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1 Introduction

We analyze the benefits and costs of hedging contracts under asymmetric information. The

benefits arise since hedging enhances risk-sharing opportunities between agents with different

risk-bearing capacities. The costs arise when hedging creates hidden liability that increases

risk-taking incentives. We build on this trade-off to develop an incentive-based rationale for

margin requirements.

We model hedging as the design of an optimal contract between a risk-averse buyer of

insurance who seeks protection against a risk exposure and a risk-neutral seller of insurance

who provides the protection. Examples of hedging contracts are forwards, futures or credit

default swaps (CDS).

Financial institutions selling protection are exposed to risk from their own assets and

liabilities (balance sheet risk). Managing balance sheet risk is costly. For example, financial

institutions must devote resources to scrutinize the default risk of their borrowers or to

manage their maturity mismatch.1 Not managing balance sheet risk (risk-taking) can lead

to the failure of the protection seller and to the default on his contractual obligations.

Protection buyers are therefore exposed to counterparty risk. For example, Lehman Brothers

and Bear Stearns defaulted on their CDS derivative obligations because of losses incurred

on their other investments, in particular sub-prime mortgages.

Our main assumption is that the care with which financial institutions manage their

balance sheet risk is unobservable to outsiders and that financial institutions are protected

by limited liability. This creates a moral hazard problem between the buyer and seller of

protection. In this context, we show that hedging creates hidden liability: Ex-ante, when

entering the position, the hedge is neither an asset nor a liability for the protection seller. For

example, the seller of a credit default swap pays the buyer in case of credit events (default,

restructuring) but collects an insurance premium otherwise. On average, the seller must at

1For example, in the wake of the 2007-09 crisis many financial institutions financed themselves through
short-term debt. While such financing was relatively easy to establish, it left these institutions exposed to
the risk of not being able to roll-over their liabilities (Brunnermeier and Oehmke, 2009).
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least break even for her to be willing to enter the position. But, if negative information

about the underlying position arrives after the contract is signed, the hedge is more likely

to be a liability rather than an asset for the protection seller. For instance, after bad news

about the future solvency of firms, the seller of a CDS is more likely to pay out the insurance

than after good news. The implicit liability embedded in the hedging position undermines

the protection seller’s risk-management incentives. This is because she bears the full cost of

risk-management while the benefit accrues in part to the protection buyer.

Given the incentives of the protection seller, the protection buyer faces a trade-off. If he

wants to curb seller’s risk-taking incentives, he must reduce the hidden liability and opt for a

contract with limited risk-sharing. Such under-insurance is costly and he may instead choose

a contract providing full insurance, recognizing that it will encourage seller’s risk-taking and

lead to counterparty risk. We show that the latter type of contract is optimal when the

seller’s moral hazard is severe and, at the same time, the probability of seller’s default is

perceived to be small.

Our analysis identifies a channel through which hedging under asymmetric information

can lead to increased aggregate risk. In the absence of a moral hazard problem, the risk the

protection buyer is hedging and the balance sheet risk of the protection seller are indepen-

dent. Under asymmetric information, however, the hidden liability can lead to risk-taking

by the seller after bad news about the buyer’s risk. Hence, hedging contracts create inter-

connectedness: bad news about buyer’s risk lead to an increased default risk of the seller.

We use the model to develop an incentive-based theory of margin requirements. The

buyer and seller of protection can agree as part of their risk-sharing transaction that the

seller deposits cash on a separate account when the buyer makes a margin call. This is

costly since deposited cash earns a lower rate of return than assets kept on the balance

sheet. The benefit is that the cash in the margin account is ring-fenced from the seller’s

risk-taking. The margin thus reduces the size of the moral hazard problem between the

protection buyer and seller.

2



We show that margins are called after bad news about the underlying position since only

then are the seller’s risk-management incentives jeopardized. That is, variation margins

are optimal. In the contract with limited insurance but with the seller’s risk-management

incentives intact, variation margins enhance the scope for risk-sharing. In the contract with

risk-taking by the seller but full insurance in no-default states, variation margins insure the

protection buyer against the risk of the seller’s default. The overall effect of margins on

aggregate risk is ambiguous: while they enhance risk-sharing opportunities, they also make

the protection buyer more willing to tolerate risk-taking by the protection seller since they

protect him against counterparty risk.

We show that our benchmark model with one protection buyer and one protection seller

is isomorphic to a model in which a protection buyer acquires insurance from multiple pro-

tection sellers taking correlated risks. However, if protection sellers can re-trade hedging

contracts and transfer contractual obligations, the constrained efficient contract is no longer

incentive-compatible. Efficiency can be restored using initial margins that are imposed as

soon as a seller’s position exceeds a threshold.

Rajan (2006) provides an informal account of how hedging can lead to more risk-taking

in the economy. The paper closest to ours is Thompson (2010). He also analyzes financial

insurance contracts and the effects of counterparty risk. In his model, there is an adverse

selection problem on the protection buyer’s side as he privately observes the hedged risk.

The protection seller is subject to moral hazard as she makes an unobservable choice between

a liquid or an illiquid portfolio. Choosing an illiquid portfolio is more profitable but if the

protection buyer turns out to be a high risk, illiquid assets need to be liquidated prematurely

to pay out insurance. Such liquidation is costly and the protection seller may default, giving

rise to counterparty risk. This provides ex ante incentives to high risk protection buyers to

reveal their type truthfully so that the protection seller chooses a liquid portfolio. Stephens

and Thompson (2011) analyze the effects of competition among multiple protection sellers.

Acharya and Bisin (2010) focus on the contractual externality between protection buyers.
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Once a protection seller sold insurance to one buyer, selling additional insurance to another

buyer increases the seller’s incentives to default strategically. Bolton and Oehmke (2011)

show that derivatives can be useful risk-sharing tools but argue that they should not be

senior in bankruptcy relative to other creditors. Otherwise, derivatives markets can becomes

inefficiently large from a social perspective.

We show how information shocks can create hidden liabilities and weaken incentives

to exert risk-management effort. Holmström and Tirole (1998), by contrast, examine how

liquidity shocks weaken incentives. Our hidden liability operates like a debt-overhang (Myers,

1977). But instead of exogenous debt, we have endogenous liabilities as a result of optimal

contracting.

Our approach differs from other models of systemic risk, e.g., Freixas, Parigi and Rochet

(2000), Cifuentes, Shin and Ferrucci (2005), and Allen and Carletti (2006), since in our

analysis contagion arises because of incentive problems in the market for financial insurance.

The remainder of the paper is organized as follows. In Section 2, we describe the model

setup. In Section 3, we analyze the benchmark case in which risk-management effort is

observable and there is no moral hazard. In Section 4, we analyze the optimal contract

when risk-management effort is unobservable. To highlight the basic trade-off between risk-

sharing and risk-taking, we abstract from margins in this section. We also show that our

formulation with risk-management effort (or risk-taking) by the protection seller is similar

to a formulation with the (lack of) risk-shifting by the protection seller. In Section 5, we

analyze the optimal contract with margins. In Section 6, we analyze the case when there are

multiple protection sellers who can reinsure or trade with each other. Section 7 concludes.

All proofs are in the Appendix.
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2 The model

There are three dates, t = 0, 1,2, and two agents, the protection buyer and the protection

seller, who can enter a risk-sharing contract at t = 0.

Protection buyer. The protection buyer is risk-averse with twice differentiable concave

utility function, denoted by u. At t = 0 he is endowed with a risky exposure of size 1 and

return θ̃. The return is realized at t = 2. It can take on two values: θ̄ with probability π

and
¯
θ with probability 1 − π. The protection buyer seeks insurance against the risk θ̃. For

example, the protection buyer could be a commercial bank seeking to hedge credit risk of

its loan portfolio in order to reduce its capital requirement.

Protection seller. The protection seller is risk-neutral. At time t = 0 she has an

amount A > 0 of assets in place which have an uncertain per unit return R̃ at t = 2 (balance

sheet risk). The protection seller could be an investment bank or an insurance company.2

At t = 1 the protection seller has to exert costly unobservable effort e to manage the risk

of her assets. To capture the moral hazard problem in the simplest possible way, we assume

that the protection seller can choose between effort, e = 1, and no effort, e = 0. If she exerts

risk-management effort, we assume that AR̃(e = 1) = AR > A. If she does not exert effort,

then AR̃(e = 0) = AR with probability p and AR̃(e = 0) = 0 with probability 1 − p. The

seller is protected by limited liability. Hence, she may default on her obligations if she does

not manage the risk of her balance sheet. In this case, the protection buyer is exposed to

counterparty risk.

If the seller does not exert effort, she obtains a private benefit B per unit of assets on her

balance sheet. That is, the cost of managing balance sheet risk is proportional to the size of

the balance sheet. Note that the impact of the seller’s effort on R̃ does not depend on the

return of the buyer’s asset θ̃. We assume that the opportunity cost of not managing risk is

higher than the private benefit: (1− p)R > B. Hence, the protection seller prefers effort to

2According to public financial statements of AIG, 72% of notional amounts of CDS sold by AIG Financial
Products as of December 2007 were used by banks for capital relief (European Central Bank, 2009).
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no effort if she is solely concerned with managing the risk of her assets.

Advance information. Information about the risk θ̃ is publicly revealed at t = 0.5,

before the seller makes her effort decision at t = 1. Specifically, a signal s̃ about the return

θ̃ is observed. Let λ be the probability of a correct signal:

λ = prob[s̄|θ̄] = prob[
¯
s|̄θ]

The probability π is updated to π̄ upon observing s̄ and to
¯
π upon observing

¯
s, where

π̄ = prob[θ̄|s̄] =
prob[s̄|θ̄]prob[θ̄]

prob[s̄]
=

λπ

λπ + (1− λ)(1− π)

¯
π = prob[θ̄|̄s] =

prob[
¯
s|θ̄]prob[θ̄]

prob[
¯
s]

=
(1− λ)π

(1− λ)π + λ(1− π)

according to Bayes’ Law.

We assume that λ ≥ 1
2
. If λ = 1

2
, π̄ = π =

¯
π and the signal is completely uninformative.

It is as if there was no advance information about the risk θ. For λ > 1
2
, π̄ > π >

¯
π,

observing s̄ increases the probability of θ̃ = θ̄ (good signal) whereas observing
¯
s decreases

the probability of θ̃ = θ̄ (bad signal). If λ = 1, the signal is perfectly informative and it is

as if the realization of θ̃ was already observed at t = 0.5.

Margins. A margin is a technology that allows the protection seller to liquidate a fraction

α of her assets for cash and to deposit the cash on a separate account when requested to

do so by the protection buyer. Thus, αA earns the risk-free rate (which we normalize to

one), while (1−α)A continues to earn the return R̃ whose distribution depends on the effort

choice of the protection seller. The liquidation of assets into cash and the transfer of cash

into a separate account removes the fraction α of the seller’s assets from her balance sheet.

Those assets are ring-fenced from the seller’s moral hazard problem. The cash is unaffected

by the default of the seller and can be used to service the buyer’s claim. At the same time,

the seller no longer obtains private benefits on those assets since he no longer controls them.
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We will consider two types of margins. An initial margin is a requirement to deposit cash

at t = 0, when the protection buyer and seller enter a risk-sharing contract. A variation

margin is a requirement to deposit cash at t = 0.5, after advance information about the risk

θ is observed.

Contract. The contract specifies a transfer τ from the protection seller to the protection

buyer, conditional on all contractible information (in case τ < 0, the buyer pays the seller).

The contract can also specify a margin α to be deposited by the protection seller as cash

with a third party. We assume that the realization of θ̃, the return on the seller’s assets

R̃ and the advance signal s̃ are all publicly observable and contractible. Hence, transfers

are given by τ = τ(θ̃, s̃, R̃). Transfers must be consistent with the limited liability of the

protection seller, so that AR̃ > τ(θ̃, s̃, R̃). We assume A > π∆θ, which, as we will show

below, implies that the limited liability constraint binds only if the protection seller has no

assets available to meet her obligations.

The sequence of events is summarized in Figure ?? below.

-
timet=0 t=0.5 t=1 t=2

Risk-averse protection
buyer seeks insurance
from a risk-neutral
protection seller.

Advance information
about the risk is
observed.

Protection seller chooses
whether or not to exert
effort to manage the risk
of her assets.

Risk underlying the
transaction realizes.

