Figure 1 shows our calibration results for a representative CEO.17 The solid line represents the

optimal contract W �
T that solves the optimization problem (18) to (21), and the dotted line is the

observed contract W d
T . The �gure shows the CEO�s end-of-period wealth WT as a function of end-

of-period stock price PT which we express as a multiple of the beginning-of-period stock price P0.

The optimal contract with risk-taking incentives protects the CEO from losses. It provides the CEO

with a �at wealth of $24m if the stock price falls below 49% of the initial stock price. Intuitively,

limiting the downside for bad outcomes provides better (i.e., cheaper) risk-taking incentives than

rewarding good outcomes. In the region between 49% and 70% of the initial stock price, the contract

is increasing and convex. For larger stock prices, the contract is concave. The reason for the concavity

is the CEO�s decreasing marginal utility: the richer the CEO is, the less interested he is in additional

wealth.
17For each parameter (observed salary �d, observed stock holdings ndS , observed option holdings n

d
O, wealth W0, �rm

size P0, stock return volatility �, time to maturity T , and moneyness K=P0) and each CEO we calculate the absolute
percentage di¤erence between individual and median value. Then we calculate the maximum di¤erence for each CEO
and select the CEO for whom this maximum di¤erence is smallest.
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As a benchmark, we also calibrate the optimal contract without risk-taking incentives from

Dittmann and Maug (2007); it is the broken line in Figure 1. For this purpose, we solve the opti-

mization problem (18) to (20) without the volatility incentive constraint (21) and use the contract

shapeW �
T (PT jc0; c1) = (c0 + c1 lnPT )

1=
 . We call this contract the benchmark contract or the CRRA-

contract while we refer to the contract from the full model as the RTI contract or, more precisely,

the CRRA-RTI contract. Figure 1 shows that the benchmark contract is globally concave and puts

the agent�s entire wealth at risk. As a consequence, it makes the agent extremely averse to taking

additional risk. For the full sample, Table 2, Panel B shows descriptive statistics for the incentives

to avoid risk, �, for the benchmark contract. For 
 = 3, average � is 9:43 compared to 1:87 in the

observed contract.18 With the benchmark contract, the agent will therefore be willing to increase

�rm risk by one percentage point only if the additional project increases �rm value by at least 9:43%.

Note that by construction the RTI contract has the same � as the observed contract.

The �gure suggests that the model with risk-taking incentives (solid line) �ts the observed con-

tract (dotted line) much better than the model without risk-taking incentives (broken line). To

quantify this visual impression, we calculate for both models the average distance between the con-

tract W �
T predicted by the model and the observed contract W

d
T :

D1 = E

 ��W �
T (PT )�W d

T (PT )
��

W d
T (PT )

!
: (22)

We recognize that the observed contract we construct in Section 3 is a stark simpli�cation of the

contracts used in practice, especially because typical contracts contain several grants of stock options

with di¤erent maturities and di¤erent strike prices. Contracts are therefore in general not piecewise

linear with just one kink but have a more complicated shape. To address this caveat, we consider a

second distance metric

D2 = E

 ��W �
T (PT )�W smth

T (PT )
��

W smth
T (PT )

!
; (23)

where W smth
T (PT ) sums up the expected value of all option grants held by the CEO. For a grant

that has a maturity larger than T , this is just the Black Scholes value for the remaining maturity

18For 94% of all CEO-
 combinations, risk-avoidance � is higher in the RTI contract than in the observed contract
(not shown in the table). The remaining 6% mostly occur for 
 = 6 and are very likely due to to numerical problems,
because the benchmark contract is much steeper for small values of PT for 
 = 6 than it is for 
 = 3. When the contract
approaches zero, di¤erences between very small and very large numbers occur in the numerical routines that cannot
be handled well numerically. This is also the reason why the 90% quantile of � is lower for 
 = 6 than for 
 = 0:5
or 
 = 3. We therefore conclude that risk-taking incentives are always costly in our model and that �rms will never
choose a contract that makes the CEO risk-seeking.
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given PT . For a grant that has a maturity smaller than T , we calculate the expected value of the

option at maturity given P0 and PT and assume that this amount is invested at the risk-free rate

for the remaining time between maturity and T . In this way, we obtain a smooth contract for

all CEOs who have at least two di¤erent option grants. For CEOs with only one option grant,

W smth
T (PT ) = W d

T (PT ). We explain the construction and calculation of W
smth
T in more detail in

Appendix E. For the representative CEO shown in Figure 1, the distance is 5:2% for the contract with

risk-taking incentives and 22:2% for the contract without risk-taking incentives. The representative

CEO has only one option grant, so both distance measures have the same value in this case.

[Insert Table 3 here]

Table 3, Panel A shows the results for all CEOs in our sample. The left part of the table describes

the optimal contract with risk-taking incentives for three values of constant relative risk-aversion 
.

We do not tabulate the parameters c0, c1, and c2, as they cannot be interpreted independently from

each other. Instead, the table shows mean and median of a few key variables that describe the

contract. These variables include the two distance measures D1 and D2 from (22) and (23) and

the manager�s minimum wealth (minW �
T (PT )) scaled by non-�rm wealth W0. In addition, the table

shows two probabilities. First, the kink quantile is the probability that the contract pays out the

minimum wage in the �at region of the contract; formally, this is Pr(PT � � c1
2c2
) from equation (10).

Second, the in�ection quantile is the probability mass below the point where the contract curvature

changes from convex to concave.

Table 3 demonstrates that the optimal contract provides the agent with comprehensive downside

protection. For 
 = 3, the median minimum wealth is 1:4 times the initial wealth W0. Only for 0:1%

of the CEOs in our sample is the minimum wealth lower than their observed non-�rm wealthW0. The

contract pays out the minimum wage for the worst outcomes with a median probability of 16:1%.

The median in�ection quantile is 32:5%, so that the contract is convex for mediocre performance

between the 16:1% quantile and the 32:5% quantile and concave for good performance above the

32:5% quantile.

Table 3, Panel A also shows the savings �rms could realize when they switch from the observed

contract to the optimal contract. These savings are de�ned as

savings =
h
E
�
W d
T (PT )

�
� E (W �

T (PT ))
i
=E
�
W d
T (PT )

�
:

For 
 = 3, mean (median) savings are 10:4% (6:9%). The mean distance D1 between observed
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contract and optimal contract is 8:0%, and the mean distance D2 is 8:6%. For lower values of risk

aversion 
, we obtain a better �t: For 
 = 0:5, the average distance D1 is only 2:5%. Contracts

are then convex over a larger range of stock prices from the 1:7% quantile to the 77:7% quantile for

the median CEO. Savings from recontracting are smaller for lower values of risk aversion 
, because

savings are generated by e¢ cient risk sharing which is less important if the CEO is less risk averse.

Conversely, we �nd a worse �t for higher values of risk aversion 
. The region of convexity shrinks

relative to our benchmark case 
 = 3 and the distance to the observed contract increases according

to all measures.

The right part of Table 3 displays the results for the benchmark model without risk-taking

incentives. This contract does not contain any downside protection, so the CEO can potentially lose

all her wealth. Moreover, it is globally concave for all CEOs if 
 > 1, so that the kink quantile and

the in�ection quantile are both zero. Due to convergence problems, the sample for the two sets of

results in Table 3, Panel A is not the same. We therefore report the numbers again in Panel B for

the subsample of CEOs for whom we obtain convergence for both models. This panel shows that the

model with risk-taking incentives approximates observed contracts much better than the benchmark

model. For 
 = 3, the average distance D1 is 28:3% for the benchmark model compared to 8:0% for

the RTI model. The savings from recontracting are also much higher for the benchmark model than

for the RTI model. The benchmark model suggests that shareholders leave 34:5% of contracting

costs on the table while the RTI model puts this number at 10:4% only. These numbers suggest

that risk-taking incentives play an important role in observed compensation contracts. Observed

contracts appear markedly less ine¢ cient when risk-taking incentives are taken into account.

