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Abstract

The gambler’s fallacy (Rabin, 2002) predicts that trends bias investor expectations.
Consistent with this prediction, we find that investors underreact to streaks of consecutive
earnings surprises with the same sign. When the most recent earnings surprise extends a
streak, post-earnings announcement drift is strong and significant. In contrast, the drift
is negligible following the termination of a streak. Indeed, streaks explain the majority of
post-earnings announcement drift in our sample. Our results are robust to more general
definitions of trends than streaks and a battery of control variables including the magnitude
of earnings surprises and their autocorrelation. Overall, the cross-sectional post-earnings
announcement drift anomaly has a significant time-series component that is consistent with

the gambler’s fallacy.
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1 Introduction

The quasi-Bayesian model of Rabin (2002) demonstrates that the order in which prior information
is received can influence investor expectations. In particular, Rabin predicts that investors
underreact to trends as a result of the gambler’s fallacy. A classic example of this fallacy is
when gamblers at a roulette wheel incorrectly believe that black is more likely to occur than
red following a string of red draws. Intuitively, the gambler’s fallacy is the belief that trends
require immediate “balancing” by the opposite outcome. The justification for such balancing is
to ensure the distribution of prior outcomes reverts towards a more symmetric distribution that
conforms to one’s prior beliefs.

Durham, Hertzel, and Martin (2005) report evidence of the gambler’s fallacy in their study of
college football wagers. In an experimental setting, Asparouhova, Hertzel, and Lemmon (2009)
find stronger support for Rabin’s gambler’s fallacy than the representativeness bias assumed by
Barberis, Shleifer, and Vishny (1998), abbreviated BSV hereafter. While the gambler’s fallacy
predicts an underreaction to trends, the representativeness bias results in the incorrect belief
that trends will continue, with this extrapolation resulting in an overreaction to trends. To
our knowledge, we are the first to test the conflicting predictions of the gambler’s fallacy and
representativeness using quarterly firm-level earnings surprises. The frequency and salience of
quarterly earnings surprises provides an ideal setting to test whether trends bias investor ex-
pectations. Indeed, BSV illustrate their model by conditioning investor expectations on prior
earnings surprises.

Our main definition for a trend is a streak of consecutive earnings surprises with the same

L Our first trading strategy ignores the magnitude of earnings surprises and buys stocks

sign.
with positive streaks while selling stocks with negative streaks. This strategy is also implemented
for reversals, which occur when the most recent earnings surprise is of the opposite sign as the
preceding streak. Thus, reversals signify the termination of streaks. Over a six-month holding

period, a four-factor alpha of 0.603% per month is obtained from buying stocks with positive

streaks and selling stocks with negative streaks where the respective streak lengths are at least

LA robustness test examines a more general definition of trends involving the imbalance between positive and
negative prior earnings surprises. This alternative trend definition produces similar empirical results. Therefore,

we focus our exposition on streaks for ease of interpretation and brevity.



two. In contrast, the returns from conditioning on reversals are insignificant. The economically
and statistically significant risk-adjusted return from conditioning on streaks is available despite
our sample consisting of relatively large stocks with analyst coverage. Furthermore, the positive
risk-adjusted return from this trading strategy supports the gambler’s fallacy as investors appear
to underreact to streaks. Underreaction coefficients that compare announcement period returns
with returns over a longer subsequent horizon (Cohen and Frazzini, 2008; DellaVigna and Pollet,
2009) provide further evidence that investors underreact to streaks.

Our second trading strategy accounts for the magnitude of the most recent earnings surprise.
After sorting firms into quintiles according to the magnitude of their most recent earnings sur-
prise, we further subdivide these quintiles into subportfolios of streaks and reversals. We then
buy stocks with positive streaks in the highest quintile and sell stocks with negative streaks in
the lowest quintile. This strategy yields a four-factor adjusted return of 0.882% per month. Once
again, an insignificant return is obtained from conditioning on reversals (0.044%). The return
difference between conditioning on streaks and reversals is 0.838% (¢ = 5.75). Fama-MacBeth
regressions confirm the marginal return predictability of streaks after accounting for a battery
of control variables that include lagged earnings surprises. Therefore, the greater return pre-
dictability of streaks relative to reversals is not attributable to the return continuation induced
by similar-signed earnings surprises before the most recent quarter.

We also examine conditional sorts to determine whether the magnitude of earnings surprises
within streaks and reversals have different return implications. After forming streak and reversal
portfolios, we sort stocks into quintiles according to the magnitude of their most recent earnings
surprise. This conditional double-sort reveals that post-earnings announcement drift (PEAD) is
concentrated within streaks. We find no evidence that PEAD is significant within the reversal
portfolio. Indeed, when we construct a streak “factor” from the monthly long minus short return
of our first trading strategy, this factor reduces PEAD’s four-factor alpha by over 70% and
highlights the significant time series component underlying this cross-sectional anomaly.

The existing literature has examined the contemporaneous impact of streaks on stock prices.
Barth, Elliot, and Finn (1999) as well as Myers, Myers, and Skinner (2007) document that firms
with increasing earnings have higher valuations but large price reversals following the termina-

tion of earnings increases. Ke, Huddart, and Petroni (2003) report that insiders and institutions



anticipate the termination of streaks. However, these studies focus on the contemporaneous im-
plications of streaks. In contrast, our investigation focuses on future returns by implementing
calendar-time trading strategies that capture return predictability. Moreover, prior results that
find greater contemporaneous price reactions to reversals than streaks are consistent with the
gambler’s fallacy. Indeed, investor underreactions have the opposite implications for contempo-
raneous versus future price movements; a muted contemporaneous price reaction followed by a
larger delayed reaction. Our paper is further distinguished from the existing literature given our
focus on analyst-based earnings surprises that account for earnings predictability. Chan, Frankel,
and Kothari (2004) confine their study to streaks consisting of four consecutive quarters of above-
median (below-median) earnings growth relative to the entire cross-section of firms. In contrast,
our use of analyst-based earnings surprises better conforms to the assumptions underlying the
theories of BSV and Rabin. Another related branch of literature explores the relationship be-
tween streaks and order flow. Frieder (2008) concludes that positive earnings streaks lead to the
initiation of small buy trades. However, Battalio and Mendenhall (2005) report limited success
at explaining PEAD using small trades while Shanthikumar (2009) reports that large trades are
not initiated by streaks. Instead of examining the microstructure implications of streaks, our
paper examines their implications for return predictability.

An alternative interpretation of our findings is that earnings surprises are positively autocor-
related and investors underestimate this autocorrelation. Bernard and Thomas (1990) hypothe-
size that PEAD is caused by investors underestimating the autocorrelation in realized earnings
changes. Our analyst-based earnings surprises are less autocorrelated than earnings surprises
defined by realized earnings changes since analysts can incorporate earnings predictability into
their forecasts. Nonetheless, we test this alternative explanation by examining whether streaks
predict returns better than reversals for firms that have autocorrelated earnings surprises. Au-
tocorrelation is assessed using the runs test as well as an autoregressive model with four lags.
After classifying firms into subsamples depending on whether their earnings surprises are au-
tocorrelated or independent, we find that investors underreact more to streaks than reversals
in both subsets. Thus, the gambler’s fallacy, rather than autocorrelation, is driving the return
predictability of streaks. This result is also consistent with Rabin and Vayanos (2010) who show

that the gambler’s fallacy can induce underreaction to trends even within autocorrelated signals.



Besides streaks, we also examine a more general definition of trends that relies on consistency
within the sign of prior earnings surprises. Under the consistency criteria, a trend occurs when
the most recent quarterly earnings surprise has the same sign as the majority of prior earnings
surprises. Thus, when the majority of a firm’s prior earnings surprises are positive, a positive
earnings surprise produces a positive trend while a negative earnings surprise produces a negative
reversal. We examine imbalances defined by the majority (50%) of earnings surprises over 2, 3,
and 5 year horizons as well as a firm’s entire history of earnings surprises. Imbalances proxy
for the likelihood functions underlying the quasi-Bayesian theories that motivate our empirical
tests.? We continue to find that trends predict returns significantly better than reversals using
the consistency-based definition of trends.