Shock to the return of
the seller’s assets real-
izes.

Contract is settled.

Figure 1: The timing of events

3 First-best: observable effort

In this section we consider the case where the protection buyer can observe the effort level

of the protection seller so that there is no moral hazard problem. While implausible, this

case will enable us to identify the inefficiencies generated by moral hazard.
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Consider the case where the protection buyer instructs the protection seller to exert risk-

management effort after both a good and a bad signal. In that case the seller’s assets always

return R̃(1) = R. Hence we don’t need explicitly write R̃ when writing the variables upon

which τ is contingent. Since the seller never defaults when exerting effort, the margin is never

transferred to the protection buyer. Also, as will be clear below, under our assumption that

A > π∆θ, the limited liability constraint of the seller does not bind. Hence, for simplicity

we neglect this constraint.

The protection buyer solves

max
α,τ(θ̃,s̃)

πλu(θ̄ + τ(θ̄, s̄)) + (1− π)(1− λ)u(
¯
θ + τ(

¯
θ, s̄)) (1)

+π(1− λ)u(θ̄ + τ(θ̄,
¯
s)) + (1− π)λu(

¯
θ + τ(

¯
θ,

¯
s))

subject to the seller’s participation constraint

πλ[αA+ (1− α)AR− τ(θ̄, s̄)] + π(1− λ)[αA+ (1− α)AR− τ(θ̄,
¯
s)]

+ (1− π)λ[αA+ (1− α)AR− τ(
¯
θ,

¯
s)] + (1− π)(1− λ)[αA+ (1− α)AR− τ(

¯
θ, s̄)] ≥ AR

where 0 ≤ α ≤ 1 is a fraction of assets to be deposited as an initial margin.3 The expression

on the right-hand side is seller’s payoff if she does not enter the transaction. It is given by

the return on her capital, AR.

The participation constraint can be written as

αA (1−R) ≥ π
[
λτ(θ̄, s̄) + (1− λ)τ(θ̄,

¯
s)
]

+ (1− π) [λτ(
¯
θ,

¯
s) + (1− λ) τ(

¯
θ, s̄)] ≡ E[τ ] (2)

where the expectation is over θ̃ and s̃. If margins are not used (α = 0), the protection

seller agrees to the contract as long as the average payment to the buyer is non-positive. If

3The case of a variation margin can be written analogously. Unlike an initial margin, which affects the
seller’s return on assets in all four states of the world, a variation margin is called after a particular signal,
thus affecting only two states.
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margins are used (α > 0), the protection seller needs to be compensated for the opportunity

cost of putting cash aside, R − 1. Proposition 1 states the solution to this maximization

problem. It is easy to show that the corresponding value function is greater than what would

be obtained if effort was not always requested. Thus, we can state our first result.

Proposition 1 (First-best contract) When effort is observable, the optimal contract en-

tails effort after both signals, provides full insurance, and is actuarially fair. Margins are

not used. The transfers are given by:

τFB(θ̄, s̄) = τFB(θ̄,
¯
s) = −(1− π)∆θ = E[θ̃]− θ̄ < 0

τFB(
¯
θ, s̄) = τFB(

¯
θ,

¯
s) = π∆θ = E[θ̃]−

¯
θ > 0

In the first-best contract, the consumption of the protection buyer is equalized across

states (full insurance). The contract does not react to the signal. Since the only effect of

margins here is to tighten the seller’s participation constraint, they are not used. Expected

transfers are zero and there are no rents to the protection seller. The seller pays the buyer if

θ̃ =
¯
θ and vice versa if θ̃ = θ̄. The payments are proportional to the riskiness of the position,

measured by ∆θ.

It is optimal for the protection buyer to demand effort after both signals. He is fully

insured and the seller’s assets are safe so there is no counterparty risk. If there was no

effort, the buyer would be exposed to counterparty risk and full insurance would no longer

be possible.

Finally, note that the values of the transfers given in the proposition confirms our initial

claim that, under our assumption that A > π∆θ, the limited liability condition does not

bind.
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4 Unobservable effort, no margins

4.1 Effort after both signals

We now turn to the case in which the effort level of the protection seller is not observable.

In this section, we characterize the optimal contract assuming that margins are not used,

α = 0. This provides a useful benchmark to assess the effect of margins on incentives in

Section ??.

We first consider a contract that induces effort of the seller after both a good and a bad

signal.

As the protection buyer expects the seller to always exert risk-management effort, R̃ (1) =

R. Hence, the contract does not need to be contingent on R̃. Thus, the protection buyer

solves (??) subject to (??) and the seller’s incentive compatibility constraints. Since the

signal about the risk θ is observed before the effort decision is made, the incentive constraints

are conditional on the realization of the signal.

Suppose a good signal, s̃ = s̄, is observed. Then, the incentive-compatibility constraint

is given by

π̄[AR− τ(θ̄, s̄)] + (1− π̄)[AR− τ(
¯
θ, s̄)] ≥

π̄[p(AR− τ(θ̄, s̄))] + (1− π̄)[p(AR− τ(
¯
θ, s̄))] + AB

The expression on the right-hand side is seller’s (out-of-equilibrium) expected payoff if she

does not exert effort. With probability 1− p, the seller’s assets return zero and she cannot

make any positive payment to the protection buyer. The buyer, in turn, has no interest in

making a payment to the seller since it would make it more difficult to satisfy the incentive

constraint. Hence τ(θ̃, s̃ |default) = 0. The incentive-compatibility constraint after a bad

signal, s̃ =
¯
s, is derived analogously.
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Simplifying the incentive constraint for each realization of the signal, we get:

AP ≥ π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄)

AP ≥
¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s)

where

P ≡ R− B

1− p
(3)

denotes “pledgeable income” per unit of assets (as in Tirole, 2005). Total pledgeable income

AP puts an upper bound on the expected transfer to the protection buyer, conditional on

the observed signal. Note that P > 0 since we assumed (1− p)R > B.

It will be useful to introduce the following notation:

τ̄ ≡ π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄) (4)

¯
τ ≡

¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s). (5)

The incentive constraints become

AP ≥ τ̄ (6)

AP ≥
¯
τ (7)

and the participation constraint (??) becomes

0 ≥ prob[s̄]τ̄ + prob[
¯
s]

¯
τ (8)

Lemma 1 (First-best attainable) When effort is not observable and the signal is infor-

mative, the first-best can be achieved if and only if the protection seller has enough pledgeable

income, i.e., for AP > (π −
¯
π)∆θ = E[θ̃]− E[θ̃|̄s].
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For sufficiently high pledgeable income levels, incentive-compatibility constraints are not

binding and the first-best allocation can be reached even when effort is not observable. The

threshold level of pledgeable income beyond which the first-best is attainable, (π −
¯
π)∆θ,

is proportional to the riskiness of the position ∆θ and to the informativeness of the signal

λ (which induces a higher wedge between the prior and the updated probability). We can

state the following corollary.

Corollary 1 When the signal is uninformative, λ = 1
2
, the first-best is always reached:

AP > (π −
¯
π)∆θ = 0.

In what follows, we focus on the case when the signal is sufficiently informative. In

particular, we assume that:

λ ≥ λ∗ ≡
1−√p
1− p

>
1

2
(9)

where the last inequality is satisfied for all p.4

To ensure that the protection seller always exerts effort when the first-best is not attain-

able, the optimal contract must satisfy two incentive-compatibility constraints. The next

lemma states that only one of them will be binding.

Lemma 2 (Incentives given the signal) When effort is not observable and the first-best

is not attainable, AP < (π −
¯
π)∆θ, the incentive constraint after a good signal is slack

whereas the incentive constraint after a bad signal is binding.

Ex ante, before the signal is observed, the derivative position is neither an asset nor a

liability for the protection seller. After observing a good signal about the underlying risk,

the position is more likely to be an asset for the seller. He is more likely to be paid by the

buyer than the other way around. Thus, good news do not generate incentive problems.

Negative news, on the other hand, make it more likely that the position moves against the

seller. Now it is the seller who is more likely to pay the buyer. For AP < (π −
¯
π)∆θ, this

4This assumption is not very restrictive: note that λ∗(p) is decreasing in p and λ∗ → 1
2 as p→ 1. As an

example, λ∗ = 0.59 for p = 1
2 .
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undermines her incentives to exert effort. She has to bear the full cost of effort while the

benefit accrues in part to the protection buyer. This is reminiscent of the debt-overhang

effect (Myers, 1977). The derivative position contains hidden liability that affects seller’s

risk-management incentives when she has limited pledgeable income.

The following proposition characterizes the optimal contract with effort after both signals.

Proposition 2 (Optimal contract with risk-management) When effort is not observ-

able and the first-best is not attainable, AP < (π −
¯
π)∆θ, the optimal contract that induces

effort after both signals provides full insurance conditional on the signal. The contract is

actuarially fair. The transfers are given by:

τ e=1,e=1(θ̄, s̄) = −(1− π̄)∆θ − prob[
¯
s]

prob[s̄]
AP = E([θ̃|s̄]− θ̄)− prob[

¯
s]

prob[s̄]
AP < 0

τ e=1,e=1(
¯
θ, s̄) = π̄∆θ − prob[

¯
s]

prob[s̄]
AP = (E[θ̃|s̄]−

¯
θ)− prob[

¯
s]

prob[s̄]
AP > 0

τ e=1,e=1(θ̄,
¯
s) = −(1−

¯
π)∆θ + AP = (E[θ̃|̄s]− θ̄) + AP < 0

τ e=1,e=1(
¯
θ,

¯
s) =

¯
π∆θ + AP = (E[θ̃|̄s]−

¯
θ) + AP > 0

As in the first-best contract, the participation constraint binds and there are no rents to

the protection seller. Expected transfers are zero so that the contract is actuarially fair.

The key difference to the first-best contract is that the transfers now depend on the

signal:

τ e=1,e=1(θ̃,
¯
s) < τFB(θ̃,

¯
s) = τFB(θ̃, s̄) < τ e=1,e=1(θ̃, s̄)

To preserve the seller’s incentives to exert effort, the buyer must reduce the hidden liability

by accepting incomplete risk-sharing. In particular, the incentive-compatible amount of

insurance is smaller following a bad signal. Hence, the protection buyer must bear signal

risk. Correspondingly, the protection seller must be left with some rent after a bad signal in

order to induce effort. The protection buyer “reclaims” this rent after a good signal so that
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the expected rent to the seller is zero.5

Conditional on the signal, the optimal contract provides full insurance against the un-

derlying risk θ̃:

τ(
¯
θ, s̄)− τ(θ̄, s̄) = τ(

¯
θ,

¯
s)− τ(θ̄,

¯
s) = ∆θ > 0 (10)

Since there is full insurance conditional on the signal, we can rewrite the objective function

of the risk-averse protection buyer (??) as

prob[s̄]u(E[θ|s̄] + τ̄) + prob[
¯
s]u(E[θ|̄s] +

¯
τ) (11)

where we have used (??) and (??).

Figure 2 illustrates our results so far in the contract space (
¯
τ, τ̄). The relevant part of

the contract space is when
¯
τ ≥ 0 (x-axis) and when

¯
τ ≤ 0 (y-axis). After a bad signal the

protection seller is more likely to pay the protection buyer than vice versa. The opposite

holds after a good signal.

Insert Figure 2 here

The participation constraint of the protection seller (??) is a line through the origin with

slope −prob[
¯
s]

prob[s̄]
. The protection seller agrees to any contract that lies on or below this line.

Contracts that lie on the line are actuarially fair since expected transfers are zero. The slope

gives the ”relative price” at which the risk-neutral protection seller is willing to exchange

expected transfers after a good and a bad signal.

The indifference curves corresponding to (??) are decreasing, convex curves in the con-

tract space (
¯
τ, τ̄).6 The utility of the protection buyer increases as he moves to the north-east

in the figure.