6 Robustness checks

6.1 Constant absolute risk aversion

The CEO�s attitude to risk is central to our model. So far we have assumed that the CEO�s preferences

exhibit constant relative risk aversion (CRRA). To see whether our results are robust to alternative

assumptions on CEO risk aversion, we repeat our analysis from Table 3 with constant absolute risk

aversion (CARA), so that V CARA (WT ) = � exp (��WT ) replaces V (WT ) in equation (2). Taking

the �rst derivative and plugging the result into equation (9) from Proposition 1 yields the following

corollary:

Corollary 1. (Optimal CARA contract): If the agent exhibits constant absolute risk aversion with
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parameter �, the optimal contract has the following functional form:

W �
T =

8<:
1
� log

�
�
�
c0 + c1 lnPT + c2(lnPT )

2
�	

if ln(PT ) > � c1
2c2

1
� log

n
�
h
c0 � c21

4c2

io
if ln(PT ) � � c1

2c2

(24)

To maintain comparability with our previous results, we calculate the coe¢ cient of absolute

risk aversion � from 
 so that both utility functions exhibit the same risk-aversion at the expected

end-of-period wealth. More precisely, we set � = 
=(W0 exp(rfT )+�0), where �0 is the market value

of the manager�s contract. Results are shown in Table 4.

[Insert Table 4 here.]

Table 4 demonstrates that all our results continue to hold with CARA utility. In particular,

the CARA-RTI model generates a much better �t than the CARA model, it guarantees a minimum

payout that is always higher than the CEO�s non�rm wealth, and it is convex for intermediate payouts

and concave for good payouts.

6.2 Sample selection bias

Our data set is subject to a moderate survivorship bias, as we require that CEOs are covered by the

ExecuComp database for at least �ve years. Table 1 demonstrates that younger and less successful

CEOs are underrepresented in our data set. We therefore divide our sample in quintiles according

to four variables: CEOs�non-�rm wealth W0, CEO age, �rm value P0, and the past �ve years�stock

return. Table 5 displays for these subsamples the average distance D1, and, in the last line, the

p-value of the Wilcoxon test that the average distance is identical in the �rst and the �fth quintile.

This analysis is done for 
 = 3.

[Insert Table 5 here.]

The table shows that the model �t is worse for younger and less wealthy CEOs. For the 20%

youngest and the 20% least wealthy CEOs, we �nd an average distance of 11:7% and, respectively,

11:4% compared to 8:0% for the full sample (see Table 3). Given that our sample is biased towards

older and more wealthy CEOs, the average distance in the unbiased sample would be somewhat

higher than shown in Table 3. We �nd the opposite e¤ect, however, for past performance: the

20% best-performing �rms have an average distance of 10:6%. As we oversample �rms with good

performance, the average distance in Table 3 should be adjusted downwards. Altogether, the e¤ect

of the sample bias on our results is therefore small.
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7 Application: Optimal strike prices

Figure 1 suggests that the model with risk-taking incentives can explain option contracts much better

than the benchmark model without risk-taking incentives. In this section, we therefore analyze

the RTI model�s implications for optimal strike prices in a standard option contract. We consider

contracts that consist of �xed salary �, the number of stock nS , and the number of options nO with

strike price K:

W lin
T = �+ nSPT + nOmax fPT �K; 0g

This contract has the same structure as the stylized observed contract that we construct in Section

3 above. For each CEO, we solve the optimization problem (18) to (21) with W lin
T instead of W �

T ,

where the principal�s choice variables are �, nS , nO, and K.19

[Insert Table 6 here]

Table 6 describes our results for three values of 
: 0:5, 3, and 6. In all cases, the RTI model

predicts that the median CEO does not hold any stock.20 Instead, the median CEO would have more

options (+43% for 
 = 3; compare Table 6 with Table 1) and more base salary (+211%). For 99:2%

of the CEOs in our sample, the strike price in the optimal contract is lower than in the observed

contract. While the moneyness of the observed contract is 70:1% on average from Table 1, it is 51:7%

for the optimal contract. If we assume that observed option grants have been issued at the money

and have moved into the money only because of the general stock price increase in the years prior to

2006, our results imply that options should have been issued 73:8% (= 51:7%=70:1%) in the money.

19We need a few additional restrictions, so that the problem is well-de�ned. First, we assume that the number of
shares nS is non-negative. We allow for negative option holdings nO and negative salaries �, but we require that
nO > �nS expfdTg and � > �W0 to prevent negative payouts. Negative option holdings or negative salaries are rarely
seen in practice, but they are certainly possible. A negative salary would imply that the �rm requires the CEO to invest
this amount of his private wealth in �rm equity. We argue that a good model should not assume but rather generate
positive option holdings and positive salaries. We do not allow for negative stockholdings, because compensation could
then become non-monotonic in stock price, which violates one of our model assumptions.
We also need to restrict the strike price K, because options and shares become indistinguishable if K approaches

zero, and the problem is poorly identi�ed if K is small. We work with two lower bounds for K. We �rst solve the
numerical problem with the restriction K=P0 � 20%. If we �nd a corner solution with K=P0 = 20%, we repeat the
calibration with a lower bound K=P0 � 10%. If the second calibration does not converge, we use the (corner) solution
from the �rst step.
In many cases, the objective function in our problem is rather �at around the optimal solution. In order to check

whether an interior solution with n�S > 0 is indeed the optimal solution (in most cases we �nd n�S = 0, as we discuss
shortly), we repeat our calibration with the additional restriction nS = 0 whenever we obtain a solution with n�S > 0 in
the original problem. In almost all cases, the contract with nS = 0 is slightly cheaper than the initially found contract
with n�S > 0. This shows that interior solutions with n�S > 0 are a numerical artifact. For our empirical analysis we
always use the solution with the lowest costs.
20The small positive average stock holdings are due to a few CEOs who either don�t have any options in the observed

contract (i.e., ndO = 0) or for whom our routine hits the boundaries for the strike price K (see footnote 19).
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Figure 2: The �gure shows end-of-period wealth WT as a function of end-of-period stock price PT
for the observed contract (solid line) and the optimal piecewise linear contract (dashed line) for one
CEO in our sample. The arrows indicate the three main features of the optimal contract relative to
the observed contract: (1) it punishes very bad outcomes less, (2) it rewards very good outcomes less,
and (3) the strike price of the option grant is lower. The parameters for this CEO are � = $6:3m,
nS = 5:97%, nO = 4:44% for the observed contract. Initial non-�rm wealth is W0 = $32:1m.
P0 = $853m, � = 25:7%, and K=P0 = 90%, T = 4:4 years, rf = 4:4%, d = 0:9%, and 
 = 3.

The general picture is that the stock and option holdings in the observed contract are replaced

by option holdings that are considerably deeper in the money. As options are less valuable than

shares, this exchange is accompanied by an increase in base salary, so that the new contract provides

the same expected utility to the agent as the observed contract. The savings generated by switching

to the optimal contract are limited, however. The median �rm would just save 1:9% of contracting

costs for 
 = 3 and the average is 4:1%. This is hardly a savings potential that would trigger

shareholder activism or takeovers. The comparatively small savings imply that a portfolio of stock

and at-the-money options is a good substitute for in-the-money options. The numerical �ip side of

low savings is that the objective function (after taking into account the constraints) is rather �at.

While this is certainly a complication when it comes to solving the model numerically (see Footnote

19), it is not a problem of our model but rather a result.

Figure 2 illustrates our main results. It shows the payout function W lin
T (PT ) of the observed

contract and the optimal contract for one CEO in our sample. This CEO is not representative for

our sample; for a typical CEO the two contracts are more di¢ cult to distinguish visually. The three

arrows in Figure 2 indicate the main features of the optimal contract and help to develop an intuition
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for our main result that in-the-money options are a cheaper way to provide incentives than a portfolio

of stock and at-the-money options. The �rst feature of the optimal contract is that it provides for

less punishment in the bad states of the world than the observed contract, which improves risk-taking

incentives. On the other hand, the optimal contract also gives fewer rewards in the best states of

the world (feature 2), which reduces risk-taking incentives. These two e¤ects o¤set each other, so

that the optimal contract provides the same risk-taking incentives as the observed contract. E¤ort

incentives, on the other hand, are reduced by both features (1) and (2). Moving the strike price more

into the money (feature 3), however, increases e¤ort incentives and o¤sets the e¤ect of features (1)

and (2). Therefore, the optimal contract also generates the same e¤ort incentives as the observed

contract; it merely moves some of the e¤ort incentives from the tails of the distribution to its center.

Finally observe that features (1) and (2) make the optimal contract less risky than the observed

contract. Therefore the agent demands a lower risk-premium and the optimal contract is cheaper for

shareholders. The same e¤ects can be found for the general optimal contract depicted in Figure 1.