Finally, we also examine whether the gambler’s fallacy is unconditionally weaker for long
streaks. Rabin predicts the gambler’s fallacy is undermined by the hot-hands phenomena when
investors update their beliefs after observing a long streak. However, we find no unconditional
evidence of the hot-hands phenomena. Intuitively, investors do not appear to update their beliefs
regarding future earnings growth after observing long streaks. This property is consistent with
investors having strong prior beliefs that earnings growth will mean-revert in the long-term.
We further examine whether the gambler’s fallacy is conditionally weaker for long streaks when
investors have diffuse priors regarding future earnings. In our empirical setting, we proxy for
such diffuse priors using high earnings volatility and high analyst forecast dispersion. Consistent
with Rabin’s prediction, we find weaker evidence of the gambler’s fallacy following long streaks
in the subset of firms with high earnings volatility and high forecast dispersion.

The remainder of this paper begins in Section 2 with a discussion of the relevant theory.
Section 3 then describes the data underlying our empirical tests. The results of these empirical
tests are contained in Section 4 while Section 5 details their robustness. Section 6 contains our

conclusions.

2Note that this consistency definition encompass streaks as a special case. For example, a streak of four
consecutive positive surprises requires the most recent surprise to be positive while also requiring the positive

imbalance in the prior three surprises to equal its maximum of 100%.



2 Motivation

Rabin and BSV assume that the interpretation of a signal is influenced by the sign of previous
signals. In our empirical study, an underreaction to a trend has investors discounting the most
recent earnings surprise’s importance to future earnings, while an overreaction to a trend has
investors magnifying its importance to future earnings.

The gambler’s fallacy in Rabin posits an underreaction to trends. This fallacy arises from
an informative prior regarding the likelihood of positive and negative signals, such as the belief
that the long-term distribution is 50% positive and 50% negative.> The gambler’s fallacy causes
Rabin’s investor to expect a trend to reverse. Intuitively, Rabin’s investor believes that trends
require immediate “balancing” by future signals of the opposite sign. While this belief is correct
when the number of signals is large, it does not necessarily hold true for a small number of
signals. Indeed, the gambler’s fallacy is also known as the law of small numbers. The resulting
underreaction to trends yields the empirical prediction of more pronounced drifts after trends
than after reversals.

In contrast to Rabin, BSV assume that representativeness causes investors to expect a contin-
uation of trends. This extrapolation induces an overreaction to trends that differs from Rabin’s
prediction. To ensure that stock prices eventually converge to their true value, the return im-
plications of trends and reversals are equal in absolute magnitude but of the opposite sign in
BSV’s model. In contrast, long-term returns reversals are not required to correct mispricings
attributable to investors underreactions. Asparouhova, Hertzel, and Lemmon (2009) emphasize
the disparity between the empirical predictions of the gambler’s fallacy and representativeness.
Although the empirical market in Bloomfield and Hales (2002) provides empirical support for
BSV’s predictions, Asparouhova, Hertzel, and Lemmon’s (2009) revised experiment supports the
predictions of Rabin.

Quarterly earnings surprises provide an ideal proxy for public signals. Indeed, these signals
motivate BSV’s theoretical model. Furthermore, earnings surprises defined by analyst forecasts

are less autocorrelated than earnings surprises defined by realized earnings since earnings pre-

3 Active institutional investors are expected to have strong prior beliefs regarding the future earnings of indi-

vidual firms since these priors determine their deviations from a benchmark portfolio.



dictability can be incorporated into analyst forecasts.

3 Data

Our sample of quarterly earnings forecasts is from Thomson Financial’s Institutional Brokers
Estimate System (I/B/E/S) from 1984 to 2009. For I/B/E/S, the U.S. Summary unadjusted file
is used to mitigate the problem of imprecise forecasts caused by I/B/E/S’ practice of rounding to
the nearest cent when adjusting historical consensus forecasts after stock splits (Diether, Malloy,
and Scherbina, 2002).

Monthly returns are obtained from CRSP for stocks classified as ordinary shares (share codes
10 or 11). Delisting returns are added from the CRSP delisting file. When the delisting return is
missing, we adopt the convention in Shumway (1997) and use -30% if the corresponding delisting
code is performance-related. Firms in the sample are required to have a non-negative book-
to-market (BM) ratio. Book equity is calculated following Fama and French (2006). A firm’s
BM ratio is updated every 12 months beginning in July where B denotes its book equity for
the fiscal year ending in the preceding calendar year and M denotes its December-end market
capitalization from the preceding calendar year. Earnings surprises denoted SURP are computed
as actual quarterly earnings minus the most recent mean consensus forecast of analysts for that
quarter. This difference is then normalized by the firm’s stock price at the end of the prior month.
Actual earnings are from I/B/E/S. Our primary definition for a trend is a streak of at least two
consecutive earnings surprises with the same sign while a reversal occurs upon the termination
of a streak of at least two. A more general definition for trends involving the imbalance between
positive and negative prior earnings surprises is evaluated in a later robustness test.

Panel A of Table 1 describes our sample. The average SURP in our 1984 to 2009 sample
period is -0.052. When classifying SURPs as a streak or reversal, our sample begins in 1987 to
obtain three years of prior earnings surprises. Differences in the book-to-market, size, and past
returns (PRET) between streaks and reversals are reported in Panel B. PRET denotes buy-and-
hold returns over the past twelve months after omitting the most recent month. Additional firm
characteristics include Amihud’s (2002) illiquidity measure (Amihud), percentage of institutional

ownership (IO) defined by a firm’s most recent quarterly 13f filing, and turnover. Amihud’s



illiquidity measure is computed in the month prior to portfolio formation as a firm’s average daily
absolute return divided by the dollar volume (in millions). Turnover is defined as the average daily
number of shares traded normalized by the number of shares outstanding, and is also computed
in the month before portfolio formation. For NASDAQ firms, volume is adjusted to account for
inter-dealer double-counting as in Gao and Ritter (2010). The firm characteristics are computed
as Fama-MacBeth averages. Specifically, the characteristics within each portfolio are averaged
each month before computing the time-series averages of each portfolio. Although differences
between the firm characteristics of streaks and reversals are statistically significant, several of
these differences are unlikely to have economic consequences. Nonetheless, for completeness, we
control for the firm characteristics in Panel B of Table 1 in later cross-sectional regressions.
After sorting stocks into quintiles according the magnitude of their most recent earnings
surprise, stocks are then separated into subportfolios containing streaks and reversals. For each
subportfolio, Panel A of Table 2 reports the number of positive versus negative SURPs while
Panel B reports on the average SURP magnitude within each quintile. In general, positive
streaks (reversals) occur more frequently than negative streaks (reversals) according to Panel
A. However, Panel B indicates that negative SURPs are larger in absolute value than positive
SURPs, a property that is consistent with the average SURP in Panel A of Table 1 being negative.
To benchmark the returns from our trading strategies, we compute risk-adjusted returns using
the three-factor (Fama and French, 1993) and four-factor models as well as the characteristic

portfolio prodcedure of Daniel, Grinblatt, Titman, and Wermers (1997) abbreviated DGTW.4

4Every July, firms are first sorted into quintiles based on their market capitalization on June 30" of each year
using NYSE break-points. Second, within each size portfolio, firms are then sorted into quintiles according to
their BM ratios. Third, firms within each double-sorted size-BM portfolio are sorted once more into momentum
quintiles every month based on their buy-and-hold return over the prior twelve months while omitting the most
recent month (Jegadeesh and Titman, 1993). Therefore, the size and BM rankings are updated annually while
the momentum rankings are updated monthly. Finally, equally-weighted monthly returns are computed within

each characteristic portfolio.



4 Empirical Results

This section reports on the calendar-time returns from two trading strategies. The first is derived
exclusively from the sign of prior earnings surprises while the second also conditions on the
magnitude of the most recent earnings surprise. Fama-MacBeth (1973) regressions involving
individual firm returns and characteristics then re-examine the portfolio-level results from these

trading strategies.

4.1 Streaks

We begin by examining the returns following streaks in earnings surprises of various lengths and
their subsequent reversals. A streak is defined by earnings surprises having the same sign in
consecutive quarters.® Equally-weighted monthly returns following positive streaks and negative
streaks are first computed over six-month holding periods. The time-series averages of these
returns are then recorded along with the returns following positive reversals and negative reversals
that occur when the most recent earnings surprise is of the opposite sign as the prevailing streak.
As in the existing literature, our trading strategies exclude firms whose lagged stock prices are
below five dollars to guard against micro-structure complications such as bid-ask bounce.