The first-best allocation is given by point A where the indifference curve of the protection

5Interpreting signals as types, there is then cross-subsidization between types.
6The slope of the indifference curve is given by dτ̄

d
¯
τ = −prob[

¯
s]

¯
u′

prob[s̄]ū′ < 0, where
¯
u′ ≡ u′(C + IE[θ|̄s] +

¯
τ) and

ū′ ≡ u′(C + IE[θ|s̄] + τ̄). The change in the slope is d2τ̄
d
¯
τ2 = − prob[

¯
s]

¯
u′′ū′

(prob[s̄]ū′)2 > 0.
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buyer is tangent to the participation constraint of the protection seller. The first-best alloca-

tion achieves full insurance. In the first-best, transfers are independent from the realization

of the signal for a given realization of θ, i.e., τ(θ̃, s̄) = τ(θ̃,
¯
s). Using (??), (??) and (??),

such transfers yield

τ̄ = −(E[θ̃|s̄]− E[θ̃|̄s]) +
¯
τ (12)

Thus, in the (
¯
τ, τ̄) plane, these transfers lie on the 45o line that intersects the x-axis at

¯
τ = (E[θ̃|s̄]− E[θ̃|̄s]) and that intersects the participation constraint at point A.

Point B illustrates the optimal contract with effort. The vertical line that intersects the

x-axis at
¯
τ = AP represents the incentive constraint. The protection seller only exerts effort

after a bad signal if the contract lies on or to the left of the line. The figure is drawn for

AP < (E[θ̃] − E[θ̃|̄s]) so that the first-best allocation is not attainable when effort is not

observable (Lemma ??). The contract achieving the highest utility for the protection buyer

lies at the intersection of the incentive and the participation constraint. He is worse off than

with the first-best allocation. The indifference curve passing through B lies strictly below

the one passing through A.

4.2 No effort after a bad signal

The protection buyer may find the reduced risk-sharing in the contract with effort after both

signals too costly. He may instead choose to accept risk-taking by the protection seller in

exchange for more sharing of the risk θ. In the previous subsection, we showed that bad news

generate incentive problems and make it harder to induce effort by the protection seller. In

this subsection, we characterize the optimal contract in which effort is induced only after

good news.

After good news, the contract entails risk-management by the protection seller so that

R̃ (1) = R. After bad news, the contract entails risk-taking so that R̃ (0) = R with proba-

bility p while R̃ (0) = 0 with probability 1− p. Hence, the contract is contingent on R̃. The
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objective function of the protection buyer is given by:

max
τ(θ̃,s̃,R̃)

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(
¯
θ + τ(

¯
θ, s̄, R)) (13)

+ π(1− λ)[pu(θ̄ + τ(θ̄,
¯
s, R)) + (1− p)u(θ̄ + τ(θ̄,

¯
s, 0))]

+ (1− π)λ[pu(
¯
θ + τ(

¯
θ,

¯
s, R)) + (1− p)u(

¯
θ)]

With probability 1 − p the seller’s balance sheet returns zero and she cannot make any

transfers to the protection buyer. It may be optimal, however, for the protection buyer to

make transfers to the protection seller when the seller is in default but θ̄ is realized, i.e.

τ(θ̄,
¯
s, 0) ≤ 0. On the other hand, the transfer when

¯
θ is realized and the seller is in default

is optimally set to zero, τ(
¯
θ,

¯
s, 0) = 0, since the protection buyer is due a transfer in the

¯
θ

state but the protection seller is unable to make it.

The constraint inducing risk-management after good news is, as before, given by

AP ≥ π̄τ(θ̄, s̄, R) + (1− π̄)τ(
¯
θ, s̄, R) (14)

The constraint inducing risk-taking after bad news is given by

¯
π[AR− τ(θ̄,

¯
s)] + (1−

¯
π)[AR− τ(

¯
θ,

¯
s)] ≤

¯
π[p(AR− τ(θ̄, s̄))− (1− p) τ(θ̄,

¯
s, 0)] + (1−

¯
π)[p(AR− τ(

¯
θ, s̄))] + AB

or, equivalently,

AP ≤
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)−

¯
πτ(θ̄,

¯
s, 0) (15)

Following bad news, the seller prefers to run the risk that her assets return zero when the

expected transfers to the buyer are sufficiently high.
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The seller’s participation constraint is

− prob[
¯
s](1− p)AP ≥ prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+ (16)

prob[
¯
s]p
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
+ prob[

¯
s] (1− p)

¯
πτ(θ̄,

¯
s, 0)

The expected transfer from the seller to the buyer (right-hand side) is negative. If seller

enters the position, she must be compensated for the potential loss of pledgeable income

due to the lack of effort after bad news (left-hand side). Note that higher pledgeable income

makes it more difficult for a protection seller to accept a contract with no effort. Higher

returns on seller’s assets AR increase the outside opportunity of the seller, and they may

not materialize after entering the contract. Similarly, a smaller private benefit B reduces

the value of the contract by reducing the benefit of not exerting effort after a bad signal. An

implication is that apparently expensive derivative contracts sold by well established names

(high P) are an early warning of future risk-taking.7

The following proposition characterizes the optimal contract with effort after a good

signal and no effort after a bad signal.

Proposition 3 (Optimal contract with risk-taking) If risk-taking after bad news is op-

timal, then the optimal contract with risk-taking provides full insurance except when the seller

defaults in
¯
θ state. The contract is actuarially unfair. The transfers are given by:

τ e=1,e=0(θ̄, s̄, R) = τ e=1,e=0(θ̄,
¯
s, R) = τ(θ̄,

¯
s, 0) =

π∆θ − prob[
¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

−∆θ < 0

τ e=1,e=0(
¯
θ, s̄, R) = τ e=1,e=0(

¯
θ,

¯
s, R) =

π∆θ − prob[
¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

> 0

Again, there are no rents to the protection seller (the participation constraint is binding).

7This is reminiscent of Biais, Rochet and Woolley (2009) although the mechanism is different. In that
paper, large rents are a precursor of risk-taking. When rents become too large, investors prefer to give up
on incentives and accept risk-taking. In our analysis, however, the protection seller never earns rents.
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The seller pays the buyer if θ̃ =
¯
θ and R̃ = R and vice versa if θ̃ = θ̄:

τ e=1,e=0(
¯
θ, s̃, R) > 0 > τ e=1,e=0(θ̄, s̃, R̃)

There are three differences between the optimal contract with and without effort after

bad news. First, the contract with risk-taking does not react to the signal:

τ e=1,e=0(θ̃, s̄) = τ e=1,e=0(θ̃,
¯
s)

Except for a default in
¯
θ state, the consumption of the buyer is equalized across states (as in

the first-best contract). Second, unlike in the contract with effort, the buyer is now exposed

to counterparty risk. He is uninsured when the seller is in default but the insurance payment

is due (
¯
θ is realized). Third, the contract with no effort after a bad signal is not actuarially

fair since expected transfers are not equal to zero.

4.3 Risk-sharing and risk-taking

The contract with effort after both signals entails limited risk-sharing but no risk-taking,

while the contract with no effort after a bad signal entails full risk-sharing but allows risk-

taking after bad news. In this section, we examine under what conditions it is privately

optimal to allow risk-taking.

Proposition 4 (Endogenous counterparty risk) Suppose effort is not observable and

the first-best is not attainable, AP < (π −
¯
π)∆θ. There exists a threshold level of pledgeable

income AP̂ such that the contract with risk-management is optimal if and only if AP ≥ AP̂.

If the probability of default is sufficiently small, AP̂ > 0.

The key factor in the choice between the optimal contract with risk-management and with

risk-taking is whether counterparty or signal risk is more costly for the protection buyer. For

low levels of pledgeable income, the moral hazard problem is severe. Providing incentives
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to avoid risk-taking after a bad signal requires a considerable reduction in hidden liability.

The buyer then has to bear a lot of signal risk. If, at the same time, default is unlikely (p

is high), the counterparty risk under the risk-taking contract is small. It is then optimal for

the protection buyer to allow risk-taking by the protection seller.

Counterparty risk thus arises endogenously due to moral hazard. In particular, counter-

party risk occurs when the probability of default 1 − p is small. Note that lower return on

seller’s assets, R, lowers pledgeable income P . Hence, privately optimal risk-sharing con-

tracts are more likely to allow risk-taking in an environment, in which both the return on

riskless investments is low and riskiness of risky investments is perceived to be low.

4.4 Risk-taking or risk-shifting?

So far, we considered the moral hazard problem due to risk-taking by the protection seller.

In this subsection, we show the equivalence between this problem and the moral hazard

problem due to risk-shifting by the protection seller.

Consider the following modification of the actions of the protection seller, which are

unobservable by the protection buyer. The per-unit return on the protection seller’s balance

sheet, R̃, can be high (H), medium (M), or low (L). We assume H > M > 1 > L = 0.

Instead of choosing between “effort” (risk-management) and “no effort” (risk-taking), the

protection seller chooses between “no risk-shifting” and “risk-shifting”. If she chooses no

risk-shifting, the per-unit return on her balance sheet is high, R̃ = H, with probability 1−µ

and medium, R̃ = M , with probability µ. We denote the expected per-unit return in this

case by E [R]. If she chooses risk-shifting, the return is high with probability 1 − µ + α,

medium with probability µ − (α + β), and low, R̃ = 0, with probability β. We denote the

expected per-unit return in this case by Ê [R]. We assume that E [R] > Ê [R] so that the

expected return under risk-shifting is lower than under no risk-shifting and the protection

seller exposes herself to the possibility of default. Note that there is no private benefit B to

the protection seller in this set-up.
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As before, consider a hedging contract between the protection seller and the protection

buyer. If the contract entails no risk-shifting after both good and bad news, the participation

constraint of the protection seller is given by

AE [R]− [prob[s̄]τ̄ + prob[
¯
s]

¯
τ ] ≥ AE [R]

or, equivalently,

prob[s̄]τ̄ + prob[
¯
s]

¯
τ ≤ 0

Note that it is the same as the participation constraint (??) in the problem with risk-taking.

Turning to the incentive constraints of the protection seller, which ensure that she prefers

no risk-shifting to risk-shifting after both signals, we have the following two constraints:

(1− µ) (AH − τ̄) + µ (AM − τ̄) ≥ (1− µ+ α) (AH − τ̄) + (µ− (α + β)) (AM − τ̄)

(1− µ) (AH −
¯
τ) + µ (AM −

¯
τ) ≥ (1− µ+ α) (AH −

¯
τ) + (µ− (α + β)) (AM −

¯
τ)

or, equivalently,

AP̄ ≥ τ̄ (17)

AP̄ ≥
¯
τ (18)

where

P̄ ≡ −
[
α

β
(H −M)−M

]
(19)

denotes the per-unit “pledgeable income” in this case.8

8Note that in our benchmark set-up, risk-taking by the protection seller reduced the total per-unit re-
turn on the protection seller’s assets from R to pR + B. The difference in per-unit returns was given by
(1− p)

[
R− B

1−p

]
= (1− p)P. In the set-up with risk-shifting, the difference in per-unit returns under no

risk-shifting and under risk-shifting is E [R] − Ê [R] = βP̄. Hence, P̄, like P in our benchmark set-up,
represents the loss due to taking a “wrong”, return-reducing action. Similarly, β and (1− p), respectively,
are the probabilities of default of the protection seller if the return-reducing action is taken.
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These constraints are similar to the incentive constraints (??) and (??) in the problem

with risk-risk-management effort. The objective function of the protection buyer is un-

changed and is given by (??), since the limited liability constraint of the protection seller

never binds when she chooses no risk-shifting.

We conclude that the optimal contract with no risk-shifting after both good and bad news

is the same as the one characterized in Section ??, up to a re-definition of the pledgeable

income from P to P̄ .

Consider now the contract with no risk-shifting after good news and risk-shifting after

bad news. The objective function of the protection buyer is given by:

max
τ(θ̃,s̃,R̃)

πλu(θ̄ + τ(θ̄, s̄, R̃)) + (1− π)(1− λ)u(
¯
θ + τ(

¯
θ, s̄, R̃)) (20)

+ π(1− λ)[(1− β)u(θ̄ + τ(θ̄,
¯
s, R̃ ≥M)) + βu(θ̄ + τ(θ̄,

¯
s, 0))]

+ (1− π)λ[(1− β)u(
¯
θ + τ(

¯
θ,

¯
s, R̃ ≥M)) + βu(

¯
θ)]

where conditioning on R̃ ≥ M indicates that the protection seller is able to honor her

obligations under the contract only if R̃ = {H,M}. The objective function is similar to the

objective function (??) in the problem with risk-taking, with p being replaced by (1− β).