The RTI-contract provides for less punishments in the bad states of the world and for less rewards

in the very best states compared to the observed contract. At the same time, the slope of the RTI

contract is steeper in the center of the stock price distribution, i.e. incentives are moved from the

tails of the distribution to its center.

In-the-money options are rare in U.S. compensation practice. A potential reason is that the U.S.

tax system strongly discriminates against in-the-money options (see Walker, 2009). In the remainder

of this section, we therefore analyze how the optimal option contract looks like when realistic taxes

are taken into account.21

According to IRC Section 409A, income from in-the-money options is subject to a 20% penalty

tax that has to be paid by the executive at the time of vesting. Shares, at-the-money options, or

out-of-the-money options are not subject to this additional tax. Moreover, in-the-money options

(like restricted stock) do not automatically qualify as performance based pay under IRC Section

162(m) and therefore count towards the $1 million per executive that are tax deductible at �rm

level. However, this rule can be easily circumvented by subjecting in-the-money options to speci�c

performance criteria. We therefore concentrate on the 20% penalty tax from Section 409A and neglect

the potential e¤ects of Section 162(m) in the following analysis.22

21Another potential reason why we do not see in-the-money options in the U.S. are the U.S. accounting rules. In-
the-money options always had to be expensed while at-the-money options did not need to be expensed prior to 2006.
This accounting rule possibly explains the absence of in-the-money options before 2004, the year in which Section 409A
was enacted.
22 In addition, Section 409A requires that the di¤erence between the stock price and the strike price be recognized as

income at the time of vesting, rather than on exercise. Thus this rule accelerates income recognition from the exercise
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We repeat our numerical analysis for 
 = 3 with a 20% tax penalty on in-the-money options. We

assume that this tax must be paid if and only if the strike price is lower than the observed strike price,

so we e¤ectively assume that all options in the observed contract have been issued at-the-money. We

�nd that in this setting the observed contract turns out to be optimal for 95:7% of all CEOs for

whom our algorithm converges (not shown in the tables).23

Many other countries (including the U.K., Canada, Germany, and France) discourage the use

of in-the-money options, so the United States is not an exception (see Walker, 2009).24 A potential

reason is that in-the-money options cause some costs that are not included in our model and that

justify government intervention. Our results in Table 6 show that the use of in-the-money options is

associated with large increases in base salary. These might be di¢ cult to explain to shareholders and

the general public, and might cause social unrest and higher wage demands. Moreover, there might

be concerns that executives try to in�uence the strike price of the option grants just as some appear

to have done in the recent backdating scandal. A commitment to using only at-the-money options

would reduce this rent-seeking activity, and our analysis shows that the costs of such a commitment

are low.

8 Optimal contracts when CEOs are loss averse

Our analysis in Section 5 shows that the RTI model can explain observed contracts reasonably well

and certainly much better than the benchmark model without risk-taking incentives. Dittmann,

Maug, and Spalt (2010) propose an alternative model without risk-taking incentives where the man-

ager is loss averse. They also calibrate the model to the data and show that it �ts the data reason-

ably well. In this section, we therefore compare the CRRA-RTI model and the loss-aversion model

(henceforth: LA model) and investigate whether the LA model can be further improved by taking

into account risk-taking incentives.

date to the vesting date (see Alexander, Hirschey, and Scholz, 2007). Our model does not distinguish between exercise
date and vesting date, so we cannot model this e¤ect.
23See Hall and Murphy (2000) for an alternative justi�cation of at-the-money strike prices.
24Australia is the only country for which we could �nd evidence that in-the-money options are commonly used. See

Rosser and Canil (2004).
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8.1 The standard loss-aversion model

Loss-aversion preferences are given by (see Tversky and Kahneman, 1992)

V LA (WT ) =

8<:
�
WT �WR

��
if WT �WR

��
�
WR �WT

��
if WT < W

R
; where 0 < �; � < 1 and � � 1: (25)

Here, WR is the agent�s reference wealth level. Payouts above this level are coded as gains, while

payouts below are coded as losses. The agent is risk-averse over gains and risk-seeking over losses,

and losses receive a higher weight (� > 1) than gains. The utility ULA(WT ; e) = V
LA(WT ) � C(e)

then replaces equation (2). Following Dittmann, Maug, and Spalt (2010), we use � = � = 0:88 and

� = 2:25 and parameterize reference wealth WR by

WR
2006 =W0 + �2005 + � �MV (nS2005; nO2005; P2006);

where MV (:) denotes the market value of last year�s stock and option portfolio evaluated at this

year�s market price. Reference wealth therefore equals the sum of non�rm wealth W0, last year�s

�xed salary �, and a portion � of today�s market value of the stock and options held last period.

Dittmann, Maug, and Spalt (2010) show that the model �ts the data best for � = 0:1 and we therefore

consider three values of �: 0:1, 0:5, and 0:9.

Figure 3 shows the LA contract for � = 0:1 together with the CRRA-RTI contract for 
 = 3 and

the observed contract for the representative CEO. Visual inspection shows that both models �t the

observed contract reasonably well. However, there are two important di¤erences: First, while the

LA contract is convex over all realistic stock price outcomes, the CRRA-RTI contract is concave for

medium and large stock prices. Second, the LA contract features a discontinous jump for very low

stock prices from a payout just above the reference point to the lowest possible payout of zero. As a

consequence, the LA model approximates the observed contract poorly for very small stock prices,

but seems to do a better job than the CRRA-RTI model for high stock prices.

[Insert Table 7 here]

Table 7 displays our results for the LA model for three di¤erent values of reference wealth as

parameterized by �. In addition to mean and median of the two distance metrics D1 and D2, and the

savings, the table shows the average probability that the terminal payout is zero (the "jump quantile")

and the in�ection quantile where the contract changes from convex to concave. We �nd that the
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Figure 3: The �gure shows end-of-period wealth WT of three di¤erent contracts for the same repre-
sentative CEO as Figure 1. The dotted line shows the observed contract; the solid line displays the
optimal CRRA contract with risk-taking incentives for 
 = 3; and the dashed line shows the optimal
LA contract for � = 0:1.

LA model with � = 0:1 approximates the observed contract better than the CRRA-RTI model with


 = 3. The median distance D1 is 4:3% for the LA model compared with 6:9% for the CRRA-RTI

model (see Table 3).25 For higher reference wealth, however, the LA model is considerably worse than

the RTI model for any of the risk-aversion parameters considered (
 = 0:5, 3, and 6). The reason is

that the probability that the CEO ends up with zero wealth is low only for very low reference wealth.

For � = 0:5, the average jump quantile is 3:47% and for � = 0:9 it is 9:36%. We therefore conclude

that the LA model is superior only for a rather speci�c choice of parameterization. In contrast, the

CRRA-RTI model o¤ers a reasonable approximation of the observed contract that is more robust to

changes in the preference parameter.

8.2 Risk-taking incentives in the loss-aversion model

CEO preferences are di¤erent in the loss-aversion model compared to the CRRA model. Hence,

risk-taking incentives di¤er between the two models. Table 8, Panel A displays descriptive statistics

of risk avoidance � in the LA model for the observed contract. A comparison with Table 2, Panel
25Across all models and all speci�cations, the CRRA-RTI model with 
 = 0:5 has the best �t. However, we do not

regard the CRRA model with 
 = 0:5 as reasonable, because the model then implies unrealistic portfolio decisions. A
CEO with 
 = 0:5 would borrow heavily and invest much more than his entire wealth into the market portfolio.
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A shows that risk avoidance in the observed contract is considerably lower if the CEO is loss-averse

than if he exhibits constant relative risk aversion. In the LA-model with � = 0:1, mean and median

� are both close to zero, and 48:7% of the CEOs have negative �, i.e. incentives to take on too much

risk. For larger values of �, � increases somewhat but is always much lower than the average 1:87 we

�nd for the CRRA-model with 
 = 3.

[Insert Table 8 here.]