The main results of our paper are summarized in Table 3. Panel A reports a cross-sectional
four-factor alpha of 0.322% (¢ = 4.32) per month from buying stocks with positive streaks and
a negligible 0.080% (¢t = 1.21) from buying stocks with positive reversals. The difference of
0.242% is statistically significant (¢ = 3.97). Similarly, the four-factor alpha following negative
streaks exceeds that of negative reversals by -0.362% (t = 6.34).° Taken together, a trading
strategy that is long positive streaks and short negative streaks earns a four-factor alpha of
0.603% per month while applying the same strategy to reversals earns -0.001%. This difference
in return predictability is statistically significant with a ¢-statistic of 5.66. Similar risk-adjusted

returns are reported for the three-factor model and the DGTW risk-adjustment. This evidence

5When an earnings surprise is zero, the earnings surprise is classified as negative. An alternative threshold

using the median SURP to sign surprises yields similar results and is discussed in the next section.
SExcluding firms that are delisted during the holding period results in a negligible reduction in the number of

stocks contained in the short portfolio as well as the long portfolio, and does not alter their risk-adjusted returns.

Therefore, delistings are not driving the return predictability of negative streaks.



strongly supports the gambler’s fallacy, which predicts that investors underreact to trends but
not to reversals. This result is also consistent with Chan, Jegadeesh, and Lakonishok’s (1996)
conclusion that earnings momentum is the result of investor underreaction.

The return difference between portfolios containing stocks with extremely high and extremely
low earnings surprises is usually referred to as PEAD. To evaluate the contribution of streaks to
PEAD, we first sort stocks into quintiles according to the magnitude of their most recent SURP.
Streak and reversal subportfolios within each earnings surprise quintile are then formed. The
risk-adjusted returns of these calendar-time portfolios are reported in Panel B of Table 3. A
trading strategy that buys stocks with positive streaks in the largest SURP quintile and sells
stocks with negative streaks in the smallest SURP quintile yields a four-factor alpha of 0.882%
per month. In contrast, conditioning on reversals leads to an insignificant risk-adjusted return of
0.044% (t = 0.48). The difference in return predictability between streaks and reversals is large
and significant (0.838%, ¢ = 5.75). Panel B indicates that differences in the three-factor and
four-factor alphas of streaks and reversals are significant in every SURP quintile except for the
middle quintile.” These risk-adjusted returns are also symmetric (in absolute value) across the
SURP quintiles, although negative streaks are generally associated with slightly stronger return
predictability. In summary, the results from Table 3 are consistent with the gambler’s fallacy
since investors appear to underreact more to streaks than reversals.

To complement our study of monthly holding period returns, we examine the immediate re-
action of investors to earnings announcements by estimating underreaction coefficients. These
coefficients are also estimated by Cohen and Frazzini (2008) and DellaVigna and Pollet (2009).
Underreaction coefficients involve cumulative abnormal returns over a three-day horizon (CAR)
and risk-adjusted returns over a longer six-month horizon (Drift). These returns yield an under-

reaction coefficient defined as

CAR
ro= CAR + Drift ’ (1)

"Another procedure matched the magnitude of the most recent SURP within streaks and reversals. This
procedure also ensured the streak and reversal portfolios contain an equal number of stocks. In unreported
results, the results from this procedure were nearly identical to those in Table 3. Therefore, the greater return
predictability of streaks in comparison to reversals is not attributable to differences in the magnitude of earnings

surprises.
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for an individual firm’s quarterly earnings announcement. Provided the CAR and Drift following
an earnings announcement have the same sign, a ratio R < 1 is evidence of investor underreaction,
while R > 1 is evidence of investor overreaction. Moreover, a lower R ratio indicates a greater
underreaction by investors as less information is immediately incorporated into prices.

Figure 1 reports the underreaction coefficient for streaks as well as reversals. We compute
Fama-MacBeth averages for the CAR and Drift variables for firms within a specific portfolio and
then graph R using these averages. For positive SURPs, the R coefficient for streaks is 68%,
compared to 88% for reversals. By implication, there is greater underreaction to streaks than to
reversals. We find similar evidence for negative SURPs as well as for stocks in the lowest and
highest SURP quintiles. Hence, the evidence in Figure 1 supports our earlier finding that streaks

induce a greater underreaction than reversals.

4.2 Streak Length

According to Rabin, if investors are uncertain about the distribution of future signals, the hot-
hands phenomena can undermine the gambler’s fallacy. The hot hands effect implies that in-
vestors overinfer after observing a long streak and expect their continuation. However, we show
in Table 4 that longer streaks induce stronger rather than weaker underreaction.® These results
are consistent with investors having strong prior beliefs regarding the long-term distribution of
earnings surprises that prevent the gambler’s fallacy from being undermined by the hot-hands
phenomena. Indeed, after observing the continuation of a streak, investors appear to remain
confident in its subsequent reversal.

The lack of empirical support for the hot-hands phenomena may stem from competition be-
tween firms as the entrance and exit of firms from a competitive industry leads to mean-reversion
in long-term earnings growth at the firm level. The empirical evidence in Chan, Karceski, and
Lakonishok (2003) confirms that high long-term earnings growth is unlikely to persist. Therefore,
informative priors regarding long-term earnings growth are justified by the belief that a firm’s

competitive advantage is temporary. Moreover, analysts can adjust their earnings forecasts to

8In comparison to streaks whose length is between six and nine quarters, the slightly weaker return predictabil-

ity following streaks longer than ten consecutive quarters is driven by relatively few stocks.
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mitigate predictability in SURPs and therefore limit the continuation of streaks.’

Although the hot-hands phenomena is not detected in our study, it may explain flows into
funds that outperform their peers provided investors chase fund performance. Jagannathan,
Malakhov, and Novikov (2010) find evidence of persistence among superior hedge funds. Intu-
itively, if the long-term investment skill of fund managers is believed to be more persistent than
the long-term earnings growth of individual firms, then the hot-hands phenomena is more likely

to be detected in fund flows than stock returns.'®

4.3 Streaks versus the Magnitude of Earnings Surprises

This subsection alters the double-sort underlying the extended PEAD strategy to investigate the
return predictability of large earnings surprises within streaks and reversals. Within the streak
and reversal portfolios, we sort stocks in quintiles according to the magnitude of their most recent
earnings SURP. As reported in Panel A of Table 5, after controlling for streaks in prior earnings
surprises, cross-sectional differences across the magnitude of the most recent quarter’s SURP
generate cross-sectional return variation in all quintiles except the middle (third) quintile. The
significant four-factor alphas in the second and fourth quintiles indicate that the magnitude of
the most recent SURP is relatively less important than streaks.

We also show that the ability of large earnings surprises to influence future returns is limited
to streaks. In particular, within the reversal portfolio, the magnitude of a firm’s most recent
SURP does not impact future returns as neither the smallest nor largest earnings surprises are
associated with risk-adjusted holding period returns.

To further examine the influence of streaks on PEAD, we construct a streak factor. The
streak factor is defined as the monthly long-short return of our first trading strategy that ignores

cross-sectional variation in the magnitude of earnings surprises and focuses exclusively on the

9 Analysts may issue forecasts that are too low in order to allow firms to beat their forecasts. A later ro-
bustness test uses the cross-sectional median SURP rather than zero to sign earnings surprises. This alternative

characterization accounts for such analyst biases when defining streaks.
0Dorsey-Palmer and Smith (2004) find evidence of hot-hands in bowling and argue that Tversky and Gilovich

(1989a, 1989b) fail to find hot-hands in basketball because of competitive reactions to recent success. In particular,
unlike bowling, opposing players in basketball can alter their defensive strategy against “hot” players. Similarly,

firms can alter their competitive strategies against successful firms.
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sign of prior firm-level SURPs. Unlike factors constructed from cross-sectional comparisons of
firm characteristics, the long portfolio and short portfolio underlying our streak factor contain a
different number of stocks.

Panel B of Table 5 reports a risk-adjusted PEAD of 0.649% per month over a six-month
holding period after accounting for market (MKT), size (SMB), value (HML), and momentum
(UMD) factors. However, the inclusion of our streak factor reduces the four-factor alpha by
over 70%, from 0.649% per month to 0.196% per month. The streak factor also eliminates the
return predictability corresponding to the smallest SURPs. Recall that the negative SURPs in
the smallest quintile are larger in absolute value than the positive SURPs in the largest quintile.
The coefficient on the streak factor is large and significant in every specification, especially for
the long-short PEAD strategy where the importance of the market return is mitigated.