Turning to the participation constraint of the protection seller, it is given by:

− prob[
¯
s]βAP̄ ≥ prob[s̄]

[
π̄τ(θ̄, s̄, R̃) + (1− π̄)τ(

¯
θ, s̄, R̃)

]
+ (21)

prob[
¯
s] (1− β)

[
¯
πτ(θ̄,

¯
s, R̃ ≥M) + (1−

¯
π)τ(

¯
θ,

¯
s, R̃ ≥M)

]
+ prob[

¯
s]β

¯
πτ(θ̄,

¯
s, 0)

Once again, it is similar to the participation constraint (??) in the problem with risk-taking.

As for the incentive constraints, we know from Section ?? that if the contract with risk-

taking after bad news is optimal, the incentive constraints do not bind. Hence, there is no

need to consider them explicitly.

We conclude that the problem with risk-shifting after bad news is isomorphic to the
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problem with risk-taking after bad news characterized in Section ??.

5 Margins

In this section, we analyze the incentive effects of margins. In the case of the contract with

effort, when risk-sharing is limited by the incentive constraint of the protection seller, we

show how margins can help increase the amount of insurance for the protection buyer. In

the case of the contract with risk-taking, when the buyer is exposed to counterparty risk, we

examine the role of margins in providing insurance against the seller’s default.

5.1 Margins and risk-management effort

When the protection seller exerts effort, she does not default on her contractual obligations

and the margin need not be transferred to the protection buyer. Hence, the objective function

of the protection buyer is unchanged and is given by (??) or, equivalently, by (??). We also

know that the incentive constraint of the seller does not bind after a good signal. Hence, the

protection buyer will not make a margin call in this case. However, the buyer may want to

call a margin after a bad signal when seller’s incentives to exert effort may be jeopardized.

The seller’s participation constraint is thus given by:

prob[s̄]AR + prob[
¯
s] [αA+ (1− α)AR]− E[τ ] ≥ AR

or, equivalently,

E[τ ] ≤ −αA (R− 1) prob[
¯
s] (22)

The expression on the right-hand side is negative and represents the opportunity cost of

depositing cash rather than keeping it on the balance sheet after a bad signal. The seller

forgoes the net return of assets over cash, R − 1. Placing a higher margin α makes it more

difficult for the protection seller to accept the contract. The opportunity cost of the margin
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makes the contract actuarially unfair (expected transfers are no longer equal to zero).

The incentive-compatibility constraint after a bad signal is given by:

αA+ (1− α)AR−
¯
τ ≥ p [αA+ (1− α)AR−

¯
τ ] + (1− α)AB

The expression on the right-hand side is seller’s (out-of-equilibrium) expected payoff if she

does not exert effort. She earns the private benefit B only on the assets on her balance sheet.

There is no private benefit associated with the deposited cash. Higher margins thus reduce

the private benefit of risk-taking: the cash is ring-fenced from moral hazard. When seller’s

assets return zero, she also loses the cash deposited as it is seized by the buyer.9 We can

re-write the incentive constraint as

αA+ (1− α)AP ≥
¯
τ (23)

where P denotes, as before, the pledgeable income per unit of assets. For P < 1, the margin

relaxes the incentive constraint. We can now state the following result.

Lemma 3 If the per-unit pledgeable income is at least 1, P ≥ 1, margins are not used,

α∗ = 0.

The following proposition characterizes the optimal contract with margins and risk-

management effort.

Proposition 5 (Optimal margins with risk-management) Consider the case when P <

1. Let ϕ (α) ≡ u′(E[θ|
¯
s]+

¯
τ(α))

u′(E[θ|s̄]+τ̄(α))
. If ϕ (0) < 1 + R−1

1−P , then α∗ = 0. If ϕ (1) > 1 + R−1
1−P , then

α∗ = 1. Otherwise, α∗ ∈ (0, 1) is given by

ϕ(α∗) = 1 +
R− 1

1− P
(24)

9It is optimal for the buyer to seize the margin whenever the seller is in default, i.e. both in
¯
θ state when

an insurance payment is due and in θ̄ state when it is not. This is because returning the margin to the seller
would only make it more difficult to satisfy the incentive constraint.
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In the contract with margins and risk-management effort, the expected transfers are given

by:

¯
τ (α∗) = α∗A+ (1− α∗)P

τ̄ (α∗) = −prob[
¯
s]

prob[s̄]
[α∗AR + (1− α∗)P ]

The benefit of margins is improved risk-sharing via the transfers τ̄(α∗) and
¯
τ(α∗). The

margin itself is never paid to the protection buyer since the protection seller does not de-

fault when she exerts effort. The first-best is obtained when the buyer’s marginal utilities

conditional on the bad and the good signal are equalized, ϕ (α) = 1, so that there is full

insurance against signal risk. But to preserve the seller’s incentives to exert effort when the

first-best is not attainable, the protection buyer must bear signal risk so that the ratio of

the marginal utilities is strictly higher than 1. Since ∂τ̄
∂α∗

< 0 and
∂
¯
τ

∂α∗
> 0, higher margins

reduce the left-hand side of (??), moving the expected transfers closer to full insurance.

The cost of margins is that they tighten the participation constraint (??) and make the

contract with effort actuarially unfair. The optimal margin balances enhanced insurance

against signal risk and actuarial fairness. The right-hand side of (??) gives the rate at which

the trade-off occurs. The numerator of the fraction, R−1, is the opportunity cost of foregone

asset return causing the actuarial unfairness of the contract. The denominator measures the

severity of the incentive problem that the margin helps relax. Margins can relax the incentive

constraint (??) only for P < 1, and they are more beneficial the lower the pledgeable income

per unit of assets, P .

Figure 3 illustrates the case with margins and risk-risk-management.

Insert Figure 3 here

The margin affects the participation and incentive constraint but leaves the objective

function of the protection buyer unchanged. The straight line from point B to point D

illustrates how the margin changes the set of feasible contracts. The line is the parametric
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plot of the binding participation constraint (??) and incentive constraint after bad news

(??) as α varies from 0 to 1. The point B represents the optimal contract with effort and

no margin (see Section ??). The optimal margin α∗ is given by the point of tangency of the

protection buyer’s indifference curve to the line BD (point E).10

The slope of the line BD gives the relative price at which the protection seller is willing

to exchange the transfers
¯
τ and τ̄ when margins are used, α > 0. The slope is steeper

than in the case without margins (the line through points B and A) as long as R > 1. The

protection seller requires more compensation in terms of τ̄ for a higher expected transfer
¯
τ

since depositing cash carries an opportunity cost.

5.2 Margins and risk-taking

If the protection seller engages in risk-taking after bad news, her assets return zero with

probability 1− p. As in the case without margins, we allow for transfers in R̃(0) = 0 state.

With margins, the deposited cash, which is default-free, can be used to make transfers to

the protection buyer. Hence, the protection buyer may receive payments even when seller’s

assets return zero.

The objective function of the protection buyer is now given by:

max
α,τ(θ̃,s̃,R̃)

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(
¯
θ + τ(

¯
θ, s̄, R)) (25)

+ π(1− λ)[pu(θ̄ + τ(θ̄,
¯
s, R)) + (1− p)u(θ̄ + τ(θ̄,

¯
s, 0))]

+ (1− π)λ[pu(
¯
θ + τ(

¯
θ,

¯
s, R)) + (1− p)u(

¯
θ + τ(

¯
θ,

¯
s, 0))]

where τ(θ̃,
¯
s, 0) ≤ αA.

10At the point of tangency, we have −prob[
¯
s]

prob[s̄]ϕ (α∗) = −prob[
¯
s]

prob[s̄] −
(R−1)prob[

¯
s]

(1−P)prob[s̄] . Multiplying both sides of the

equality with −prob[s̄]
prob[

¯
s] recovers condition (??) for α∗ > 0.
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The participation constraint of the protection seller is given by

−prob[
¯
s] [αA (R− 1) + (1− p)(1− α)AP ] ≥ prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
(26)

+prob[
¯
s]p
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
+ prob[

¯
s] (1− p)

(
¯
πτ(θ̄,

¯
s, 0) + (1−

¯
π)τ(

¯
θ,

¯
s, 0)

)
The left-hand side is the sum of the opportunity cost of a margin due to the foregone asset

return R− 1 and the loss of pledgeable income due to the lack of effort after bad news. The

right-hand side is the expected transfer from the protection seller to the protection buyer.

The constraint inducing risk-taking after bad news is given by

(1− α)AP ≤
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)−

¯
πτ(θ̄,

¯
s, 0)− (1−

¯
π)τ(

¯
θ,

¯
s, 0) (27)

The incentive constraint after good news is unchanged:

AP ≥ π̄τ(θ̄, s̄, R) + (1− π̄)τ(
¯
θ, s̄, R)

We can now state the following result.

Lemma 4 If the expected per-unit return on the seller’s assets under risk-taking is smaller

than 1, pR + B < 1, then α∗ = 1 in the contract with risk-taking. Such contract is weakly

dominated by the contract with risk-management and margins.

Under risk-taking, the expected per-unit return on the seller’s balance sheet including

the private benefit is pR + B. If pR + B < 1, this return is lower than the return on cash.

Hence, it is more profitable to put seller’s assets in the margin. In this case, the seller’s

balance sheet is fully ring-fenced from her moral hazard. The protection buyer can do at

least as well by offering the seller the contract with risk-management and margins.

It follows that the contract with margins and risk-taking after bad news can be optimal

only if pR+B ≥ 1. The following proposition characterizes the optimal margin in this case.
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Proposition 6 (Optimal margins with risk-taking) Suppose risk-taking after bad news

is optimal. Let φ (α) ≡ u′(
¯
θ+τ(

¯
θ,

¯
s,0))

u′(
¯
θ+τ(

¯
θ,

¯
s,R))

. If φ (0) < 1 + pR+B−1
(1−p)(1−

¯
π)

, then α∗ = 0. If φ (1) >

1 + pR+B−1
(1−p)(1−

¯
π)

, then risk-taking after bad news is not optimal. Otherwise, α∗ ∈ (0, 1) is given

by

φ (α∗) = 1 +
pR +B − 1

(1− p) (1−
¯
π)

(28)

In the contract with margins and risk-taking, the protection buyer gets full insurance

when the seller does not default on the contract (marginal utilities are equalized across the

no default states). Specifically, the transfer τ(
¯
θ,

¯
s, R) is given by

τ(
¯
θ,

¯
s, R) =

π∆θ − prob[
¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

− α∗Aprob[
¯
s] [pR +B − 1 + (1−

¯
π) (1− p)]

1− prob[
¯
s] (1−

¯
π) (1− p)

The transfer when the seller defaults on the contract is given by τ(
¯
θ,

¯
s, 0) = α∗A so that the

protection buyer seizes the margin in this case.

The benefit of margins under risk-taking is the insurance they provide against counter-

party risk (left-hand side of (??)). The wedge between the marginal utilities under default

and under no default is reduced. Margins increase the buyer’s consumption if the seller

defaults since
∂τ(

¯
θ,

¯
s,0)

∂α
> 0. At the same time, margins reduce his consumption when there is

no default,
∂τ(

¯
θ,

¯
s,R)

∂α
< 0.

The cost of margins is given by their opportunity cost under risk-taking, pR+B−1. The

optimal margin balances this cost with the benefit of protecting the buyer from counterparty

risk. The right-hand side of (??) gives the rate at which the trade-off occurs. The numerator

of the fraction is the opportunity cost of margins, while the denominator is the probability

of protection seller’s default on her contractual obligations. Margins are more beneficial the

higher the counterparty risk faced by the buyer.
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5.3 Margins, risk-sharing and risk-taking

Margins can be implemented as escrow accounts set up by a protection buyer or via a market

infrastructure such as a central counterparty (CCP). It is privately optimal to use margins

whenever α∗ > 0. When the contract with margins entails risk-management, the margin acts

as a commitment device for the protection seller not to take risks once she observes negative

news about her hedging position. When the contract entails risk-taking, the margin protects

the buyer against the default of the seller.

The choice between the contract with margins and risk-management and the contract

with margins and risk-taking depends again on whether counterparty or signal risk is more

costly for the protection buyer. As in Section ??, the contract with risk-taking may be

chosen when pledgeable income is low and the moral hazard problem is severe.

The overall effect of margins on risk-taking, and hence counterparty risk, is ambigu-

ous. On the one hand, margins reduce the signal risk faced by the buyer and make risk-

management by the seller more attractive. On the other hand, margins protect the buyer

from counterparty risk and make risk-taking by the seller more attractive. If the latter effect

is small, then margins reduce the risk-taking effect of hedging. If the buyer benefits a lot

from the insurance against counterparty risk, then margins lead to more risk-taking.