Table 8, Panel B shows similar statistics for � in the LA contract. Risk-taking incentives do

not di¤er much between observed contracts and optimal contracts in the LA model. On average,

� decreases somewhat for � = 0:1 and � = 0:5, and increases slightly for � = 0:9. This is in stark

contrast to the CRRA model, where the optimal contract generates severely higher � compared to the

observed contract (see Table 2). The reason is that the cost e¤ective way to provide e¤ort incentives

in the CRRA-model is to punish the agent for very low outcomes, and this policy severely increases

risk avoidance. In the LA model, on the other hand, cost e¤ective e¤ort incentives consist not only

of sticks but also of carrots in the form of convex payouts for medium and high outcomes. While

the sticks reduce e¤ort incentives, the carrots increase them, and the overall e¤ect can go in both

directions. As a consequence, our assumption that the contract chosen by the �rm does not make

the CEO risk-seeking does not hold in general for the LA model.

To analyze risk-taking incentives in the loss-aversion model in more detail, we distinguish six

cases, depending on whether or not risk-avoidance is higher in the LA model than in the observed

contract and on whether one or both of the risk-avoidance measures are positive. Table 8, Panel C

de�nes these six cases and displays how often each of them applies for the three di¤erent values of �.

There are only two cases (cases 1 and 4) where risk-taking incentives are unambiguously worse in the

LA model than in the observed contract, so that augmenting the model with risk-taking incentives

might improve its �t. In cases 2 and 5, risk-taking incentives are better (i.e. � is closer to zero) in

the LA model than in the observed contract, so there is no room for improvements.

[Insert Table 9 here.]

The only case that is consistent with our assumptions is case 1. Note that for the CRRA model

with 
 = 3, 99:3% of all CEOs fall into this category (see Table 2). For this case, we derive the shape

of the optimal LA-RTI contract in Appendix C and then calibrate it to the observed contract for

those CEOs where case 1 applies. The results are shown in Table 9 which is structured similarly to
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Table 3. The table shows that the probability that the CEO ends up with zero wealth is much lower

for the LA-RTI model compared to the LA model. For � = 0:5, this probability decreases from 6:7%

to 3:1% on average. Removing the punishment for poor outcomes increases risk-taking incentives,

and the LA-RTI model has a slightly better �t than the LA model if � � 0:5. For � = 0:9, however,

the average distance metrics are higher for the LA-RTI model compared to the LA model. In many

cases, the optimal LA-RTI contract has a poor �t, because it is �at at the reference wealth for small

and intermediate payouts and takes o¤ with strong convexity only for high payouts. Altogether

we therefore conclude that the LA-RTI model does not yield any signi�cant improvements over the

LA model. We conclude that risk-taking incentives are less of an issue if managers are loss-averse,

because the LA model does not reduce risk-taking incentives nearly as much as the CRRA model.

9 Conclusions

In this paper we analyze a principal-agent model in which the agent not only exerts e¤ort but also

determines the �rm�s strategy and thereby its stock return volatility. In this model, the choice of

a more risky �rm strategy has two e¤ects on the manager�s compensation. The �rst, obvious e¤ect

is that higher volatility makes future payo¤s more risky, so that the utility a risk-averse manager

derives from restricted stock drops. This e¤ect has already been analyzed extensively in the literature

(see Lambert, Larcker and Verrecchia, 1991; Guay, 1999; Carpenter, 2000; Ross, 2004). The second

e¤ect that has so far been neglected by the empirical literature is that a more risky �rm strategy

also a¤ects expected �rm value. In a situation where the �rm takes ine¢ ciently low risk, risk-taking

increases �rm value and therefore, via the CEO�s equity portfolio, CEO wealth. While this is the

relevant situation in equilibrium when the CEO is risk-averse, there is another case that might apply

out of equilibrium or for alternative preference speci�cations, like loss-aversion. Then the �rm takes

ine¢ ciently high risk and risk-taking reduces �rm value and CEO wealth. Therefore, it is not enough

to just look at the direct impact of an increase in risk on a manager�s compensation package (vega)

in order to determine his attitude towards an increase in risk. The indirect e¤ect via a change in

�rm value and the manager�s equity portfolio (delta) must also be taken into account. Our paper

provides - to the best of our knowledge - the �rst empirical analysis of a full principal agent model

that takes both e¤ects into account. We also propose a new measure of risk-taking incentives that

combines the CEO�s preferences and the curvature of the contract and predicts which risky projects

the CEO will adopt.

Our model predicts an optimal contract that has a limited downside and a steep slope for inter-
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mediate outcomes. It is �at for low performance, increasing and convex for intermediate performance,

and increasing and concave for high performance. The optimal contract is therefore reminiscent of

a standard bonus scheme that is capped from below as well as from above (see Murphy, 2001, and

Healy, 1985). Our calibration results show that the model contract approximates the observed con-

tract well. Across all CEOs, the average distance between the two contracts is 8:0% for a CRRA

parameter of 3. In contrast, a model that does not take into account risk-taking incentives di¤ers

from the observed contract by 28:8%.

We also calibrate the loss-aversion (LA) model from Dittmann, Maug, and Spalt (2010) to our

data and �nd an average distance of 5:8% for a low reference point. For higher reference points,

however, the model is considerably worse than the risk-aversion model with risk-taking incentives

(CRRA-RTI). Altogether, it is therefore unclear which model is more successful. The main di¤erence

between the two models is that the LA model predicts a discontinuous jump to the lowest possible

payout for poor performance while the CRRA�RTI model predicts a �at payout. On the other

hand, the LA model is convex over all realistic outcomes whereas the CRRA�RTI model becomes

concave for high outcomes. Note that observed contracts are linear for high outcomes, so both models

necessarily have an approximation error. We also show that the �t of the LA model does not improve

much (and sometimes even gets worse) when risk-taking incentives are taken into account. While

risk-taking incentives are neccessary to explain observed contracts in the risk-aversion model, they

are not needed in the loss-aversion model.

A limitation of our analysis is that our model is static and considers only two points in time: the

time of contract negotiation and the time when the �nal stock price is realized. Realistically, a bad

or unlucky CEO is likely to be replaced if the stock price drops by more than 50%.26 Such a dismissal

has two consequences. First it might a¤ect �rm performance if the new CEO is more skilled than

the ousted CEO. This e¤ect is beyond the scope of our model, as at least two periods are necessary

to describe it. Second, dismissals negatively a¤ect the payout of the ousted CEO, mainly because it

reduces the CEO�s future employment opportunities. Our model predicts a �at pay for low levels of

stock price, so this negative e¤ect of a dismissal is undesirable. Consequently, our analysis can also

be interpreted as a justi�cation of severance pay that compensates the manager for his loss in human

capital (see Yermack, 2006).

26Coughlan and Schmidt (1985), Kaplan (1994), and Jenter and Kanaan (2010), among others, analyze the sensitivity
of dismissals to past stock price performance.
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Appendix A: Validity of the �rst-order approach

Like most of the theoretical literature on executive compensation, we work with the �rst order

approach: we replace the incentive compatibility constraint (6) by the two �rst-order conditions

(7) and (8). This approach is only valid if the utility which the agent maximizes has exactly one

optimum, and a su¢ cient condition is that this utility is globally concave. In our model, this su¢ cient

condition does not hold, and it is possible that the �rst-order approach is violated.

A violation of the �rst-order approach has two potential consequences. First, the agent might

choose a di¤erent combination of e¤ort e and volatility � than under the observed contract. The

reason is that our optimization routine only ensures that the pair fed; �dg (which is implemented

by the observed contract) remains a local optimum under the new contract, but we do not require

it to be the global optimum (see Lambert and Larcker (2004) and especially the discussion of their

Figure 1). Second, a violation of the �rst-order approach implies that there might be more than

one solution to the optimization problem. We tackle the second problem by repeating our numerical

optimizations with di¤erent starting values, but we do not �nd any indication that there are multiple

solutions for any CEO in our sample. In this appendix, we therefore concentrate on the �rst problem.

In particular, we analyze whether the agent has an incentive under the optimal contract W �(PT )

to shirk, i.e., to choose e¤ort e 6= ed or volatility � 6= �d such that P0(e; �) < P d0 = P0(e
d; �d).

We ignore deviations that lead to an increase of �rm value as shareholders are not likely to worry

about this case. For expositional convenience, we say that the �rst-order approach is violated if the

agent shirks under the optimal contract W �(PT ). In the remaining part of this appendix, we derive

two conditions under which the �rst-order approach is not violated. To simplify the argument, we

normalize P0(e = 0; �) = P0(e; � = 0) = 0 and C(e = 0) = 0.