Overall, PEAD contains an important time series component arising from consistency within
the sign of prior earnings surprises. A streak minus reversal factor denoted S-R also reduces risk-
adjusted PEAD. However, despite the insignificant return predictability of reversals, the noise
introduced by subtracting their returns from streaks results in a smaller reduction in PEAD’s

four-factor alpha.

4.4 Alternative Trend Definition

Besides streaks of consecutive earnings surprises with the same sign, we also examine trends
that arise from consistency within the sign of prior earnings surprises. A trend occurs when the
sign of the most recent quarterly earnings surprise is the same sign as the majority (50%) of
prior earnings surprises.!! These imbalances proxy for the likelihood functions underlying the
quasi-Bayesian theories that motivate our empirical tests. Intuitively, when the majority of a
firm’s prior earnings surprises are positive, a positive earnings surprise produces a positive trend
while a negative earnings surprise produces a negative reversal. The following diagrams illustrate

a positive trend

Tn instances where an earnings surprise is zero, the earnings surprise is classified as negative. When exactly

half a firm’s prior earnings surprises are non-positive, its imbalance is also classified as negative.
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This general definition of trends defined by consistency encompass streaks as a special case.
For example, a streak of four consecutive positive surprises requires the most recent surprise to
be positive while also requiring the positive imbalance in a firm’s prior three surprises to equal
its maximum of 100%. In contrast, according to the gambler’s fallacy, if nine of the last ten
draws at a roulette wheel are red, then black is perceived to be more likely for the next draw
than red regardless of when the black draw occurred. Unlike streaks, the imbalances that define
trends do not depend on the exact sequencing of prior earnings surprises. Indeed, trends based
on consistency can be defined over a firm’s entire history of prior earnings surprises while streaks
longer than ten quarters occur infrequently in our sample.

The exact number of prior earnings surprises that investors condition on when forming their
expectations is unknown. Using a large number of prior earnings surprises may obscure the
distinction between trends and reversals. For example, suppose 20 positive earnings surprises
follow 30 negative earnings surprises. Although the majority of the past 50 earnings surprises
are negative, investors may focus on the most recent 20 earnings surprises that are positive.
Therefore, we examine imbalances over 2, 3, and 5 year horizons as well as a firm’s entire history
of earnings surprises. In order for firms to be included in the long or short portfolio of our trading
strategies, they are required to have earnings announcements in the specified prior horizon for
the 2, 3, and 5 year histories.

As with streaks, the results in Table 6 indicate that trends predict returns while reversals
are usually associated with insignificant return predictability. Using the whole history of prior
surprises to define imbalances, the trends minus reversals strategy yields a four-factor alpha of
0.481% (t =3.89). Using a 2-year history of prior surprises, the same strategy yields 0.798%
(t =5.91). These results show that the stronger return predictability of trends compared to

reversals is robust to different horizons over which imbalances in past SURPs are computed.
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4.5 Fama-MacBeth Regressions

Fama and MacBeth (1973) regressions confirm our earlier portfolio-level results with additional
control variables. Several specifications of the following cross-sectional regressions are estimated

whose dependent variable R; ;.6 denotes six-month buy-and-hold returns of individual stocks

Rit1046 = 70+ 71 Beta, + 72 log BM,; + 73 log Size; + 74 PRET; + 75 SURP,
+6 SURPf + 7 SURP;V + g Streak; + 79 Streakf + Y10 Streakiv + 711 Consistency,

+712 LagSURP, + 713 Lag2SURP, + 714 » LagSURP, + a X +¢. (2)

A firm’s market beta is estimated using monthly returns over the prior three calendar years
while book-to-market ratios (BM) and size, which represents a firm’s market capitalization, are
measured according to Fama and French (2006). PRET denotes past returns over the prior
twelve months after omitting the most recent month. The most recent earnings surprise is also
divided into SURP Positive and SURP Negative. The variable SURPY (SURPY) equals SURP

when SURP is positive (negative), and zero otherwise. The Streak variable is defined as

+1 for positive streaks
0 otherwise

—1 for negative streaks

for streaks of at least two consecutive quarters. The positive and negative components of the
Streak variable denoted Streak? and Streak” are dummy variables that equal one when the Streak
variable is positive and negative, respectively, and zero otherwise. The Consistency variable is

defined as

+1 the majority of prior earnings surprises and the most recent SURP are positive
0 otherwise

—1 the majority of prior earnings surprises and the most recent SURP are negative

This variable is defined over the entire history of a firm’s prior earnings surprises. We also
control for the magnitude of prior earnings surprises because returns may capture the cumulative
return continuation following earnings surprises before the most recent quarter. Lagged earnings
surprises denoted LagSURP and Lag2SURP over the previous three-to-six-month and six-to-nine-

month horizons, respectively, are included to address this possibility. We also include the sum
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of all a firm’s prior earnings surprises denoted )~ LagSURP excluding the most recent quarterly
earnings surprise.!? All SURP variables are winsorized at the 0.1 percentiles to mitigate the
effects of outliers. The X vector contains an array of control variables that account for cross-
sectional differences in firm characteristics pertaining to liquidity, information transmission, and
uncertainty. These variables include Amihud’s (2002) illiquidity measure, idiosyncratic volatility,
log of turnover, analyst forecast dispersion, log of one plus analyst coverage, and institutional
ownership.

Table 7 reports the time-series averages of the monthly Fama-MacBeth coefficients (multiplied
by 100). The standard errors associated with the ¢-statistics are Newey-West adjusted with six
lags since the returns are generated from overlapping six-month horizons. The premium for
exposure to market-level return fluctuations, the size premium, and the value premium are
captured by the 71, 72, and 73 coefficients while the 74 coefficient for PRET is consistent with
price momentum. The positive v coefficients for SURP are consistent with the existing PEAD
literature. Furthermore, with the 74 coefficient being slightly smaller than the v; coefficient,
negative earnings surprises exert a slightly larger impact on future returns although their impact
is only marginally significant.

The positive g coefficients indicate that streaks predict returns. This is the most important
finding in Table 7. In particular, consistent with the returns from our first trading strategy, a
positive g coefficient implies that positive streaks and negative streaks result in higher returns
and lower returns, respectively. The positive v9 and 7, coefficients confirm that both positive
and negative streaks predict returns. Nonetheless, the Consistency variable also predicts returns
since its 7y, coefficients are positive, even after controlling for streaks. Thus, investors do not
appear to focus exclusively on the most recent sequence of consecutively positive or negative
earnings surprises. Moreover, the magnitude of earnings surprises during the prior six-to-nine
months (LagSURP and Lag2SURP) have insignificant v, and 73 coefficients. The insignificant
~14 coefficient that pertains to the sum of all lagged earnings surprises is also insignificant. This
shows that the return predictability of streaks is not driven by the same-signed earnings surprises

prior to the most recent earnings surprise.

12Excluding LagSURP and Lag2SURP from this sum does not alter our results.
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5 Robustness Tests

This section demonstrates the robustness of our results to various alternative specifications and

competing hypotheses. It also discusses and tests additional predictions of the gambler’s fallacy.

5.1 Prior Literature

Barth, Elliot, and Finn (1999) as well as Myers, Myers, and Skinner (2007) document that
firms with increasing earnings have higher valuations but large price decreases following the
termination of earnings increases. However, these studies examine contemporaneous returns in
the quarter in which earnings are announced. In contrast, we examine returns after earnings are
reported using calendar-time trading strategies to evaluate the return predictability of trends.
We replicate the estimation in Barth, Elliot, and Finn (1999). These authors examine annual
changes in accounting net income using a panel regression. Despite our use of quarterly SURPs
and a different time period, we are able to replicate the essence of their findings using a Fama-
MacBeth regression. Beginning with Table 7, we define the next quarter’s future return as
the three-month buy-and-hold return starting one-month after the most recent SURP while the
contemporaneous quarter’s return is defined using the three-month return ending in the month
of the most recent SURP announcement. Following Barth, Elliot, and Finn’s specification (their
Table 5B), we interact SURP with a dummy variable that equals one when there is a positive
streak whose length is at least two. We also interact SURP with a dummy variable for negative
reversals that equals one when a positive streak is ended by the most recent SURP being negative.
Using contemporaneous returns as the dependent variable, Barth, Elliot, and Finn (1999)
report that coefficients for the streak and reversal interactions are positive and negative, re-
spectively. In unreported results, we obtain similar evidence. However, when we investigate
future returns, the reversal interaction is no longer economically nor statistically significant.
This finding implies that the market does not underreact to reversals. In contrast to reversals,
the coefficient for the streak interaction remains significantly positive when future returns are
examined. Overall, the market appears to underreact less to reversals than streaks since reversals
exert a larger (smaller) impact on contemporaneous (future) returns than streaks. Therefore,

consistent with the results in Table 7, this evidence suggests that investors underreact to streaks.
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Our paper is further distinguished from the existing accounting literature given its focus on
analyst-based earnings surprises that account for earnings predictability. Our more recent sample
period and the use of quarterly earnings surprises rather than annual earnings announcements

also differ from the existing literature.