6 Extensions

In this section, we analyze the hedging contract with multiple protection sellers. We first

characterize the optimal contract between the protection buyer and several protection sell-

ers. We then analyze reinsurance, i.e., the possibility that sellers write additional hedging

contracts among themselves. We show that reinsurance is not feasible. We finally consider

the possibility of retrading whereby sellers are able to transfer all contractual obligations

vis-a-vis the buyer among themselves. We show that such retrading fails to implement the

second-best contract. We argue that initial margins can restore optimality.
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6.1 Multiple sellers

Suppose a protection buyer splits the hedging contract among several protection sellers. For

now, we assume that protection sellers cannot reinsure or sell off the original contract (we

will relax these assumptions below).

We extend the benchmark model as follows. There areN identical, risk-neutral protection

sellers. At time t = 0, each protection seller has an amount A
N

of assets in place, which have

an uncertain per unit return R̃ at t = 2. If a seller does not manage her balance sheet risk,

she defaults with probability 1−p. We assume that the default risk is a common or “macro”

shock that is non-diversifiable across sellers. If the risk materializes (with probability 1− p),

all sellers fail at the same time when not managing balance sheet risk. Hence, risk-taking

among sellers amounts to taking perfectly correlated risks.11

As before, the protection buyer solves

max
τ̄i,

¯
τi

prob[s̄]u(E[θ̃|s̄] +
N∑
i=1

τ̄i) + prob[
¯
s]u(E[θ̃|̄s] +

N∑
i=1

¯
τi),

where subscript i stands for protection seller i, i = 1, . . . , N . Seller i’s incentive constraints

are given by

APi ≥ τ̄i and APi ≥
¯
τi

where

APi =
A

N

(
R− B

1− p

)
is seller i’s total pledgeable income. Seller i’s participation constraint is given by

E[τi] ≤ 0

We can now state the following proposition.

11For example, Rajan (2006) argues that when the performance of managers in financial institutions is
evaluated vis-a-vis their peers, they have incentives to engage in correlated investments. This ensures that
they do not underperform.

29



Proposition 7 (Multiple sellers) The optimal contract with multiple sellers, N > 1, that

maintains their risk-management incentives is given by τ̄i = τ̄
N

and
¯
τi = ¯

τ

N
, i = 1, . . . , N ,

where τ̄ and
¯
τ are the optimal expected transfers after a good and a bad signal, respectively,

for N = 1.

Protection sellers are risk-neutral and competitive. Summing up their (linear) participa-

tion and incentive constraints, the optimization problem with N protection sellers of size A
N

is equivalent to the problem with one seller of size A. In this sense, our model with a single

protection seller is representative of an entire insurance sector.

6.2 Reinsurance

Suppose a protection buyer splits the contract with risk-management effort among two iden-

tical, risk-neutral protection sellers as described in the previous section, i.e., N = 2. Each

protection seller holds a contract
(
τ̄
2
, ¯
τ

2

)
(see Proposition ??). We now allow for sellers to

reinsure each other after the contract is signed but before the signal s̃ about the return θ̃ is

observed.12 Denote the complete reinsurance contract between the two protection sellers as

ρ(θ, s, R1, R2), where Ri is the return on the assets of seller i. We make the convention that

ρ > 0 means that seller 2 is paying seller 1.

For the sellers to agree on reinsurance, there must be gains from trade. Suppose without

loss of generality that seller 2 is reinsuring seller 1. After a bad signal, seller 2 therefore

expects having to pay seller 1,
¯
ρ > 0. Since seller 2 will not provide reinsurance if he expects

to lose money, it must be that E[ρ] ≤ 0, and hence ρ̄ < 0. According to Proposition ??,

each seller’s incentive constraint after a bad signal is binding, ¯
τ

2
= AP2. An additional

expected payout after a bad signal,
¯
ρ > 0, induces risk-taking by seller 2. Assuming for

the moment that seller 1 does risk-management effort, the expected gain to seller 2 from

12After the signal is observed, there is no scope for reinsurance since the position is no longer neutral.
After good news, the hedge is more likely to be an asset and a protection seller does not require reinsurance,
while after bad news, the hedge is more likely to be a liability and another protection seller is not willing to
provide reinsurance.
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providing reinsurance, E[ρ], is

prob[s̄] (−ρ̄) + prob[
¯
s]

[
AB

2
− (1− p)AR

2
+ (1− p)

(
¯
τ

2

)
+ p

(
−

¯
ρ
)]

The first term is the payment from seller 1 after a good signal. The term in square brackets is

the gain after a bad signal. The gain has four components. First, seller 2 obtains the private

benefit of no longer managing her balance sheet risk. Second, she defaults with probability

(1− p) and loses her assets. However, she also gains by defaulting since she no longer has to

honor the original hedging contract with the buyer (this is the third term inside the square

brackets). Finally, seller 2 does not default with probability p and makes the payment to

seller 1.

Using the binding incentive constraint, ¯
τ

2
= A

2

(
R− B

1−p

)
, seller 2’s expected gain sim-

plifies to

prob[s̄] (−ρ̄) + prob[
¯
s]p
(
−

¯
ρ
)
. (29)

What is the expected gain from reinsurance to seller 1? Since we assumed that she does

not shirk, her expected gain from reinsurance is

prob[s̄] (ρ̄) + prob[
¯
s]p
(
¯
ρ
)
. (30)

Seller 1 receives the payment after a bad signal only if seller 2 has not defaulted, which

happens with probability p.

Comparing (??) and (??), we conclude that there are no gains from reinsurance. When-

ever the expected gain for seller 2 is positive, it is negative for seller 1. The conclusion

extends to the case when seller 1 too shirks under reinsurance. The expressions (??) and

(??) for the gains to seller 2 and seller 1 remain unchanged since we assume that protection

sellers are exposed to a common macro shock if they fail to manage their balance sheet risk.

All sellers default with probability 1 − p if they don’t manage risk after observing a bad
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signal. The following proposition summarizes our result.

Proposition 8 (Reinsurance) The optimal hedging contract between a buyer and multiple

sellers that maintains their risk-management incentives leaves no room for sellers to reinsure

each other.

6.3 Retrading and initial margins

Suppose, as in the previous section, that a protection buyer splits the contract with risk-

management effort among two protection sellers. We now consider a possibility of retrading:

seller 1 can acquire the contract held by seller 2. This transaction frees seller 2 from all

obligations stemming from the contract.

Before the signal s̃ about the return θ̃ is observed, seller 2 is indifferent between selling

the contract for a value of zero and keeping it since a seller’s participation constraint binds

(see Proposition ??). What is seller 1’s expected gain from acquiring seller 2’s contract at

a price of zero? Prior to acquiring seller 2’s contract, seller 1’s incentive constraint after

observing a bad signal was binding, ¯
τ

2
= AP1 (see Proposition ??). Hence, increasing her

position from ¯
τ

2
to

¯
τ induces risk-taking by seller 1. Her expected gain from acquiring seller

2’s contract is:

prob[s̄]
(
− τ̄

2

)
+ prob[

¯
s]

[
AB

2
− (1− p)AR

2
+ (1− p)

(
¯
τ

2

)
+ p

(
−¯
τ

2

)]
.

The first term is the extra payment from the protection buyer to seller 1 after a good signal.

The term in square brackets is the gain after a bad signal. The gain has four components.

First, seller 1 obtains the private benefit of no longer managing her balance sheet risk.

Second, she defaults with probability (1 − p) and loses her assets. However, she also gains

by defaulting since she no longer has to pay the protection buyer (this is the third term

inside the square brackets). Finally, seller 1 does not default with probability p and has to

make the payment to the protection buyer that he would have obtained from seller 2 in the
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absence of retrading.

Using ¯
τ

2
= AP

2
= A

2

(
R− B

1−p

)
and E

[
τ
2

]
= 0 from the binding incentive and participation

constraints, seller 1’s gain simplifies to

prob[
¯
s] (1− p) AP

2
> 0. (31)

The expected gain from acquiring the hedging contract arises from exploiting limited liability,

i.e., from taking risk after a bad signal and not having to pay the protection buyer with

probability 1− p. The following Proposition summarizes our result:

Proposition 9 (Retrading) Retrading the hedging contract among the sellers undermines

their risk-management incentives.

If protection sellers can retrade contracts, they have incentives to accumulate contracts

and build up hedging positions beyond their pledgeable income. Sellers take on concentrated

risks and benefit from the protection offered by limited liability. Anticipating this, the

protection buyer does not enter such contracts. Hence, unregulated trading whereby those

selling the contracts free themselves from any contractual obligation towards the protection

buyer leads to a market failure.

To restore optimality, such unregulated trading has to be banned. Alternatively, request-

ing an initial margin restores protection sellers’ risk-management incentives when retrading

is possible. By preventing sellers from accumulating excessive hedging positions, initial mar-

gins counter sellers’ desire to take on concentrated risks. The margin must be deposited

before the signal realizes since the scope for retrading exists only then. This is in contrast

to the variation margin, analyzed earlier, which is deposited after the signal realizes. An

initial margin makes it costly for a seller to acquire another seller’s contract since she has to

liquidate some of her assets.

Consider again the case of two protection sellers. If both sellers retain their half of the

optimal contract,
(
τ̄
2
, ¯
τ

2

)
, an initial margin is not required. It is only when a seller wants
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to accumulate a position that is larger than her pledgeable income, APi = AP
2

, that she

must put up an initial margin. We can compute the optimal amount at which a position in

excess of
(
τ̄
2
, ¯
τ

2

)
should be margined. The cost of liquidating assets to comply with the initial

margin, denoted by α0, must be large enough to outweigh the gain from retrading, which is

given by equation (??):

prob[
¯
s] (1− p) AP

2
≤ A

2
(R− 1)α0,

In equilibrium, the condition holds as an equality to minimize the opportunity cost of the

initial margin. We can therefore state the following result:

Proposition 10 (Initial margin) Initial margins maintain sellers’ risk-management in-

centives when retrading is possible. The optimal size of the initial margin is

α0 =
prob[

¯
s] (1− p)P
R− 1

,

where, as before, P denotes the per-unit pledgeable income.

The size of the optimal initial margin depends not only on the (negative) signal risk of

the underlying position, but also on the characteristics of traders’ balance sheets, i.e., default

risk (1− p), net asset return (R− 1) and pledgeability P .

Anticipating that initial margins will be requested whenever the seller undertakes a posi-

tion in excess of her pledgeable income, the seller does not acquire any additional contracts.

Hence, initial margins act as an out-of-equilibrium threat.

7 Conclusion

We analyze hedging contracts between protection sellers and a protection buyer. We show

how this contract, designed to facilitate risk-sharing, can generate incentives for risk-taking.

When the position of the protection seller is more likely to become loss-making in the fu-

ture, then the position becomes a liability and undermines a seller’s incentive to exert risk
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management effort. Shirking on risk management may lead to a seller’s default and, hence,

expose the protection buyer to counterparty risk. Hedging can thus propagate risk from

derivatives positions to other businesses of financial institutions.

When the seller’s moral hazard problem is moderate, margins enhance the scope for risk-

sharing. Initial margins discourage retrading and the accumulation of excessive derivatives

positions, while variation margins discourage risk-taking for a given position. However,

when the moral hazard problem is severe, margins can actually undermine risk-management

incentives.
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Appendix

Proof of Proposition ??

Let µ denote the Lagrange multiplier on the participation constraint (??). Let µ0 and µ1

be the Lagrange multipliers on the feasibility constraints α ≥ 0 and α ≤ 1. The first-order
conditions with respect to transfers τ(θ̄, s̄), τ(

¯
θ, s̄), τ(θ̄,

¯
s), τ(

¯
θ,

¯
s) and margin α are given

by:

πλu′(θ̄ + τ(θ̄, s̄))− µπλ = 0

(1− π)(1− λ)u′(
¯
θ + τ(

¯
θ, s̄))− µ(1− π)(1− λ) = 0

π(1− λ)u′(θ̄ + τ(θ̄,
¯
s))− µπ(1− λ) = 0

(1− π)λu′(
¯
θ + τ(

¯
θ,

¯
s))− µ(1− π)λ = 0

µA (1−R) + µ0 − µ1 = 0

It follows that the marginal utility of the buyer of insurance is equalized across (θ̃, s̃)
states (full insurance) and that the participation constraint is binding:

ū′(τ(θ̄, s̄)) = ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s)) =

¯
u′(τ(

¯
θ, s̄)) = µ > 0 (A.1)

where we use a shorthand ū′(τ(θ̄, s̃)) to denote marginal utility in state θ̄ conditional on the
signal s̃ and, similarly,

¯
u′(τ(

¯
θ, s̃)) to denote marginal utility in state

¯
θ conditional on the

signal s̃. Since µ > 0 and 1−R < 0, it must be that µ0 > 0 and µ1 = 0. Hence, α = 0 must
hold in the optimum and margins are not used.