Condition 1. The agent has no incentives to choose e = 0 or � = 0, i.e., E(V (W �
T )jP0 = 0) <

E(V (W �
T )jP0 = P d0 )� C(ed) = U .

The optimal contract W �
T from (10) features a lower bound on the payout to the agent. If this

lower bound is higher than the agent�s outside option U , the agent will not exert any e¤ort and will

choose the lowest feasible volatility. Consequently, the �rst-order approach is violated. Our �rst

condition therefore states that this is not the case. This assumption appears reasonable, because for

the median CEO the minimum payout ($1.4m, from Table 3, Panel A for 
 = 3) is only 5:6% of the

expected payout ($25.0m, from Table 1). The strong rise in executive compensation during the past

three decades has been attributed to a higher outside option or higher rents, but not to an increase
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in the costs of e¤ort. Therefore, Condition 1 is plausible: No CEO will stop working when he gets a

minimum payment of 5:6% of what he can expect with normal e¤ort.

Next, we consider more general (and less extreme) deviations from the target values of e¤ort ed

and volatility �d. We show that these deviations are not pro�table for the agent when Condition 1

and the following condition hold:

Condition 2. The production function P0(e; �) is concave enough, i.e., it is steep enough in e and

� for e < ed and � < �d and it is not too steep in e and � for e > ed and � > �d.

We distinguish three cases. First, consider a choice e � ed and � � �d, where e < ed or � < �d.

The agent will not deviate in this way if

E(V (W �
T )je; �)� C(e) < E(V (W �

T )jed; �d)� C(ed):

This inequality holds if the �rm value P0(e; �) associated with the deviation to (e; �) is low enough to

render this choice unattractive. This is the case if Condition 1 holds and if P0(e; �) is steep enough

in e and �.

The second case obtains if e < ed and � > �d. To rule out such a deviation, the punishment for

the downward deviation in e must not be fully compensated by the reward for the upward deviation

in �. This is achieved if P0(e; �) is steep enough in e for e < ed and not too steep in � for � > �d.

A similar argument applies to the third case if e > ed, � < �d.

Appendix B: Proof of Proposition 1

Note that the monotonicity constraint (4) must hold for every PT , so that it is actually a continuum

of in�nitely many restrictions. We �rst rewrite the restriction as a function of WT . Let h(:) be the

function that maps PT into WT : WT = h(PT ). Then PT = h�1(WT ), and
dWT
dPT

(PT ) = h
0(h�1(WT )).

Hence, (4) can be rewritten as

h0(h�1(WT )) � 0: (26)

For every WT , (4) provides one restriction, so the Lagrangian for the di¤erentiation at WT is:
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LWT
=

Z 1

0
[PT �WT ] g(PT je; �)dPT + �PC

�Z 1

0
V (WT ; e)g(PT je; �)dPT � C(e)� U

�
+ �e

�Z 1

0
V (WT )ge(PT je; �)dPT �

dC

de

�
+ ��

Z 1

0
V (WT )g�(PT je; �)dPT

+ �WT
h0(h�1(WT ));

where g(PT je; �) is the (lognormal) density function of end-of-period stock price PT :

g(PT je; �) =
1

PT
p
2��2T

exp[�(lnPT � �(e; �))
2

2�2T
] (27)

with

�(e; �) = lnP0(e; �) + (rf � �2=2)T: (28)

ge and g� are the derivatives of g(:) with respect to e and �. The �rst-order condition then is

g(PT je; �) = �PCVWT
g(PT je; �) + �eVWT

ge(PT je; �) + ��VWT
g�(PT je; �) (29)

+ �WT

h00(h�1(WT ))

h0(h�1(WT ))
:

While there is one multiplier �WT
for each value of WT , the other three multipliers �PC , �e, and

�� are the same across all values of WT . If the constraint (26) is binding, equation (29) de�nes the

Lagrange multiplier �WT
, and the solution is determined by the binding monotonicity constraint. If

(26) is not binding, �WT
is zero and the �rst-order condition (29) simpli�es with some rearranging

to
1

VWT
(WT )

= �PC + �e
ge
g
+ ��

g�
g
: (30)

Consequently, the solution is given by (30) as long as it is monotonically increasing, and �at otherwise.

For the log-normal distribution (27) we get:

ge = g �
lnPT � �(e; �)

�2T
� �e(e; �) (31)

g� = g �
[lnPT � �(e; �)] � ��(e; �) � �2T + [lnPT � �(e; �)]2�T

(�2T )2
� g

�

= g � [lnPT � �] � �� � � + [lnPT � �]
2

�3T
� g

�
: (32)

Substituting this into the �rst-order condition (30) yields:

1

VWT
(WT )

= �PC + �e
[lnPT � �] � �e

�2T
+ ��

�
[lnPT � �] � �� � � + [lnPT � �]2

�3T
� 1

�

�
:
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From inspection, the optimal wage contract can be written as (9) with parameters c0, c1, and c2:

c0 = �PC � �e
�e � �
�2T

� ��
�
� � ��
�2T

� �2

�3T
+
1

�

�
;

c1 = �e
�e
�2T

+ ��

�
��
�2T

� 2�

�3T

�
;

c2 = ��
1

�3T
� 0:

Equation (10) then follows immediately with V (WT ) =
W 1�

T
1�
 .�

Appendix C: Optimal loss aversion contract

Proposition 2. (Optimal LA contract): Under the assumptions that (i) the agent is loss-averse
as described in (2) and (25) and (ii) the stock price PT is lognormally distributed as described in (1),
the optimal contract W �(PT ) that solves the shareholders�problem (3), (4), (5), (7), and (8) is:

W �;LA
T =

(
WR + [ ew(PT )] 1

1�� if PT > bP
0 if PT � bP ; (33)

where ew(PT ) := c0 + c1 lnPT + c2(lnPT )2 and bP is the largest solution to

�WR = ew(PT )� �WR
��
+ (1� �) ( ew(PT )) 1

1�� : (34)

If no solution for bP exists to (34), the optimal contract is

W �;LA
T =

8<: WR + [ ew(PT )] 1
1�� if ln(PT ) > � c1

2c2

WR +
�
c0 � c21

4c2

� 1
1��

if ln(PT ) � � c1
2c2

: (35)

The parameters c0, c1, and c2 depend on the distribution of PT and the Lagrange multipliers of the
optimization problem, with c2 > 0.

Lemma 1 in Appendix A in Dittmann, Maug and Spalt (2010) continues to hold. This lemma

states that the optimal contract never pays o¤ in the interior of the loss space. Together with the

assumption that the optimal contract is monotonically increasing, this immediately implies that

either the contract pays out in the gain space only or there exists a cut-o¤ value bP such that the

optimal contract pays out in the gain space for all PT > bP and 0 for all PT < bP . We can therefore
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rewrite the optimization problem as:

minbP ;WT�WR

Z 1

bP WT g(PT je; �)dPT (36)

s:t:

Z 1

bP V (WT ) g(PT je; �)dPT + V (0)G( bP je; �) � U + C (e) ; (37)Z 1

bP V (WT ) ge(PT je; �)dPT + V (0)Ge( bP je; �) � C 0 (e) ; (38)Z 1

bP V (WT ) g�(PT je; �)dPT + V (0)G�( bP je; �) � 0: (39)

Here, G(PT ) is the cumulative distribution function of the lognormal stock price distribution. To

keep the proof simple, we do not add the monotonicity constraint to the program at this point.

Further below, we check whether the solution to this program satis�es the monotonicity constraint.