5.2 Earnings Surprise Autocorrelation

Analyst-based earnings surprises are not highly autocorrelated since analysts are able to adjust
their expectations for firms that repeatedly beat or miss earnings.'® However, Chan, Karceski,
and Lakonishok (2007) document that in recent years, analyst incentives caused analysts to sys-
tematically underestimate earnings, thereby allowing management to beat the consensus forecast.
The implication of this bias is that firms reporting earnings that marginally exceed consensus
forecasts should not be classified as having positive earnings surprises. To address this issue, we
repeat our tests by classifying SURPs as positive only if they exceed the cross-sectional median
SURP among the firms that reported earnings in the past 90 days, and negative otherwise. We
find nearly identical results (unreported) compared to those in Table 3. This provides assurance
that our results are insensitive to any potential misclassification of small positive surprises.

The second test we conduct directly relates to the autocorrelation in SURPs. Positive auto-
correlation within earnings surprises would increase the likelihood of streaks. Although Rabin
and Vayanos (2010) demonstrate that the underreaction to streaks predicted by the gambler’s
fallacy applies to autocorrelated sequences, Bernard and Thomas (1990) hypothesize that PEAD
is caused by investors underestimating the positive autocorrelation in earnings surprises. Bernard
and Thomas hypothesize that streaks are informative about autocorrelation and investors ignore
this informativeness. To test this hypothesis, we examine a subset of firms whose earnings sur-
prises are independent according to the runs test (Campbell, Lo, and MacKinlay, 1996) as well
as a four-lag autoregressive model.

The first subset of independent quarterly SURPs is obtained by applying the runs test at

the 10% significance level to firm-level earnings surprises. The runs test begins in January 1987

130ur main results hold for earning surprises defined relative to realized earnings (SUEs), as in Chordia and
Shivakumar (2006). Besides being more autocorrelated at the firm-level, SUEs are skewed towards positive

earnings surprises.
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for firms with at least 12 quarterly earnings surprises. According to the runs test at the ten-
percent significance level, the subset of observations whose earnings surprises defined by analyst
forecasts are autocorrelated comprises only 22.28% of our sample. Thus, the majority of firms
have analyst-based earnings surprises that are not autocorrelated.

The second subset of stocks with independent earnings surprises is defined by the following

autoregressive model:
SURB = Qo+ o SURPt_l + o SURPt_Q + a3 SURPt_g + oy SURPt_4 + € . (3)

This regression accounts for regularities in consecutive firm-level earnings surprises that may
arise from earnings management or analyst forecast biases. Firms having an R? from equation
(3) below 0.25 are placed in the independent subset. A low R? indicates that the magnitude,
hence sign, of a firm’s earnings surprise next quarter is difficult to predict. We replicate our
results in Panel B of Table 3 using the independent and autocorrelated subsets.

In unreported results, streaks continue to induce significantly stronger return predictability
than reversals in the independent subset as well as the autocorrelated subset. This finding
applies to independent SURPs defined by the runs test and the autoregressive model. Indeed,
reversals are not associated with significant return predictability while streaks yield significant
risk-adjusted returns in all but the middle quintile. Returns predictability from streaks also
exceeds that from reversals. Thus, the results for independent and autocorrelated SURPs parallel
our earlier results in Panel B of Table 3.

We conclude that the return implications of streaks is not driven by the positive autocorrela-
tion in earnings surprises. Instead, our results suggest that investors condition on uninformative

streaks in earnings surprises rather than underestimate the autocorrelation in earnings surprises.

5.3 Short-Sale Constraints and Limited Attention

To determine if short-sale constraints explain our results, we proxy for short-sale constraints
using low institutional ownership since investors cannot easily borrow shares in these firms.
Unreported results confirm that short-sale constraints cannot explain the return predictability of

streaks since the stronger return predictability of streaks relative to reversals is equally apparent
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for firms with high or low institutional ownership. Therefore, short-sale constraints do not appear
to drive the return predictability of streaks.

Instead of short-sale constraints, limited attention provides an alternative characterization
of our results. Hirshleifer, Lim, and Teoh (2009) and DellaVigna and Pollet (2009) find that
investors are less attentive on days with more earnings announcements and on Fridays, respec-
tively. To test this alternative explanation, we check whether streaks tend to occur more on low
attention days compared to reversals. We find that the percentage of Friday announcements for
streaks and reversals is almost identical, at 11.43% and 11.45%, respectively. The average num-
ber of firms making announcements is also nearly identical for earnings announcements classified
as streaks (133.7) or reversals (133.0). Hence, limited attention is unlikely to be an explanation

for the stronger return predictability of streaks.

5.4 Earnings Uncertainty and Diffuse Priors

According to Rabin, the gambler’s fallacy is predicted to be weaker for longer streaks when
investors have more diffuse priors regarding the underlying long-term distribution of signals.
Specifically, diffuse investor beliefs allow the hot-hands phenomena to undermine the gambler’s
fallacy following long streaks. We proxy for a diffuse prior regarding future earnings with high
realized volatility and high analyst forecast dispersion. We then test whether the return pre-
dictability of long streaks is weaker for firms with high realized earnings uncertainty and high
analyst forecast dispersion. This exercise essentially replicates Table 4 for these subsets of firms.

Unreported results confirm that the return predictability following streaks of at least ten is
weaker for firms with high earnings variability or high forecast dispersion. Thus, consistent with
Rabin’s prediction in our empirical setting, the gambler’s fallacy appears to be weaker when

investors have more diffuse prior beliefs regarding future earnings.

5.5 Abnormal Turnover

Provided investors condition on different information sets, Rabin and Vayanos (2010) predict
that trading volume would be higher in portfolios containing streaks than reversals. We test this

hypothesis using the average abnormal turnover during the six-month holding period. Abnormal
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turnover is defined as turnover in a particular month divided by the portfolio’s average turnover
in the prior six months, minus one. Unreported results reveal that the average abnormal holding-
period turnover is higher for firms in the streak portfolio than for firms in the reversal portfolio.
This evidence is consistent with an initial underreaction to streaks that leads to greater trading
volume in the subsequent holding period. Consequently, abnormal turnover is consistent with

the gambler’s fallacy.

6 Conclusions

We find that streaks consisting of consecutive quarterly earnings surprises with the same sign
have important return implications. A trading strategy that conditions on streaks defined by at
least two prior earnings surprises yields a significant four-factor adjusted return of 0.603% per
month. This strategy buys stocks with positive streaks and sells stocks with negative streaks
while ignoring the magnitude of earnings surprises. Conversely, the four-factor adjusted return
from conditioning on reversals, which correspond to the termination of streaks, is insignificant.
The difference between the return on the streaks strategy and the reversals strategy is also
economically and statistically significant.

We also assess the return predictability of streaks after accounting for the magnitude of the
most recent earnings surprises. After sorting firms into quintiles according to the magnitude
of their most recent earnings surprise, we divide these quintiles into portfolios of streaks and
reversals. We then buy stocks with positive streaks in the highest quintile and sell stocks with
negative streaks in the lowest quintile. A four-factor alpha of 0.882% per month is obtained from
this trading strategy. Again, this strategy’s return is significantly higher than that of a similar
strategy that conditions on reversals.