The optimal transfers are obtained by using the fact that the participation constraint is
binding and that consumption is the same across (θ̃, s̃) states.

Proof of Lemma ??

Let µs̄ and µ
¯
s denote the Lagrange multipliers on the incentive compatibility constraints

(??) and (??), respectively (µ again denotes the multiplier on the participation constraint
(??)). The first-order conditions with respect to transfers τ(θ̄, s̄), τ(

¯
θ, s̄), τ(θ̄,

¯
s) and τ(

¯
θ,

¯
s)

are given by:

πλu′(θ̄ + τ(θ̄, s̄))− µs̄π̄ − µπλ = 0

(1− π)(1− λ)u′(
¯
θ + τ(

¯
θ, s̄))− µs̄(1− π̄)− µ(1− π)(1− λ) = 0

π(1− λ)u′(θ̄ + τ(θ̄,
¯
s))− µ

¯
s
¯
π − µπ(1− λ) = 0

(1− π)λu′(
¯
θ + τ(

¯
θ,

¯
s))− µ

¯
s(1−

¯
π)− µ(1− π)λ = 0
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We re-write the first-order conditions as

ū′(τ(θ̄, s̄)) = µ+ µs̄
π̄

πλ
(A.2)

¯
u′(τ(

¯
θ, s̄)) = µ+ µs̄

1− π̄
(1− π)(1− λ)

(A.3)

ū′(τ(θ̄,
¯
s)) = µ+ µ

¯
s ¯

π

π(1− λ)
(A.4)

¯
u′(τ(

¯
θ,

¯
s)) = µ+ µ

¯
s

1−
¯
π

(1− π)λ
(A.5)

where we use a shorthand ū′(τ(θ̄, s̃)) to denote marginal utility in state θ̄ conditional on the
signal s̃ and, similarly,

¯
u′(τ(

¯
θ, s̃)) to denote marginal utility in state

¯
θ conditional on the

signal s̃.
Since

π̄

πλ
=

prob[θ̄|s̄]
prob[θ̄ ∩ s̄]

=
1

prob[s̄]

1− π̄
(1− π)(1− λ)

=
prob[

¯
θ|s̄]

prob[
¯
θ ∩ s̄]

=
1

prob[s̄]

¯
π

π(1− λ)
=

prob[θ̄|̄s]
prob[θ̄ ∩

¯
s]

=
1

prob[
¯
s]

1−
¯
π

(1− π)λ
=

prob[
¯
θ|̄s]

prob[
¯
θ ∩

¯
s]

=
1

prob[
¯
s]

holds, it follows that there is full risk-sharing conditional on the signal:

ū′(τ(θ̄, s̄)) =
¯
u′(τ(

¯
θ, s̄))

ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s))

As in the first-best case, we therefore have

τ(
¯
θ, s̄)− τ(θ̄, s̄) = τ(

¯
θ,

¯
s)− τ(θ̄,

¯
s) = ∆θ > 0 (A.6)

It follows that, conditional on the signal, the transfer to the buyer when the asset return is
low is higher than when the asset return is high, τ(

¯
θ, s̃) > τ(θ̄, s̃).

Next, we show that the participation constraint must bind. Suppose not, i.e. µ = 0.
Then, equations (??) and (??) imply that µs̄ > 0. Similarly, (??) and (??) imply that
µ

¯
s > 0. Both incentive constraints bind so that AP = τ̄ =

¯
τ . Since the participation

constraint is slack, it must be that

0 > E[τ ] ≡ prob[s̄]τ̄ + prob[
¯
s]

¯
τ

= AP (prob[s̄] + prob[
¯
s])

= AP
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which contradicts AP > 0. Hence, the participation constraint binds, E[τ ] = 0.
It follows that at least one incentive constraint must be slack. If not, then τ̄ =

¯
τ = AP >

0, which contradicts E[τ ] = 0.
Suppose both incentive constraints are slack, µs̄ = µ

¯
s = 0. Then, we obtain full insurance

as in (??) and the contract is given by proposition ?? (first-best). The conditions under which
the incentive constraints are indeed slack are given by:

AP > π̄τFB(θ̄, s̄) + (1− π̄)τFB(
¯
θ, s̄) = (π − π̄)∆θ

AP >
¯
πτFB(θ̄,

¯
s) + (1−

¯
π)τFB(

¯
θ,

¯
s) = (π −

¯
π)∆θ

When the signal is informative, λ > 1
2
, we have π̄ > π >

¯
π. The result in the lemma

follows.

Proof of Lemma ??

We have shown above that at least one incentive constraint must be slack. They cannot
both be slack since we assume that AP < (π −

¯
π)∆θ. We now show that it is the incentive

constraint following a bad signal that is binding. Suppose not, so that AP = τ̄ > 0 >
¯
τ

where the last inequality follows from E[τ ] = 0. Then, µ
¯
s = 0 and µs̄ ≥ 0 and equations

(??) through (??) yield

ū′(τ(θ̄,
¯
s)) =

¯
u′(τ(

¯
θ,

¯
s)) = µ ≤ ū′(τ(θ̄, s̄)) =

¯
u′(τ(

¯
θ, s̄))

Comparing the first with the third term and the second with the fourth term yields

τ(θ̄,
¯
s) ≥ τ(θ̄, s̄)

τ(
¯
θ,

¯
s) ≥ τ(

¯
θ, s̄)

Using τ(
¯
θ, s̃) > τ(θ̄, s̃) (equation (??)) and π̄ >

¯
π, we can write

0 < τ̄ ≡ π̄τ(θ̄, s̄) + (1− π̄)τ(
¯
θ, s̄)

<
¯
πτ(θ̄, s̄) + (1−

¯
π)τ(

¯
θ, s̄)

≤
¯
πτ(θ̄,

¯
s) + (1−

¯
π)τ(

¯
θ,

¯
s) ≡

¯
τ

But
¯
τ < 0, a contradiction. Hence, only the incentive constraint after a bad signal binds.

Proof of Proposition ??

The optimal contract is given by the binding incentive constraint following a bad signal:

AP =
¯
τ,

the binding participation constraint

prob[s̄]τ̄ + prob[
¯
s]

¯
τ = 0,
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and full risk-sharing conditional on the signal (??).

Proof of Proposition ??

Let µs̄ and µ
¯
s denote the Lagrange multipliers on the incentive compatibility constraints (??)

and (??), respectively, and let µ denote the multiplier on the participation constraint (??).
The first-order conditions with respect to transfers τ(θ̄, s̄, R), τ(

¯
θ, s̄, R), τ(θ̄,

¯
s, R), τ(

¯
θ,

¯
s, R)

and τ(θ̄,
¯
s, 0) are:

ū′(τ(θ̄, s̄, R)) = µ+
µs̄

prob[s̄]
(A.7)

¯
u′(τ(

¯
θ, s̄, R)) = µ+

µs̄
prob[s̄]

(A.8)

ū′(τ(θ̄,
¯
s, R)) = µ−

µ
¯
s

pprob[
¯
s]

(A.9)

¯
u′(τ(

¯
θ,

¯
s, R)) = µ−

µ
¯
s

pprob[
¯
s]

(A.10)

ū′(τ(θ̄,
¯
s, 0)) = µ+

µ
¯
s

(1− p) prob[
¯
s]

(A.11)

where we use a shorthand ū′(τ(θ̄, s̃, R̃)) to denote marginal utility in state θ̄ conditional on
the signal s̃ and return R̃ and, similarly,

¯
u′(τ(

¯
θ, s̃, R̃)) to denote marginal utility in state

¯
θ

conditional on the signal s̃ and return R̃.
We first show that the participation constraint binds. Suppose instead that the constraint

is slack, implying µ = 0. Since µ
¯
s ≥ 0, equations (??) and (??) cannot hold. A contradiction.

Next, we show that the incentive constraint after a bad signal (??) is slack, implying
µ

¯
s = 0. Suppose that the constraint binds and

AP+
¯
πτ(θ̄,

¯
s, 0) =

¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

implying that

¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R) < AP (A.12)

since τ(θ̄,
¯
s, 0) < 0. Since the participation constraint also binds, we have that

− prob[
¯
s](1− p)

[
AP+

¯
πτ(θ̄,

¯
s, 0)

]
= prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+

prob[
¯
s]p
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
Using the binding incentive constraint (??) in the equation above and simplifying yields

prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+ prob[

¯
s]
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
= 0
(A.13)

Equations (??) and (??) imply that the optimal transfers τ(θ̄, s̄, R), τ(
¯
θ, s̄, R), τ(θ̄,

¯
s, R)

and τ(
¯
θ,

¯
s, R) satisfy the incentive-compatibility condition inducing effort after bad news (??)

and the participation constraint (??) in the contract with effort after both signals. Hence,
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inducing effort after both signals is feasible with these transfers. We now show that, given
these transfers, the expected utility of the contract with effort after both signals, EU e=1,e=1,
is at least as high as the expected utility of the contract with risk-taking after bad news,
EU e=1,e=0, i.e.:

πλu(θ̄ + τ(θ̄, s̄, R)) + (1− π)(1− λ)u(
¯
θ + τ(

¯
θ, s̄, R)) + π(1− λ)u(θ̄ + τ(θ̄,

¯
s, R))

+ (1− π)λu(
¯
θ + τ(

¯
θ,

¯
s, R))− πλu(θ̄ + τ(θ̄, s̄, R))− (1− π)(1− λ)u(

¯
θ + τ(

¯
θ, s̄, R))

− π(1− λ)[pu(θ̄ + τ(θ̄,
¯
s, R)) + (1− p)u(θ̄ + τ(θ̄,

¯
s, 0))]

− (1− π)λ[pu(
¯
θ + τ(

¯
θ,

¯
s, R)) + (1− p)u(

¯
θ)] ≥ 0

The left-hand side is equal to:

π(1−λ) (1− p)
[
u(θ̄ + τ(θ̄,

¯
s, R))− u(θ̄ + τ(θ̄,

¯
s, 0))

]
+(1−π)λ (1− p) [u(

¯
θ + τ(

¯
θ,

¯
s, R))− u(

¯
θ)]

It follows from equations (??) and (??) that

ū′(τ(θ̄,
¯
s, R)) ≤ ū′(τ(θ̄,

¯
s, 0))

and thus τ(θ̄,
¯
s, R) ≥ τ(θ̄,

¯
s, 0). Hence, the expression in the first square bracket is non-

negative. The expression in the second square bracket is positive since τ(
¯
θ,

¯
s, R) > 0. Hence,

the protection buyer prefers to induce effort after bad news, contradicting the optimality of
the contract with risk-taking after bad news. We conclude that if risk-taking after bad news
is optimal, the incentive constraint after a bad signal (??) must be slack and µ

¯
s = 0.