The derivative of the Lagrangian with respect to WT at each point PT � bP is:
@L
@WT

=g(PT je; �)� �PCV 0 (WT ) g(PT je; �)� �eV 0 (WT ) ge(PT je; �)

� ��V 0 (WT ) g�(PT je; �) (40)

Setting (40) to zero and solving gives the optimal contract in the gain space as:

V 0 (WT ) =

�
�PC + �e

ge (PT je; �)
g (PT je; �)

+ ��
g� (PT je; �)
g (PT je; �)

��1
: (41)

For the Tversky and Kahneman (1992) preferences (25) we can rewrite (41) as:

WT =W
R +

�
�

�
�PC + �e

ge (PT je; �)
g (PT je; �)

+ ��
g� (PT je; �)
g (PT je; �)

�� 1
1��

: (42)

Substituting the relevant expressions for the lognormal distribution from (31) and (32) and rearrang-

ing yields

WT =W
R +

�
c0 + c1 lnPT + c2(lnPT )

2
� 1
1�� ; (43)

where

c0 = ��PC � ��e
�e � �
�2T

� ���
�
� � ��
�2T

� �2

�3T
+
1

�

�
; (44)

c1 = ��e
�e
�2T

+ ���

�
��
�2T

� 2�

�3T

�
; (45)

c2 =
���
�3T

� 0: (46)

Equation (43) provides the shape of the optimal contract for P � bP - provided that it is monotonic.
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The optimal cut-o¤ point bP . To �nd bP we take the derivative of the Lagrangian with respect

to bP :
@L
@ bP =

�
�W ( bP )� g( bP je; �) + �PC �V (W ( bP ))� V (0)� g( bP je; �)
+ �e

�
V (W ( bP ))� V (0)� ge( bP je; �) + �� �V (W ( bP ))� V (0)� g�( bP je; �) (47)

=�
�
V (W ( bP ))� V (0)� g( bP je; �)

24 W ( bP )
V (W ( bP ))� V (0) � �PC � �e

ge

� bP je; ��
g
� bP je; �� � ��

g�

� bP je; ��
g
� bP je; ��

35 :
(48)

This derivative of the Lagrangian is zero if the term in squared brackets in (48) is zero. Substituting

equation (41) and rearranging yields:

@L
@ bP = 0, V (W ( bP ))� V (0)� V 0 �W � bP��W ( bP ) = 0: (49)

With Tversky and Kahneman (1992) preferences (25) we obtain:

�W ( bP )� � �WR
�� �

W ( bP )�WR
�1��

�
�
W ( bP )�WR

�
= 0: (50)

With (43) equation (50) becomes:

�WR =
�
c0 + c1 ln bP + c2(ln bP )2�� �WR

��
+ (1� �)

�
c0 + c1 ln bP + c2(ln bP )2� 1

1��
: (51)

This equation de�nes the threshold bP .
As the wage function WT from (43) is quadratic, the solution to condition (51) is not unique

and might even not exist at all. If no solution exists, the contract always pays o¤ in the gain space,

because paying o¤only in the loss space (i.e. always the minimum wealth 0) violates the participation

constraint. With the same argument as the one put forth in the proof of Proposition 1, the optimal

contract is then given by (43) as long as this function is monotone increasing. Otherwise, the optimal

contract is constant. This proves (35).

Condition (51) might have exactly one solution, but this is a non-generic case. Generically,

if there is one solution, there is also a second solution. Then the general LA contract pays out

in the gain space for very low and very high stock prices, while it pays the minimum wage for an

intermediate range. Due to the monotonicity constraint, however, the contract is forced to pay out

the minimum wage for all stock prices below the bigger of the two solutions to (51), and this proves

(33). �
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Appendix D: Calibration method

This appendix shows how the original optimization problem (3), (4), (7), and (8) can be transformed

into (18) to (21) which can be calibrated to the data. Our derivations are analogue to those in

Dittmann and Maug (2007). We start by rewriting the e¤ort incentive constraint (7) so that the

LHS of the equation does not contain any quantities that we cannot compute while the RHS does

not contain the wage function (see Jenter (2002)):

PPSua(WT (PT )) = E

�
dV (WT )

dWT

dWT

dP0

�
=
C 0(e)
dP0
de

(52)

Under the null hypothesis that the model is correct, the observed contract ful�lls this equation,

so that the e¤ort incentive constraint in our calibration problem can be written as (20). For the

volatility incentive constraint (8), equations (13) and (17) imply

�(WT (PT )) =
dP0
d�

1

P0
: (53)

Note that this equation again separates quantities that we cannot compute (dP0=d�) from quantities

that depend on the shape of the optimal contract (�). Under our null hypothesis, we therefore obtain

(21). For the participation constraint (5), we �rst note that it must be binding as CEO utility is not

downward restricted. If the constraint does not bind, we can shift the wage function downward until

it binds. Under the null hypothesis the participation constraint can then be written as (19).

Appendix E: Representing the observed contract

Let N be the number of option grants. Each grant i is characterized by the strike price Ki, the

maturity T i, and the number of options niO. We de�ne

W smth
T (PT ) := �e

rfT + nSPT e
dT +

NX
i=1

niOV (T
i;Ki; PT )e

rf(T�T i); (54)

where V (T i;Ki; PT ) = E
�
max

�
PT i �Ki; 0

	
jPT
�
. If T i > T , this is simply the Black-Scholes value

of the option i over the remaining maturity T i�T . If T i < T , we assume that the option is exercised

at time T i if it is in the money and that the proceeds are invested at the risk-free rate until time T . The

proceed at time T i from exercising the option is then V (T i;Ki; PT ) = E
�
max

�
PT i �Ki; 0

	
jPT ; P0

�
.

Note that, for each option grant i with T i < T , W smth
T (PT ) contains a separate integral with

respect to the stock price at T i conditional on PT . Therefore, D2 is an (m+1)-dimensional integral,

where m is the number of option grants with T i < T . As we cannot solve this numerically, we
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approximate D2 by a sum over 1,001 equally spaced stock prices PT over the range of stock prices

that covers 99.9% of the probability mass.

Appendix F: User�s guide on how to calculate risk avoidance �

This Appendix contains formulae for our measure of risk avoidance � from (17) that can be readily

implemented in a computer program. We start with a few de�nitions:

PC = P0 exp

��
rf � d�

�2

2

�
T

�
;

CV = �
p
T ;

TW = (�+W0) exp frfTg ;

MD2 =
ln(K)� ln(PC)

CV
;

With these de�nitions, we can calculate PPSua and �ua as follows:

PPSua =
PC

P0

�Z MD2

�1
(TW + nS exp fdTgPC exp fCV ug)�
 nS exp fdT + CV ug f(u)du

+

Z 1

MD2
(TW + (nS exp fdTg+ nO)PC exp fCV ug � nOK)�


(nS exp fdTg+ nO) exp fCV ug f(u)du]

�ua =

Z MD2

�1
(TW + nS exp fdTgPC exp fCV ug)�
 nS exp fdT + CV ug

PC
�
��T + u

p
T
�
f(u)du

+

Z 1

MD2
(TW + (nS exp fdTg+ nO)PC exp fCV ug � nOK)�
 (nS exp fdTg+ nO)

PC exp fCV ug
�
��T + u

p
T
�
f(u)du;

where f(u) is the standard normal density function. Our measure of risk avoidance then follows from

(17).

For a CEO with more than one option grant, the option portfolio must �rst be aggregated into

one representative option. We therefore numerically calculate the number of options nO, the strike

price K, and the maturity T so that the representative option has the same Black-Scholes value, the

same option delta, and the same option vega as the estimated option portfolio. Hence, we solved the
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following system of three equations in three variables:

nO �BS(P0;K; T; �; rf ) =
X

i
niO �BS(P0;Ki; 0:7T i; �; rf )

nO � delta(P0;K; T; �; rf ) =
X

i
niO � delta(P0;Ki; 0:7T i; �; rf )

nO � vega(P0;K; T; �; rf ) =
X

i
niO � vega(P0;Ki; 0:7T i; �; rf );

where niO, K
i, and T i are the number, the strike price, and the maturity of the ith option in the

CEO�s option portfolio. We multiply T i by 0.7 to correct for early exercise (see Footnote 11 above).
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Table 1: Description of the dataset 

This table displays mean, median, standard deviation, and the 10% and 90% quantile of the variables in our 
dataset. Stock holdings nS and option holdings nO are expressed as a percentage of all outstanding shares. 
Panel A describes our sample of 727 CEOs from 2006. Panel B describes all 1,490 executives in the 
ExecuComp universe who are CEO in 2006. 
 