Our results show that PEAD is limited to streaks. Indeed, a streak factor from the returns
of our first trading strategy explains 70% of PEAD’s four-factor alpha. Therefore, despite be-
ing a cross-sectional anomaly, PEAD has a significant time series component. Fama-MacBeth
regressions confirm the return predictability of streaks after controlling for a variety of firm char-
acteristics that include earnings surprises before the most recent quarter. We also confirm that

the autocorrelation in quarterly earnings surprises is not driving our results.
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In summary, our results indicate that investor expectations are influenced by trends in prior
quarterly earnings surprises. Our evidence supports the gambler’s fallacy in Rabin (2002) because
investors appear to underreact to trends in earnings surprises. One interesting avenue for future
research is to examine the link between the gambler’s fallacy and price momentum. Preliminary
evidence from our Fama-MacBeth regressions indicate that price momentum is insignificant after

controlling for trends in earnings surprises.
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Table 1: Summary Statistics for Earnings Surprises

This table describes our sample of earnings surprises as well as the streaks defined by these sur-
prises. SURP is the firm’s quarterly earnings surprise defined as I/B/E/S actual earnings minus the
most recent mean consensus estimate, scaled by the stock price. Streaks occur when the two most
recent quarterly SURPs are of the same sign. Reversals occur when such a streak has ended. For
each year in our 1984 to 2009 sample period, the average SURP is reported in Panel A along with
the average market beta, book-to-market ratio (BM), and size (millions of dollars) of the firms in
our sample. The number and percentage of streaks are also reported in Panel A. Streaks are defined
beginning in 1987 to obtain an initial history of prior SURPs. An extended set of firm characteristics
are summarized in Panel B for streaks and reversals. These characteristics include returns over the past
twelve months while omitting the most recent month (PRET), institutional ownership (I0), Amihud’s

illiquidity measure, and turnover.

Panel A: Average firm characteristics by year

Number of Number of Number  Percentage
Year firms firm-months SURP Beta BM Size  of streaks of streaks
1984 941 1675 -0.014 1.09 0.79 1045 - -
1985 1364 12813 -0.049 1.14 0.84 1086 - -
1986 1472 14304 -0.054 1.23 0.79 1331 - -
1987 1689 15635 -0.043 1.11 0.71 1564 8982 0.57
1988 1761 15590 -0.028 1.14 0.74 1614 8958 0.57
1989 2144 19633 -0.069 1.15 077 1374 11297 0.58
1990 2220 20463 -0.028 1.14 0.71 1508 12159 0.59
1991 2278 21674 -0.062 1.19 0.79 1555 12899 0.60
1992 2500 23825 -0.053 1.20 0.82 1579 14418 0.61
1993 2872 26642 -0.072 1.30 0.66 1649 16375 0.61
1994 3406 31021 -0.056  1.25 0.58 1555 18910 0.61
1995 3724 34603 -0.030 1.17  0.59 1572 21565 0.62
1996 4048 37588 -0.003 1.09 0.58 1818 22875 0.61
1997 4435 40167 -0.027  1.12 0.53 2197 24997 0.62
1998 4463 39942 -0.021 1.01 0.49 2831 24442 0.61
1999 4202 37939 -0.023 1.14 0.51 3647 23900 0.63
2000 4075 35049 0.016 1.10 0.55 4590 22121 0.63
2001 3426 30785 0.019 1.02 0.63 5155 18537 0.60
2002 3175 29439 -0.001 0.92 0.64 4622 17834 0.61
2003 3105 29772 -0.081 1.03 0.65 4153 18154 0.61
2004 3258 32133 -0.025 1.14 0.61 4247 19288 0.60
2005 3250 31885 -0.001 1.16 049 4725 18810 0.59
2006 3325 32742 0.000 1.45 0.49 4899 19535 0.60
2007 3313 32509 -0.598 1.51 0.48 5480 19235 0.59
2008 3055 29229 -0.003 1.25 0.52 5975 17435 0.60
2009 2732 25849 -0.004 1.10 0.76 5114 15567 0.60
Overall 9706 702906 -0.052 1.16 0.61 3245 408293 0.61
Panel B: Average firm characteristics for streaks and reversals
SURP Size BM PRET 10 Amihud  Turnover
Streaks -0.037 3304 0.61 0.185 0.531 0.50 0.561
Reversals  -0.003 3023 0.63 0.164 0.512 0.63 0.535
Difference  -0.034***  281%**  _0.02***  0.021%**  0.019%*%*  -0.13*¥**  (0.026***




8V'1T €10 c0'0 0T°0- 9€°¢- 99°0 ST'1- S[eSIoAdY

00T €10 200 01°0-  I¥¥- ) €6°1- sy{eaIIS IV

89°0 €10 200 600- €07 1270 €9°1- 01 <

¥L°0 €r’o0 200 0T’0-  ¥IE- 0€0 er'I- 6

cLo €10 200 0T°0-  67'S 1€°0 €v'e- 8

8L°0 €r’o0 200 0T'0-  L0°G- v€0 122" L

180 €r’o 200 0T'0-  €7'6- ce0 8T~ 9

66°0 €r’0 200 0T'0- 669" 770 12°¢- g

L6°0 €ro 200 0T'0-  §ge- 750 ¢o'T- iz

76°0 €10 200 0r'o- V- 70 L6°T- €

9T'T €ro 200 0T’0-  €re- €970 €T e

1se81e] ¥ ¢ 4 9sof[ewS OAT)ISOJ  oAIeSoN  [[)3US[ qeoI)g
orumb 4UNS uss JUNS

(00T Xx) epnyuSewr JYN§S o8eIoAy g [ourd

€890€ G0EVT  TLTBE  96L9C  188ET €084.L €TTCL S[esIoAYy
00508 E8EV8  CB6C6  086C9  6LEV8 L86802 L92961 Se_IIS [V
ITve 9L9¥ €899 09ve 91€¢€ Geelt 92€8 01 <
8LET T98T Ge6T L€6 GaaT €LTY €9€€ 6
€e61 164¢ G18¢ GeSl G61¢C 668 LT0S 8
9¢1€E 878¢ v8LE 86€¢C avee L168 ¥8GL L
916y 7844 02¢9¢ (4749 8¢CS 868¢1T C6STT 9
LGCL €69L T008 18747 T16. G068T 86ELT g
CTL0T COETT  9€6TT 9618 Tceet L191C 062.9¢ 4
T6LLT GC8LT  ¢9€6T  €66E€T  €T06T L0SVY LLVEY €
T16€0€ €868C 9V8EE  88YVC  GTI6T €EGTL 09.2L 4
1se8re] ¥ I 4 1so[[ewrg OAT}ISOJ  oA1jRSoN  ([)8US] {eaIlg
a[umb JUNS uss J4NS

SUOTJRAIISCO JO IdqUNN Y [Pued

"9AIRSoU
S POYISSR[O oIe 0IoZ MO[og IO OJoz Julfenbo sonfea o[iym oA1}SOd Se pPoyISSe[d oI OI9Z URY) I91RdIS SIS UOIJI9S-SSOId Ajuoud
oo 10J so[ljueoIod () oWLI)Xe 9Y) e pozLIosuim ore sdYNS [V (00T Aq perdimur) JyNS o8eiose o) { [oURJ PUR SUOIJRAIISO
Jo Ioqunu 9y} spiodel y [ouUBRJ POPUS SBY YROI)S B UONS USUM JINID0 S[BSIOADY "USIS owres oY) JO oI SJYNS A[Iolrenb jusool jsowr
OM]) 9} UM INOD0 S¥BaIlg 9olId D03S ST AQ PoO[eds ‘S)sA[eur JO 9)BWIISO STISUSSUOD UBIW JUSDDI )SOW O} SNUIW SSUTUIRD [RIL}OE
S/d/d/1 se pauygep ‘esuidins s3urures A[1elrenb s ULy ® s9j0Up JY()S A[01IEND Y " ()S U8 SO I8} U0 Paseq [IUOUL [Ies Sa[l}
-umb ojur pajros are swary -poud ojdwres o0z 01 L8GT INO SULINP S[BSIOAdI puer syeal)s Jo Aouonboiy oyy uo sjprodor o[qry) SIYT,

S[eSIoADY] PUR SYRAI)G I0] SOIISIIRIG ATRUIING 7 d[(R],



Table 3: Trading Strategies using Streaks and Reversals

This table reports the returns from calendar-time trading strategies involving streaks and rever-
sals in earnings surprises from 1987 to 2009. SURP is the firm’s quarterly earnings surprise defined
as I/B/E/S actual earnings minus the most recent mean consensus estimate, scaled by its stock price.
Each month, based on the most recent SURP, firms are sorted into SURP portfolios according to the
sign (Panel A) of its SURP or its quintile rank (Panel B). Stocks having streaks whose length is at least
two are also independently separated into streak portfolios and reversal portfolios. Stocks remain in
the relevant portfolio for six months, although stocks with lagged prices below five dollars are excluded
from our trading strategies that buy stocks with positive streaks and sell stocks with negative streaks.
Equally-weighted returns are computed each month and the time-series of these monthly returns less
the risk-free rate are regressed on the three-factor or four-factor models to obtain alpha estimates
that are reported as a percentage. DGTW-adjusted returns are also reported using the methodology
in Daniel, Grinblatt, Titman, and Wermers (1997). * ** and *** denote statistical significance of
the abnormal returns at the 10%, 5%, and 1% levels, respectively, with the associated t-statistics in
parentheses.