Hence, we have full sharing of the θ̃ risk conditional on the signal, except for a default
in

¯
θ state:

ū′(τ(θ̄, s̄, R)) =
¯
u′(τ(

¯
θ, s̄, R))

ū′(τ(θ̄,
¯
s, R)) =

¯
u′(τ(

¯
θ,

¯
s, R)) = ū′(τ(θ̄,

¯
s, 0))

and hence
τ(

¯
θ, s̃)− τ(θ̄, s̃) = ∆θ > 0 (A.14)

We now show that the incentive constraint after a good signal (??) is also slack, implying
µs̄ = 0. When the constraint is slack, there is full insurance except when the seller defaults
in

¯
θ state, i.e. we have:

τ(θ̃, s̄, R) = τ(θ̃,
¯
s, R) and τ(θ̄,

¯
s, R) = τ(θ̄,

¯
s, 0) (A.15)

The buyer is, however, exposed to counterparty risk.
The optimal contract in this case is given by equations (??), (??) and the binding partic-

ipation constraint. We now check under what conditions the incentive constraint following
a good signal is indeed slack. Starting with the binding participation constraint and using
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(??) and (??), we get

− prob[
¯
s](1− p)AP = prob[s̄][τ(

¯
θ,

¯
s, R)− π̄∆θ]

+ prob[
¯
s]p[τ(

¯
θ,

¯
s, R)−

¯
π∆θ] + (1− p) prob[

¯
s]

¯
π [τ(

¯
θ,

¯
s, R)−∆θ]

Hence,

τ(
¯
θ,

¯
s, R) =

π∆θ − prob[
¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

(A.16)

For the incentive constraint following a good signal (??) to be slack, it must be that

AP > π̄τ(θ̄, s̄, R) + (1− π̄)τ(
¯
θ, s̄, R) = τ(

¯
θ,

¯
s, R)− π̄∆θ

or, after substituting for τ(
¯
θ,

¯
s) and simplifying,

AP > ∆θ
π − π̄ [1− prob[

¯
s] (1−

¯
π) (1− p)]

1 + prob[
¯
s]

¯
π (1− p)

(A.17)

Condition (??) is always satisfied if

π − π̄ [1− prob[
¯
s] (1−

¯
π) (1− p)] < 0 (A.18)

since AP > 0. Condition (??) is equivalent to

λ2(1− p)− 2λ+ 1 < 0

This inequality holds under our assumption (??), i.e. for all λ ≥ λ∗ ≡ 1−√p
1−p > 1

2
. This is

because the left-hand side of the inequality above is decreasing in λ and it is equal to zero
for λ∗.

Proof of Proposition ??

The proof proceeds in three steps. First, we show that the expected utility of the contract
with effort after both signals is increasing in P :

∂EU e=1,e=1

∂P
= −prob[

¯
s]A

prob[s̄]

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(

¯
θ, s̄))

]
+π (1− λ) ū′(τ(θ̄,

¯
s)) + (1− π)λ

¯
u′(τ(

¯
θ,

¯
s))

= prob[
¯
s]A

[
ū′(τ(θ̄,

¯
s))− ū′(τ(θ̄, s̄))

]
> 0

since τ(θ̄,
¯
s) < τ(θ̄, s̄) due to the signal risk.

Second, we show that the expected utility of the contract with no effort following a bad
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signal is decreasing in P :

∂EU e=1,e=0

∂P
= − prob[

¯
s] (1− p)A

1− prob[
¯
s] (1−

¯
π) (1− p)

[
πλū′(τ(θ̄, s̄)) + (1− π) (1− λ)

¯
u′(τ(

¯
θ, s̄))

+ π (1− λ) ū′(τ(θ̄,
¯
s)) + (1− π)λp

¯
u′(τ(

¯
θ,

¯
s))
]

= − prob[
¯
s] (1− p)A

1− prob[
¯
s] (1−

¯
π) (1− p)

[
πū′(τ(θ̄, s̄))

+(1− π)((1− λ) + pλ)
¯
u′(τ(

¯
θ, s̄))] < 0

Third, we provide sufficient condition for EU e=1,e=1 (P = 0) < EU e=1,e=0 (P = 0) so that
no effort after a bad signal is optimal for low P .

We have

EU e=1,e=1 (P = 0) = [πλ+ (1− π) (1− λ)]u (
¯
θ + π̄∆θ) + [π (1− λ) + (1− π)λ]u (

¯
θ +

¯
π∆θ)

= prob[s̄]u (
¯
θ + π̄∆θ) + prob[

¯
s]u (

¯
θ +

¯
π∆θ)

= prob[s̄]u(E[θ̃|s̄]) + prob[
¯
s]u(E[θ̃|̄s]) (A.19)

and

EU e=1,e=0 (P = 0) = (prob[s̄] + prob[
¯
s] (p+ (1− p)

¯
π))u

(
¯
θ +

π∆θ

1− prob[
¯
s] (1−

¯
π) (1− p)

)
+ (1− p) prob[

¯
s] (1−

¯
π)u(

¯
θ)

= (prob[s̄] + pprob[
¯
s])u

(
Ê[θ̃]

)
+ (1− p) prob[

¯
s]
(

¯
πu
(
Ê[θ̃]

)
+ (1−

¯
π)u(

¯
θ)
)

(A.20)

where
Ê[θ̃] ≡ π̂θ̄ + (1− π̂)

¯
θ

and
π̂ ≡ π

1− prob[
¯
s] (1−

¯
π) (1− p)

Note that
π̄ > π̂ > π >

¯
π (A.21)

for p ∈ (0, 1). The last two inequalities are straightforward. The first inequality holds if and
only if

λ2(1− p)− 2λ+ 1 < 0

which is satisfied under our assumption (??), i.e. for all λ ≥ λ∗ ≡ 1−√p
1−p > 1

2
.

Combining (??) and (??), we have that no effort after a bad signal dominates effort
(when P = 0) if and only if

prob[s̄]u(E[θ̃|s̄]) + prob[
¯
s]u(E[θ̃|̄s])

< (prob[s̄] + prob[
¯
s]p)u(Ê[θ̃]) + prob[

¯
s](1− p)EU

(
R̃ = 0

)
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where
EU

(
R̃ = 0

)
≡

¯
πu(Ê[θ̃]) + (1−

¯
π)u(

¯
θ)

After collecting terms, we have

prob[s̄]
[
u(E[θ̃|s̄])− u(Ê[θ̃])

]
+ prob[

¯
s]
[
u(E[θ̃|̄s])− EU

(
R̃ = 0

)]
< pprob[

¯
s]
[
u(Ê[θ̃])− EU

(
R̃ = 0

)]
All the differences in the square brackets are positive. The first one due to (??), the second
one due to the concavity of u, and the third one due to both the concavity of u and (??).

Rearranging, we arrive at

prob[s̄]

prob[
¯
s]

u(E[θ̃|s̄])− u(Ê[θ̃])

u(Ê[θ̃])− EU
(
R̃ = 0

) +
u(E[θ̃|̄s])− EU

(
R̃ = 0

)
u(Ê[θ̃])− EU

(
R̃ = 0

) < p (A.22)

It is clear that the left-hand side is strictly positive so that seller’s effort dominates when p
is small. The left-hand is, however, also strictly smaller than one so that no effort after a
bad signal dominates when p is large.13

The condition

prob[s̄]

prob[
¯
s]

u(E[θ̃|s̄])− u(Ê[θ̃])

u(Ê[θ̃])− EU
(
R̃ = 0

) +
u(E[θ̃|̄s])− EU

(
R̃ = 0

)
u(Ê[θ̃])− EU

(
R̃ = 0

) < 1

simplifies to
prob[s̄]u(E[θ̃|s̄]) + prob[

¯
s]u(E[θ̃|̄s]) < u(Ê[θ̃])

By concavity,
prob[s̄]u(E[θ̃|s̄]) + prob[

¯
s]u(E[θ̃|̄s]) < u(E[θ̃])

and so the condition holds when

u(E[θ̃]) ≤ u(Ê[θ̃])

which is always true due to (??).
Hence, whenever EU e=1 (P = 0) < EU e=1,e=0 (P = 0) holds, the privately optimal con-

tract entails no effort after a bad signal for low levels of per unit pledgeable income P . For

levels of P ≥ P̂ where P̂ is given by EU e=1
(
P̂
)

= EU e=1,e=0
(
P̂
)

and AP̂ < (π −
¯
π)∆θ,

the optimal contract is the one with effort. For AP > (π −
¯
π)∆θ, the first-best is reached.

13Note that this inequality is evaluated at P = 0 and P is a function of p. There is, however, an open set
of parameters for which no effort after a bad signal dominates.
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A.1 Proof of Lemma ??

Let µ and µ
¯
s denote the Lagrange multipliers on the participation and incentive-compatibility

constraints (??) and (??), respectively. Furthermore, let µ0 and µ1 be the Lagrange multi-
pliers on the feasibility constraints α ≥ 0 and α ≤ 1. The first-order conditions with respect
to expected transfers τ̄ ,

¯
τ and margin α are:

u′(E[θ|s̄] + τ̄) = µ (A.23)

u′(E[θ|̄s] +
¯
τ) = µ+

µ
¯
s

prob[
¯
s]

(A.24)

µ
¯
sA (1− P) + µ0 = µprob[

¯
s]A (R− 1) + µ1 (A.25)

where u′(E[θ|s̄] + τ̄) and u′(E[θ|̄s] +
¯
τ) are marginal utilities conditional on the good and

the bad signal, respectively.
Equation (??) implies that µ > 0 (and the participation constraint binds). Since µ1 ≥ 0,

the right-hand side of equation (??) is strictly positive. Now, suppose P ≥ 1. Then, it must
be that µ0 > 0 for the equation (??) to hold. Hence, α∗ = 0 and margins are not used for
P ≥ 1.

Proof of Proposition ??

Substituting (??) and (??) into (??), we arrive at:

u′(E[θ|̄s] +
¯
τ)

u′(E[θ|s̄] + τ̄)
= 1 +

R− 1

1− P
+

µ1 − µ0

u′(E[θ|s̄] + τ̄)prob[
¯
s] (1− P)A

(A.26)

First, we claim that for any optimal α ∈ [0, 1], µ
¯
s > 0 and the incentive constraint after

bad news is binding. For α = 0, we are solving the same problem as in Section ?? and the
claim follows from Lemma ??. For 0 < α ≤ 1, we have µ0 = 0 and equation (??) implies

that
u′(E[θ|

¯
s]+

¯
τ)

u′(E[θ|s̄]+τ̄)
> 1. But then, by equations (??) and (??), it must be that µ

¯
s > 0.

Since the incentive constraint after bad news is binding, we have

¯
τ = αA+ (1− α)AP

and, using the binding participation constraint,

τ̄ = −prob[
¯
s]

prob[s̄]
[αAR + (1− α)AP ]

Second, we claim that the left-hand side of (??) is decreasing in α. This is because
∂
¯
τ(α)

∂α
= A (1− P) > 0, ∂τ̄(α)

∂α
= −prob[

¯
s]

prob[s̄]
A (R− P) < 0 and u′ is decreasing.

Denote the left-hand side of (??) as ϕ (α). If ϕ (0) < 1 + R−1
1−P , then ϕ (α) < 1 + R−1

1−P
for any α ∈ [0, 1] and so we must have µ0 > 0 and hence α∗ = 0. By the same logic,
if ϕ (1) > 1 + R−1

1−P , then µ1 > 0 and hence α∗ = 1. Otherwise, α∗ ∈ (0, 1) is given by

ϕ (α∗) = 1 + R−1
1−P .
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A.2 Proof of Lemma ??

Let µs̄ and µ
¯
s denote the Lagrange multipliers on the incentive compatibility constraints

(??) and (??), respectively, and let µ denote the multiplier on the participation constraint
(??). Furthermore, let µ0 and µ1 be the Lagrange multipliers on the feasibility constraints
α ≥ 0 and α ≤ 1, and let µ2 and µ3 be the Lagrange multipliers on the constraints αA ≥
τ(

¯
θ,

¯
s, 0) and αA ≥ τ(θ̄,

¯
s, 0), respectively. The first-order conditions with respect to transfers

τ(θ̄, s̄, R), τ(
¯
θ, s̄, R), τ(θ̄,

¯
s, R), τ(

¯
θ,

¯
s, R), τ(θ̄,

¯
s, 0), τ(

¯
θ,

¯
s, 0), and α are:

ū′(τ(θ̄, s̄, R)) = µ+
µs̄

prob[s̄]
(A.27)

¯
u′(τ(

¯
θ, s̄, R)) = µ+

µs̄
prob[s̄]

(A.28)

ū′(τ(θ̄,
¯
s, R)) = µ−

µ
¯
s

pprob[
¯
s]

(A.29)

¯
u′(τ(

¯
θ,

¯
s, R)) = µ−

µ
¯
s

pprob[
¯
s]

(A.30)

ū′(τ(θ̄,
¯
s, 0)) = µ+

µ
¯
s

(1− p) prob[
¯
s]

+
µ3

(1− λ) π (1− p)
(A.31)

¯
u′(τ(

¯
θ,

¯
s, 0)) = µ+

µ
¯
s

(1− p) prob[
¯
s]

+
µ2

(1− π)λ (1− p)
(A.32)

µprob[
¯
s]A [R− 1− (1− p)P ] + µ1 = µ0 + APµ

¯
s + A (µ2 + µ3) (A.33)

where we use a shorthand ū′(τ(θ̄, s̃, R̃)) to denote marginal utility in state θ̄ conditional on
the signal s̃ and return R̃ and, similarly,

¯
u′(τ(

¯
θ, s̃, R̃)) to denote marginal utility in state

¯
θ

conditional on the signal s̃ and return R̃.
First, we claim that if pR + B < 1, then α∗ = 1. Note that we must have that µ > 0

and the participation constraint binds. Otherwise, equation (??) cannot hold. Now, suppose
pR + B < 1 or, equivalently, R − 1 < (1− p)P . It follows from equation (??) that µ1 > 0
must hold since the right-hand side of (??) is non-negative. Hence, α∗ = 1.