Panel A: Data set with 727 U.S. CEOs 
 

Variable Mean Std. Dev. 10% Quantile Median 90% Quantile
Stock (%) nS 1.83% 4.94% 0.04% 0.32% 4.68% 
Options (%) nO 1.37% 1.62% 0.14% 0.92% 3.17% 
Base Salary ($m) φ 1.64 4.47 0.51 1.04 2.43 
Value of Contract ($m) π0 159.63 1,700.06 4.58 24.97 172.74 
Non-firm Wealth ($m) W0 62.8 667.0 2.5 12.0 72.2 
Firm Value ($m) P0 9,294 22,777 377 2,387 20,880 
Strike Price ($m) K 6,829 19,803 269 1,539 13,799 
Moneyness (%) K/P0 70.1% 21.7% 41.2% 72.0% 100.0% 
Maturity (years) T 4.6 1.4 2.8 4.4 6.4 
Stock Volatility (%) σ 30.0% 13.4% 16.4% 28.3% 45.5% 
Dividend Rate (%) d 1.24% 2.25% 0.00% 0.63% 3.30% 
CEO Age (years)  56.0 6.8 47 56 64 
Stock Return 2001-5 (%) 11.8% 15.6% -5.7% 11.4% 28.7% 
 

Panel B: All 1,490 ExecuComp CEOs in 2006 
 

Variable Mean Std. Dev. 10% Quantile Median 90% Quantile
Stock (%) nS 1.95% 6.26% 0.02% 0.28% 4.22% 
Options (%) nO 1.26% 1.57% 0.08% 0.79% 2.88% 
Base Salary ($m) φ 1.68 4.01 0.48 1.02 2.63 
Firm Value ($m) P0 8,840 24,760 339 2,091 17,796 
CEO Age (years)  55.1 7.1 46 55 64 
Stock Return 2001-5 (%) 10.5% 23.2% -13.8% 9.8% 34.1% 
 



 
 

41

Table 2: Risk avoidance with Constant Relative Risk Aversion (CRRA) 

This table displays descriptive statistics for risk avoidance ρ from equation (17) for five different values of 
the CRRA-parameter γ. Panel A shows results for the observed contract. Panel B displays results for the 
optimal CRRA-contract that does not take risk-taking into account. 
 

Panel A: Observed contract 
 

γ Obs. Mean 
Standard 
Deviation

10% 
Quantile 

Median 
90% 

Quantile 
Proportion  
with ρ > 0 

0.5 727 0.19 0.39 -0.30 0.19 0.64 70.2% 
1 727 0.62 0.56 -0.08 0.59 1.31 87.5% 
2 727 1.33 0.86 0.30 1.25 2.43 96.8% 
3 727 1.87 1.07 0.60 1.75 3.38 99.3% 
6 727 2.91 1.50 1.13 2.68 4.88 99.7% 

 
Panel B: Optimal CRRA-contract without risk-taking incentives 

 

γ Obs. Mean 
Standard 
Deviation

10% 
Quantile 

Median 
90% 

Quantile 
Proportion  
with ρ > 0 

0.5 727 1.32 0.63 0.62 1.26 2.11 99.9% 

1 726 2.40 1.12 0.99 2.40 3.71 100.0% 

2 727 5.74 18.92 3.64 6.71 8.58 99.9% 

3 726 9.43 17.21 6.75 10.34 13.02 99.7% 

6 652 12.04 7.25 0.02 15.02 18.77 99.4% 
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Table 3: Optimal CRRA contracts  
with and without risk-taking incentives 

This table describes the optimal contracts according to the CRRA-RTI model from equation (10) and the 
CRRA model from Dittmann and Maug (2007) for three different values of the CRRA parameter γ. The 
table displays mean and median of six measures that describe the optimal contract. The two distance 
metrics D1 and D2 are definied in equations (22) and (23). Savings are the difference in compensation costs 
between observed contract and optimal contract expressed as a percentage of costs of the observed contract, 
(π0

d – π0*)/π0
d. Minimum wealth is the lowest possible payout of the contract expressed as a multiple of the 

CEO’s nonfirm wealth W0. The kink quantile is the probability that the end-of-period stock price PT is 
smaller than the point where the wage schedule W(PT) starts to increase. The inflection quantile is the 
probability that the end-of-period stock price PT is smaller than the point where the wage scheme turns 
from convex to concave. Panel A displays these statistics for all CEOs in our sample. The number of 
observations varies across different values of γ and across the two models due to numerical problems and 
because we exclude all CEO-γ-combinations for the CRRA-RTI model for which the observed contract 
implies negative risk-avoidance ρ from equation (17). Panel B shows results for those CEO-γ-combinations 
where we obtain convergence for both models. 
 

Panel A: All results 

  CRRA-RTI-Model  CRRA-Model 

    γ = 0.5 γ = 3 γ = 6  γ = 0.5 γ = 3 γ = 6 

Distance D1 mean 2.5% 8.0% 13.1%  14.2% 28.8% 36.5%

 median 1.9% 6.9% 10.2% 12.1% 27.9% 30.9%

Distance D2 mean 5.8% 8.6% 13.1%  12.7% 26.2% 35.6%

  median 4.0% 7.4% 9.7%  10.9% 25.2% 30.3%

Savings mean 0.1% 10.4% 30.6% 2.1% 34.7% 53.7%

 median 0.0% 6.9% 27.1% 1.1% 32.7% 54.3%

Minimum wealth mean 3.1 1.7 1.3  0.0 0.0 0.0

 median 1.3 1.4 1.2 0.0 0.0 0.0

  Prop < 1 11.9% 0.1% 0.8%  100.0% 100.0% 100.0%

Kink quantile mean 4.8% 19.6% 22.4% 0.0% 0.0% 0.0%

 median 1.7% 16.1% 19.5% 0.0% 0.0% 0.0%

Inflection quantile mean 78.1% 34.9% 31.4%  2.1% 0.0% 0.0%

  median 77.7% 32.5% 29.3%  0.0% 0.0% 0.0%

Observations   388 688 373  727 726 652
 

Panel B: Results where numerical routine converges for both models 

  CRRA-RTI-Model  CRRA-Model 

    γ = 0.5 γ = 3 γ = 6  γ = 0.5 γ = 3 γ = 6 

Distance D1 mean 2.5% 8.0% 13.5% 13.8% 28.3% 27.0%

 median 1.9% 6.9% 10.7% 11.9% 27.5% 25.0%

Distance D2 mean 5.8% 8.6% 13.5% 13.0% 25.7% 26.7%

  median 4.0% 7.4% 10.2% 11.1% 24.8% 24.8%

Savings mean 0.1% 10.4% 31.2% 1.7% 34.5% 54.0%

 median 0.0% 6.9% 28.2% 1.0% 32.1% 55.3%

Observations   388 688 334 388 688 334
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Table 4: Optimal contracts for CARA utility 

This table contains the results from repeating our analysis from Table 3 under the assumption that the CEO 
has CARA utility. For three different values of γ, we calculate the CEO’s coefficient of absolute risk 
aversion ρ as 0 0/ ( exp( ) )fW r Tρ γ π= + , where 0π is the market value of his observed compensation 

package and W0 is his initial non-firm wealth. The table displays mean and median of six measures that 
describe the optimal contract. The two distance metrics D1 and D2 are definied in equations (22) and (23). 
Savings are the difference in compensation costs between observed contract and optimal contract expressed 
as a percentage of costs of the observed contract, (π0

d – π0*)/π0
d. Minimum wealth is the lowest possible 

payout of the contract expressed as a multiple of the CEO’s nonfirm wealth W0. The kink quantile is the 
probability that the end-of-period stock price PT is smaller than the point where the wage schedule W(PT) 
starts to increase. The inflection quantile is the probability that the end-of-period stock price PT is smaller 
than the point where the wage scheme turns from convex to concave. The number of observations varies 
across different values of γ due to numerical problems and because we exclude all CEO-γ-combinations for 
the CARA-RTI model for which the observed contract implies negative risk-avoidance ρ from equation 
(17). Results are shown for those CEO-γ-combinations only where we obtain convergence for both models. 
 