Panel A: SURP Signs Panel B: SURP Quintiles
Negative Positive Spread Smallest 2 3 4 Largest Spread
Four-factor alphas
Streaks -0.280%**  (0.322%*F*F  (0.603*** -0.444***  -0.157* 0.071 0.263%**  (0.438%*F*  (.882%**
(-3.78) (4.32) (8.12) (-5.23) (-1.79) (0.88) (2.95) (5.41) (8.92)
Reversals  0.081 0.080 -0.001 0.056 0.097 0.118 0.068 0.101 0.044
(1.14) (1.21) (-0.01) (0.72) (1.20) (1.28) (0.78) (1.19) (0.48)
Difference  -0.362%**  (0.242%**  (.603*** -0.500%**  -0.254*%**  .0.047  0.194** 0.337***  (.838%**
(-6.34) (3.97) (5.66) (-5.83) (-3.66) (-0.86)  (2.57) (3.99) (5.75)
Fama-French 3-factor alphas
Streaks -0.375%%* 0.287FFF  (0.663%F* -0.561%%*  .0.242*%**  0.036 0.224** 0.397***  0.957***
(-4.69) (3.86) (8.73) (-6.05) (-2.65) (0.45) (2.54) (4.91) (9.51)
Reversals  -0.020 0.059 0.078 -0.070 0.028 0.052 0.032 0.087 0.158
(-0.25) (0.89) (1.26) (-0.79) (0.34) (0.56) (0.37) (1.05) (1.59)
Difference  -0.356***  (.229%**  (.584*** -0.491%%*  .0.270***  -0.016  0.192** 0.309***  0.800***
(-6.34) (3.81) (5.56) (-5.81) (-3.95) (-0.29)  (2.58) (3.70) (5.56)
DGTW-adjusted average returns
Streaks -0.239%** (0.144%F*%  (.383%** -0.391%%*  _(0.129%* 0.011 0.078 0.236***  0.627%**
(-3.87) (3.01) (5.74) (-4.86) (-2.16) (0.21) (1.46) (3.46) (6.52)
Reversals  -0.033 0.035 0.068 -0.064 -0.011 0.021 0.013 0.056 0.120
(-0.66) (0.64) (1.28) (-0.91) (-0.20) (0.35) (0.19) (0.72) (1.39)
Difference  -0.206***  (0.109** 0.315%** -0.328***  _0.118** -0.010  0.065 0.179** 0.507***
(-3.98) (1.98) (3.28) (-4.12) (-1.98) (-0.21)  (0.97) (2.17) (3.70)

Average number of stocks per month
Streaks 1132 1202 572 478 704 624 546
Reversals 664 654 197 251 342 249 273




Table 4: Returns based on Streak Length

This table reports the returns from calendar-time trading strategies involving streaks and rever-
sals in earnings surprises from 1987 to 2009 are reported. Streak length is defined as short, medium,
and long where consecutive same-signed quarterly SURPs are between 2 to 3, 4 to 5, 6 to 9, and 10 or
greater, respectively. A reversal occurs when a streak whose length is at least two ends. SURP denotes
a firm’s quarterly earnings surprise defined as the I/B/E/S actual earnings minus the most recent
mean consensus estimate, scaled by its stock price. Each month, based on the most recent SURP,
firms are sorted into SURP portfolios according to the sign (Panel A) of their most recent SURP or its
quintile rank (Panel B). Stocks are also independently separated into streak portfolios based on their
length and reversal portfolios. The stock remains in the relevant portfolio for six months and stocks
with lagged prices below five dollars are excluded from the holding-period returns. Equally-weighted
returns are computed each month and the time-series of these monthly returns less the risk-free rate are
regressed on the four-factor model to obtain alpha estimates that are reported as a percentage. *, **
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively, with the associated
t-statistics in parentheses.

SURP Quintiles

Smallest 2 3 4 Largest Spread

Abnormal returns based on streak length

Streaks of 2 to 3 -0.325*%**  _-0.095 0.105 0.197** 0.454%**  0.780%**
(-3.70) (-1.06) (1.22) (2.28) (5.91) (8.53)

Streaks of 4 to 5 -0.537***  -0.302***  -0.026 0.254%* 0.383***  (0.920%**
(-4.93) (-2.74) (-0.26) (2.38) (3.51) (6.29)

Streaks of 6 to 9 -0.760***  -0.190 0.053 0.358%**  (0.426%**  1.186%**
(-5.62) (-1.35) (0.50) (2.67) (2.86) (5.58)

Streaks > 10 -0.670%*%*  .0.274 0.127 0.654***  0.450* 1.120%**
(-2.99) (-1.36) (0.85) (3.22) (1.76) (3.49)

Reversals 0.056 0.098 0.118 0.068 0.101 0.044
(0.72) (1.21) (1.28)  (0.78) (1.19) (0.48)

Difference between streaks and reversals

Streaks of 2 to 3 -0.382***  _0.193***  _0.013 0.129* 0.354***  (.735%**
(-4.45) (-2.88) (-0.23) (1.80) (4.80) (5.54)

Streaks of 4 to 5 -0.593***  -0.400***  -0.144*  0.186* 0.283** 0.876%**
(-5.36) (-3.93) (-1.75) (1.90) (2.41) (4.71)

Streaks of 6 to 9 -0.816***  -0.288** -0.065 0.290%** 0.326** 1.142%**
(-5.88) (-2.15) (-0.71) (2.37) (2.13) (4.69)

Streaks > 10 -0.727F%*  _0.372* 0.009 0.586***  0.349 1.076%%*
(-2.33) (-1.52) (-0.88)  (1.64) (2.46) (3.32)

Average number of stocks per month

Streaks of 2 to 3 363 320 433 373 363

Streaks of 4 to 5 164 117 175 167 144

Streaks of 6 to 9 94 66 117 112 81

Streaks > 10 26 18 45 41 25

Reversals 197 251 342 249 273
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Panel B: Time-series regressions

SURP Quintile Intercept MKTRF SMB HML UMD S-R factor  Streak factor Adj. R>

Smallest -0.312%FF  1.012%%FF  (.784*** 0.354*** -0.133%** 0.959
(-4.29) (59.11) (35.16) (14.30) (-9.04)

Smallest -0.137* 1.030%**  0.730%** 0.253*** -0.139%**  _(0.291*** 0.967
(-1.96) (65.62) (34.12) (9.70) (-10.44)  (-7.72)

Smallest -0.001 1.052%** (0, 713%%* 0.231*** -0.096*** -0.516%** 0.971
(-0.01) (69.70) (35.22) (9.50) (-7.42) (-10.17)

Largest 0.337%%* 1.078%**  0.655*** 0.275%** -0.045%** 0.963
(4.87) (66.25) (30.93) (11.68) (-3.22)

Largest 0.272%** 1.071¥*¥*  0.675%** 0.312%** -0.042%%*  0.107*** 0.964
(3.77) (65.88) (30.47) (11.58) (-3.07) (2.74)

Largest 0.195%** 1.060%**  0.687*** 0.331%** -0.061%** 0.235%*** 0.965
(2.61) (64.94) (31.41) (12.57) (-4.36) (4.28)

Spread 0.649%** 0.065%**  -0.129%*%*  _0.080***  (0.088*** 0.243
(9.35) (4.01) (-6.07) (-3.37) (6.28)

Spread 0.409*** 0.041%**  -0.055***  0.060*** 0.097*** 0.397*** 0.523
(7.03) (3.10) (-3.09) (2.74) (8.70) (12.65)

Spread 0.196*** 0.008 -0.025% 0.100*** 0.035*** 0.751%** 0.731
(4.25) (0.79) (-1.87) (6.15) (4.05) (22.18)




Table 6: Using Consistency to Define Trends

This table reports the returns from calendar-time trading strategies during our 1987 to 2009 sample
period. A trend is defined by the consistency between the sign of prior SURPs with the most recent
SURP. A trend (reversal) occurs when the sign of the sign of most recent SURP is the same (opposite)
sign as the majority of a firm’s prior SURPs. Each panel shows consistency based on different prior
horizons. For the 2, 3, and 5-year horizons, stocks must have at least the relevant horizon’s history
of past SURPs to be included. As the analyst forecasts underlying SURPs become available in 1984,
portfolio formation for the 5-year window starts in 1989. SURP denotes a firm’s quarterly earnings
surprise defined as I/B/E/S actual earnings minus the most recent mean consensus estimate, scaled
by its stock price. Each month, firms are sorted into portfolios according the quintile rank of their
most recent SURP. The stock remains in the relevant portfolio for six months and stocks with lagged
prices below five dollars are excluded from each portfolio’s holding-period return. Equally-weighted
returns are computed each month and the time-series of these monthly returns less the risk-free rate are
regressed on the four-factor model to obtain alpha estimates that are reported as a percentage. *, **
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively, with the associated
t-statistics in parentheses.