Second, we claim that if α∗ = 1, risk-taking after bad news cannot be strictly optimal.
For α∗ = 1, the entire balance sheet of the protection seller is put in the margin after bad
news. It is thus ring-fenced from actions of the protection seller, making risk-management
and risk-taking decisions equivalent. But then, the contract with risk-management and mar-
gins weakly dominates the contract with risk-taking and margins (strictly if in the optimal
contract with risk-management and margins, the margin is smaller than 1).

Proof of Proposition ??

We know from the proof of Lemma ?? that the participation constraint binds and that
α∗ < 1 and µ1 = 0 since if α∗ = 1, risk-taking cannot be strictly optimal. The proof of the
Proposition proceeds in several steps.

First, we claim that the incentive constraint after bad news must be slack and µ
¯
s = 0.
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Suppose otherwise. Then, we have

¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R) = (1− α)AP +

¯
πτ(θ̄,

¯
s, 0) + (1−

¯
π)τ(

¯
θ,

¯
s, 0) (A.34)

Since τ(θ̄,
¯
s, 0) ≤ αA and τ(

¯
θ,

¯
s, 0) ≤ αA, we have

¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R) ≤ (1− α)AP + αA

implying that transfers τ(θ̄,
¯
s, R) and τ(

¯
θ,

¯
s, R) satisfy the incentive compatibility condition

that induces effort after bad news (??). Using the binding participation constraint, we get

−prob[
¯
s]
[
αA (R− 1) + (1− p)

(
(1− α)AP +

¯
πτ(θ̄,

¯
s, 0) + (1−

¯
π)τ(

¯
θ,

¯
s, 0)

)]
= prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+ prob[

¯
s]p
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
or, using (??) and simplifying,

− prob[
¯
s]αA (R− 1) = prob[s̄]

[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+ prob[

¯
s]
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
so that the transfers in the equation above satisfy the participation constraint in the contract
with margins and effort after both signals. Hence, inducing effort after both signals is feasible
with these transfers. Using the same steps as in the proof of Proposition ??, we show that
the expected utility of the contract with margins and effort after both signals is at least as
high as the expected utility of the contract with margins and risk-taking after bad news,
EU e=1,e=1 − EU e=1,e=0 ≥ 0, contradicting the optimality of the contract with risk-taking
after bad news. Showing that EU e=1,e=1 − EU e=1,e=0 ≥ 0 is equivalent to showing that

π(1−λ)
[
u(θ̄ + τ(θ̄,

¯
s, R))− u(θ̄ + τ(θ̄,

¯
s, 0))

]
+ (1−π)λ [u(

¯
θ + τ(

¯
θ,

¯
s, R))− u(

¯
θ + τ(

¯
θ,

¯
s, 0))]

is non-negative. The expression in the first square bracket is non-negative by (??) and (??).
The expression in the second square bracket is non-negative by (??) and (??). This completes
the proof of the claim. We conclude that if risk-taking after bad news is optimal, then the
incentive constraint after bad news must be slack in the optimal contract with margins and
risk-taking.

Second, we claim that αA > τ(θ̄,
¯
s, 0) and µ3 = 0. Suppose not, i.e. αA = τ(θ̄,

¯
s, 0) and

µ3 ≥ 0. Given the feasibility constraint on τ(
¯
θ,

¯
s, 0), we can either have αA = τ(θ̄,

¯
s, 0) >

τ(
¯
θ,

¯
s, 0), or αA = τ(θ̄,

¯
s, 0) = τ(

¯
θ,

¯
s, 0). We first show that τ(θ̄,

¯
s, 0) > τ(

¯
θ,

¯
s, 0) cannot

hold. Suppose otherwise, so that µ2 = 0. Equations (??) and (??) imply that ū′(τ(θ̄,
¯
s, 0)) ≥

¯
u′(τ(

¯
θ,

¯
s, 0)) so that

θ̄ + τ(θ̄,
¯
s, 0) ≤

¯
θ + τ(

¯
θ,

¯
s, 0)

or, equivalently,
∆θ + αA ≤ τ(

¯
θ,

¯
s, 0)

which contradicts τ(
¯
θ,

¯
s, 0) < αA. We next show that τ(θ̄,

¯
s, 0) = τ(

¯
θ,

¯
s, 0) cannot hold

either. Suppose otherwise, so that αA = τ(θ̄,
¯
s, 0) = τ(

¯
θ,

¯
s, 0). By (??) and (??), τ(θ̄,

¯
s, R) ≥
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τ(θ̄,
¯
s, 0), and by (??) and (??), τ(

¯
θ,

¯
s, R) ≥ τ(

¯
θ,

¯
s, 0) implying

τ(θ̄,
¯
s, R) ≥ τ(θ̄,

¯
s, 0) = αA ≥ 0 (A.35)

τ(
¯
θ,

¯
s, R) ≥ τ(

¯
θ,

¯
s, 0) = αA ≥ 0

Since the participation constraint binds, we have

prob[s̄]
[
π̄τ(θ̄, s̄, R) + (1− π̄)τ(

¯
θ, s̄, R)

]
+ prob[

¯
s]p
[
¯
πτ(θ̄,

¯
s, R) + (1−

¯
π)τ(

¯
θ,

¯
s, R)

]
= −prob[

¯
s] [αA (R− 1) + (1− p) (αA+ (1− α)AP)]

The right-hand side of the expression above is negative. On the left-hand side, the second
term in square bracket is non-negative by (??). We now show that the first term in square
bracket is also non-negative, implying that the equation above cannot hold. We either have
that the incentive constraint after good news binds or it is slack. If it binds, then the first
term on the left-hand side (in square bracket) is equal to AP > 0. If it is slack, then µs̄ = 0
and τ(θ̄, s̄, R) = τ(θ̄,

¯
s, R) ≥ αA while τ(

¯
θ, s̄, R) = τ(

¯
θ,

¯
s, R) ≥ αA so that the expected

transfer is non-negative. This completes the proof the claim.
Third, we show that the feasibility constraint αA ≥ τ(

¯
θ,

¯
s, 0) must bind. Suppose oth-

erwise, αA > τ(
¯
θ,

¯
s, 0) and µ2 = 0. Then, by equations (??) through (??), there is full

insurance conditional on bad news, and expected transfers after bad news are equal to zero.
But then, the incentive constraint after bad news (??) cannot be slack for any α ∈ [0, 1]. A
contradiction. Hence, αA = τ(

¯
θ,

¯
s, 0) in the optimum.

Fourth, we claim that the incentive constraint after good news is slack, implying µs̄ = 0.
We prove the claim by characterizing the optimal contract and verifying that the incentive
constraint after good news never binds. Equation (??) yields

0 ≤ µ2 = µprob[
¯
s] [R− 1− (1− p)P ]− µ0

A

Replacing R−1−(1− p)P with pR+B−1, and using the first-order conditions to substitute
for µ and µ2, we arrive at:

¯
u′(τ(

¯
θ,

¯
s, 0))

¯
u′(τ(

¯
θ,

¯
s, R))

= 1 +
pR +B − 1

(1− p) (1−
¯
π)
− µ0

¯
u′(τ(

¯
θ,

¯
s, R))A (1− p) prob[

¯
s] (1−

¯
π)

(A.36)

Since µs̄ = 0, marginal utilities are equalized across five states in which the seller does
not default on the contract. We thus have τ(θ̄, s̄, R) = τ(θ̄,

¯
s, R) = τ(θ̄,

¯
s, 0) and τ(

¯
θ, s̄, R) =

τ(
¯
θ,

¯
s, R). The optimal transfers are given by (using the participation constraint):

τ(
¯
θ, s̃, R) =

π∆θ − prob[
¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

− α∗Aprob[
¯
s] [pR +B − 1 + (1−

¯
π) (1− p)]

1− prob[
¯
s] (1−

¯
π) (1− p)

,

τ(θ̄, s̃, R̃) = τ(
¯
θ, s̃, R) − ∆θ, and τ(

¯
θ,

¯
s, 0) = α∗A. Note that

∂τ(
¯
θ,

¯
s,R)

∂α
< 0 while

∂τ(
¯
θ,

¯
s,0)

∂α
=

A > 0, implying that the left-hand side of (??) is decreasing in α (since u′ is decreasing).
Denote the left-hand side of (??) as φ (α). If φ (0) < 1 + pR+B−1

(1−p)(1−
¯
π)

, then φ (α) < 1 +
pR+B−1

(1−p)(1−
¯
π)

for any α ∈ [0, 1] and so we must have µ0 > 0 and hence α∗ = 0. If φ (1) >
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1 + pR+B−1
(1−p)(1−

¯
π)

, then equation (??) cannot hold for any α ∈ [0, 1) and the contract with

margins and risk-taking after bad news cannot be optimal. Otherwise, α∗ ∈ (0, 1) is given
by φ (α∗) = 1 + pR+B−1

(1−p)(1−
¯
π)

.

We now check that the incentive constraint after good news (??) is indeed slack. This is
equivalent to:

AP + π̄∆θ >
π∆θ − prob[

¯
s] (1− p)AP

1− prob[
¯
s] (1−

¯
π) (1− p)

− α∗Aprob[
¯
s] [pR +B − 1 + (1−

¯
π) (1− p)]

1− prob[
¯
s] (1−

¯
π) (1− p)

Note that for any α∗ ≥ 0 the inequality above always holds under our assumption (??),
which ensures that condition (??) is satisfied.

Proof of Proposition ??

Consider the contract with risk-management after both signals. Suppose, contrary to the
claim in the proposition, that there exists a contract (τ̄í,

¯
τí) 6= (τ̄i,

¯
τi), i = 1, . . . , N , which

satisfies participation and incentive constraints of each protection seller and yields a higher
utility for the protection buyer.

Since τ̄í ≤ APi and
¯
τí ≤ APi with Pi = P

N
holds for each i, we have

N∑
i=1

τ̄í ≤ AP and

N∑
i=1¯

τí ≤ AP . Similarly, E[τí] ≤ 0 for each i implies that
N∑
i=1

E[τí] ≤ 0. Let
N∑
i=1

τ̄í ≡ τ̄́ and

N∑
i=1¯

τí ≡
¯
τ́ . Then, we have that

prob[s̄]u(E[θ̃|s̄] + τ̄́) + prob[
¯
s]u(E[θ̃|̄s] +

¯
τ́) >

prob[s̄]u(E[θ̃|s̄] + τ̄) + prob[
¯
s]u(E[θ̃|̄s] +

¯
τ)

But this contradicts the optimality of τ̄ and
¯
τ for N = 1.
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¯
τ0

τ̄

τ̄ = −prob[
¯
s]

prob[s̄]¯
τ

Participation Constraint

I(E[θ̃|s̄]− E[θ̃|̄s])

Full Insurance
of Signal Risk

45o

U(C + IE[θ̃])

I(E[θ̃]− E[θ̃|̄s])

−I(E[θ̃|s̄]− E[θ̃])
A

P

Incentive Constraint

B
−prob[

¯
s]

prob[s̄]P

Figure 2: Optimal contracts when effort is observable (A) and when it is not, yet the
protection seller exerts effort after a bad signal (B) (no counterparty risk)
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¯
τ0

τ̄

τ̄ = −prob[
¯
s]

prob[s̄]¯
τ

45o

A

slope=−prob[
¯
s]

prob[s̄] −
(R−1)prob[

¯
s]

(1−g)prob[s̄]

E(α∗)

K

−prob[
¯
s]

prob[s̄]KR
D(α = 1)

P

B(α = 0)
−prob[

¯
s]

prob[s̄]P

Figure 3: Margins with risk-management effort
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