  CARA-RTI-Model  CARA-Model 

    γ = 0.5 γ = 3 γ = 6  γ = 0.5 γ = 3 γ = 6 

Distance D1 mean 6.8% 9.3% 12.7%  22.2% 23.1% 24.6% 

 median 5.7% 8.9% 12.4%  19.7% 22.6% 24.3% 

Distance D2 mean 9.2% 9.8% 12.8%  20.5% 20.4% 23.1% 

  median 7.7% 9.1% 11.9%  18.1% 19.5% 22.7% 

Savings mean 2.4% 15.1% 25.8%  6.3% 27.4% 39.9% 

 median 0.9% 12.1% 24.8%  3.7% 26.0% 40.2% 

Minimum wealth mean 2.9 2.2 2.0  0.0 0.0 0.0 

 median 1.5 1.4 1.4  0.0 0.0 0.0 

  Prop < 1 0.0% 0.0% 0.0%  100.0% 100.0% 100.0% 

Kink quantile mean 20.7% 22.9% 18.2%  0.0% 0.0% 0.0% 

 median 17.2% 19.3% 14.7%  0.0% 0.0% 0.0% 

Inflection quantile mean 54.6% 36.6% 26.1%  0.0% 0.0% 0.0% 

  median 52.6% 33.7% 22.8%  0.0% 0.0% 0.0% 

Observations   279 419 594  279 419 594 
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Table 5: Model fit for subsamples 

This table shows mean distance D1 from equation (22) for quintiles formed according to four variables: 
initial non-firm wealth W0, CEO age, firm value P0, and the past five year stock return (from the start of 
2001 to the end of 2005). The risk-aversion parameter γ is set equal to 3. The last row shows the p-value of 
the two-sample Wilcoxon signed rank test that the average D1 is identical in Quintile 1 and Quintile 5. 
 

Wealth W0  
(in $m) 

  CEO Age  
Firm Value P0  

(in $m) 
 

Stock return  
2001-2005 

Quin
-tile 

Mean D1   Mean D1  Mean D1  Mean D1 
1 2.6 11.4% 41.9 11.7% 386 8.7% -18.8% 7.5% 
2 6.6 7.8% 48.1 9.4% 1,135 8.5% 3.6% 6.8% 
3 12.3 7.5% 52.5 8.1% 2,358 8.1% 11.3% 7.5% 
4 26.1 6.8% 57.0 7.0% 5,648 7.2% 18.9% 8.5% 
5 270.1 6.8% 64.6 7.6% 32,685 7.8% 43.5% 10.6% 

P-Value Q1-Q5 0.0000  0.0040  0.9583  0.0001 
 
 
 
Table 6: Optimal contracts that consist of salary, stock, and options 

This table describes the optimal piecewise linear contract for three different values of the CRRA parameter 
γ. The table displays mean and median of the four contract parameters: base salary φ*, stock holdings nS*, 
option holdings nO*, and the moneyness, i.e. the option strike price K* scaled by the stock price P0. Savings 
are the difference in compensation costs between observed contracts and optimal contracts as a percentage 
of total (observed) pay: (π0

d – π0*)/π0
d. The number of observations varies across different values of γ 

because we exclude all CEO-γ-combinations for which the observed contract implies negative risk-
avoidance ρ from equation (17). 
 

    γ = 0.5 γ = 3 γ = 6 

mean 5.15 8.19 6.64 Salary φ* 

median 1.24 3.23 2.76 

mean 0.45% 0.08% 0.20% Stock nS* 

median 0.00% 0.00% 0.00% 

mean 2.38% 2.22% 1.41% Options nO* 

median 1.37% 1.32% 1.03% 

mean 51.4% 51.7% 45.0% Moneyness 
K*/P0 median 52.1% 51.9% 45.3% 
 Prop.<K/P0 83.3% 99.2% 99.8% 

mean 0.1% 4.1% 15.4% Savings 

median 0.0% 1.9% 10.9% 

Observations 102 632 552 
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Table 7:  

Optimal loss aversion contracts without risk-taking incentives 

This table describes the optimal contract according to the LA model from Dittmann, Maug, and Spalt 
(2010) for three different levels of reference wealth WR parameterized by θ. The table displays mean and 
median of five measures that describe the optimal contract. The two distance metrics D1 and D2 are definied 
in equations (22) and (23). Savings are the difference in compensation costs between observed contract and 
optimal contract expressed as a percentage of costs of the observed contract, (π0

d – π0*)/π0
d. The jump 

quantile is the probability that the end-of-period stock price PT is smaller than the point where the contract 
jumps from the lowest possible payout to some payout above the reference wealth. The inflection quantile 
is the probability that the end-of-period stock price PT is smaller than the point where the wage scheme 
turns from convex to concave. The number of observations varies across different values of θ due to 
numerical problems. 
 

    θ = 0.1 θ = 0.5 θ = 0.9 

Distance D1 mean 5.8% 19.0% 31.7% 
 median 4.3% 15.9% 29.0% 

Distance D2 mean 6.4% 17.6% 28.6% 
  median 4.5% 15.4% 26.3% 

Savings mean 0.8% 4.8% 9.5% 
 median 0.1% 3.8% 8.4% 

Jump quantile mean 0.25% 3.47% 9.36% 
  median 0.00% 1.80% 7.79% 

Inflection quantile mean  100% 100% 100% 
 median 100% 100% 100% 

Observations   715 676 586 
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Table 8: Risk avoidance when managers are loss averse 

This table displays descriptive statistics for risk avoidance ρ from equation (17) for three different levels of 
reference wealth WR parameterized by θ. Panel A shows results for the observed contract. Panel B displays 
results for the optimal LA contract that does not take risk-taking into account. Panel C defines six cases for 
changes in risk avoidance from the observed contract to the optimal LA contract and reports the relative 
frequency with which these cases apply for each of the three levels of reference wealth. 
 

Panel A: Observed contract 
 

θ Obs. Mean 
Standard 
Deviation

10% 
Quantile 

Median 
90% 

Quantile 
Proportion  
with ρ > 0 

0.1 727 -0.04 0.28 -0.44 0.01 0.27 51.3% 
0.5 727 0.27 0.37 -0.24 0.31 0.72 76.2% 
0.9 727 0.41 0.38 -0.12 0.46 0.87 84.6% 

 
Panel B: Optimal LA contract 

 

θ Obs. Mean 
Standard 
Deviation

10% 
Quantile 

Median 
90% 

Quantile 
Proportion  
with ρ > 0 

0.1 715 -0.16 0.63 -0.67 -0.22 0.25 30.8% 
0.5 676 -0.13 1.01 -1.06 -0.34 0.88 34.0% 
0.9 586 0.55 1.38 -1.30 0.62 2.21 71.8% 

 
Panel C: Changes in risk avoidance 

 

θ Obs. 

Case 1: 
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ρ
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0.1 715 13.0% 10.5% 27.6% 29.5% 12.2% 7.3% 
0.5 676 15.2% 11.2% 50.7% 12.9% 2.4% 7.5% 
0.9 586 44.0% 17.6% 24.2% 2.7% 1.2% 10.2% 
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Table 9: Optimal LA contracts with and without risk-taking incentives 

This table describes the optimal contracts according to the LA-RTI model from equations (33), (34), and 
(35) and the LA model from Dittmann, Maug, and Spalt (2010) for three different levels of reference 
wealth WR parameterized by θ. The table displays mean and median of five measures that describe the 
optimal contract. The two distance metrics D1 and D2 are definied in equations (22) and (23). Savings are 
the difference in compensation costs between observed contract and optimal contract expressed as a 
percentage of costs of the observed contract, (π0

d – π0*)/π0
d. The jump quantile is the probability that the 

end-of-period stock price PT is smaller than the point where the contract jumps from the lowest possible 
payout to some payout above the reference wealth. The inflection quantile is the probability that the end-of-
period stock price PT is smaller than the point where the wage scheme turns from convex to concave. The 
number of observations is small and varies across different values of θ, because we only consider the CEOs 
from Case 1 in Table 2, Panel C. In the other cases, either our model assumptions are violated or the 
optimal LA and LA-RTI contracts are identical. We also lose some observations due to numerical 
problems. 
 

  LA-RTI-Model  LA-Model 

    θ = 0.1 θ = 0.5 θ = 0.9  θ = 0.1 θ = 0.5 θ = 0.9 

Distance D1 mean 2.1% 20.6% 43.0% 2.2% 21.8% 37.3%

 median 0.7% 17.4% 37.7% 1.0% 19.4% 37.1%

Distance D2 mean 2.2% 18.9% 37.4% 2.2% 20.0% 33.5%

  median 0.8% 15.3% 32.3% 1.3% 17.5% 32.8%

Savings mean 0.4% 7.3% 8.7% 1.1% 8.3% 11.2%

 median 0.0% 7.5% 8.8% 0.0% 8.0% 10.4%

Jump quantile mean 0.1% 3.1% 5.3% 0.3% 6.7% 14.3%

 median 0.0% 0.0% 0.1% 0.0% 5.4% 13.5%

Inflection quantile mean 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

  median 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Observations   75 85 182 75 85 182

 