SURP Quintiles

Smallest 2 3 4 Largest Spread
All past SURPs used to define consistency
Trends -0.414%**  .0.145 0.056 0.275%F*  0.417%F*  (0.830%**
(-4.95) (-1.62) (0.68) (3.09) (4.98) (8.29)
Reversals  -0.094 0.046 0.115 0.137 0.256%**  0.350%**
(-1.10) (0.56) (1.34)  (1.53) (3.28) (4.17)
Difference  -0.320%**  -0.191***  -0.058 0.138** 0.161** 0.481%**
(-4.10) (-2.98) (-1.21)  (2.13) (2.10) (3.89)
Average number of stocks per month
Trends 302 358 533 485 493
Reversals 568 488 691 517 419

5 years of past SURPs used to define consistency

Trends -0.250%* -0.041 0.217%%  0.305%*%*  (0.358%**  (.608***
(-2.44) (-0.40) (2.21)  (3.25) (3.58) (5.21)

Reversals ~ 0.174* 0.211%** 0.228**  0.212%* 0.036 -0.138
(1.66) (2.26) (2.35)  (2.08) (0.27) (-1.01)

Difference  -0.424***  -0.252*%**  -0.011 0.093 0.322%* 0.746%**
(-4.29) (-3.20) (-0.20)  (1.30) (2.58) (4.22)

Average number of stocks per month

Trends 181 247 360 306 287

Reversals 306 311 474 354 267

3 years of past SURPs used to define consistency

Trends -0.474%**  -0.046 0.115 0.271***  0.355%#*  (.828%**
(-4.98) (-0.41) (1.36) (3.00) (3.96) (7.56)

Reversals 0.067 0.126 0.139 0.170 0.133 0.066
(0.68) (1.48) (1.43)  (1.54) (1.34) (0.66)

Difference  -0.541***  -0.172* -0.024 0.101 0.221%* 0.762%**
(-5.79) (-1.86) (-0.36)  (1.08) (2.31) (5.42)

Average number of stocks per month

Trends 213 277 409 374 376

Reversals 415 383 551 406 313

2 years of past SURPs used to define consistency

Trends -0.418%**  _0.154* 0.089 0.280***  0.455%**  (.873¥**
(-4.89) (-1.70) (1.06) (3.07) (5.09) (8.25)

Reversals  0.164* 0.130 0.131 0.165%* 0.238%**  0.074
(1.95) (1.50) (1.49) (1.95) (3.06) (0.86)

Difference  -0.582***  _0.284***  _0.042 0.115* 0.217**%*  (.798%**
(-7.08) (-3.84) (-0.83) (1.86) (2.68) (5.91)

Average number of stocks per month

Trends 231 295 455 440 449

Reversals 515 457 626 446 350




Table 7: Fama-MacBeth Regressions

This table reports the coefficients from the Fama-MacBeth regression specifications in equation
(2). Each month, six-month buy-and-hold returns are regressed on firm characteristics and SURP-
related variables. The time-series average of the monthly coefficients (multiplied by 100) from 1987
to 2009 are reported and their associated Newey-West t-statistics with six lags are also reported in
parentheses. An intercept is estimated but not reported. A firm’s market beta is estimated using
monthly returns over the prior three years, size is last June’s market capitalization, BM is book equity
divided by market equity, and PRET denotes buy-and-hold returns over the prior twelve months while
omitting the most recent month. Streak is an indicator variable that is +1 for positive streaks (more
than two consecutive positive SURPs), -1 for negative streaks, and 0 otherwise. The consistency
variable is 4+1 (-1) whenever the sign of the majority of a firm’s prior earnings surprises is positive
(negative) and the most recent SURP is also positive (negative) and 0 otherwise. SURP denotes a
firm’s most recent quarterly earnings surprise defined as I/B/E/S actual earnings minus the mean
consensus estimate of analysts, scaled by its stock price. SURPP=SURP for positive values and zero
otherwise. Streak is a dummy varible for positive streaks. Other control variables include lagged
SURPs, the sum of all lagged SURPs, Amihud’s (2002) illiquidity measure, idiosyncratic volatility, log
of turnover, analyst forecast dispersion, log of one plus analyst coverage, and institutional ownership.
All SURP variables are winsorized at the extreme 0.1 percentiles. Stocks with lagged prices below five
dollars are excluded from the regression specifications. *, ** and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively, with the associated ¢-statistics in parentheses.

Regression Specifications

(1) (2) 3) (4) () (6) (7)

Beta 0.292 0.259 0.255 0.231 0.237 0.242 0.206
(0.35) (0.31) (0.31) (0.28) (0.29) (0.29) (0.33)
Log(BM) 1.115%* 1.065%* 1.045%* 1.133** 1.091%* 1.093** 0.800*
(2.18) (2.09) (2.05) (2.23) (2.15) (2.16) (1.74)
Log(Size) -0.066 -0.124 -0.125 -0.138 -0.141 -0.143 -0.623**
(-0.28) (-0.54) (-0.56) (-0.60) (-0.61) (-0.63) (-2.41)
PRET 2.203** 1.506 1.499 1.737 1.477 1.448 1.731
(2.04) (1.43) (1.41) (1.62) (1.40) (1.36) (1.48)
SURP 25.581***  18.693*** 21.252%¥*  18.773%**  22.046%**  13.031%**
(4.57) (4.05) (3.82) (3.77) (4.80) (2.55)
SURPP 23.866%**
(2.95)
SURPY 31.468*
(1.84)
Streak 1.454%%* 0.983%** 0.949*** 0.816***
(9.23) (5.75) (5.80) (4.95)
Streak?” Dummy 1.062%**
(4.64)
Streak’ Dummy -1.795%**
(-11.02)
Consistency 1.368%** 0.706%** 0.698*** 0.602%**
(6.71) (2.94) (3.00) (2.74)
LagSURP 4.441 3.735
(0.86) (0.59)
Lag2SURP 4.989 7.140
(0.85) (1.21)
Sum of all lagged SURPs 0.109 -0.335
(0.69) (-1.08)
Amihud’s Measure -0.167
(-0.95)
Idiosyncratic Volatility -62.510%**
(-3.30)
Log(turnover) -0.179
(-0.52)
Dispersion -0.150
(-0.70)
Log(14+Analyst Coverage) 1.183%**
(2.85)
Institutional Ownership -0.613
(-0.53)
Number of months 276 276 276 276 276 276 276

Number of firm-months 2277 2277 2277 2277 2277 2277 1944
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Figure 1: This figure plots the underreaction coefficients for streaks and reversals. These average
coefficients are specified in terms of the sign and magnitude of a firms most recent earnings surprise de-
noted SURP. A quarterly SURP is defined as the I/B/E/S actual earnings for a particular quarter minus
the mean consensus analyst earnnigs forecast for that quarter, scaled by the stock price. Each month
from 1987 to 2009, based on the most recent SURP, firms are sorted into SURP quintiles as well as
positive SURP and negative SURP portfolios. The underreaction coefficients are defined using cumula-
tive abnormal returns following a three-day horizon (CAR) following quarterly earnings announcements
and risk-adjusted returns over a longer six-month horizon (Drift) as follows R = % The
averages are computed using a Fama-MacBeth approach. First, quarterly cross-sectional average CARs
and Drifts are computed, with the time-series averages of these cross-sectional averages defined as the

underreaction coefficient R. A lower R ratio is evidence of a greater underreaction by investors as less

information is immediately incorporated into prices.





