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Abstract

I analyze the effects of model misspecification on default swap spreads and equity
prices for firms that are informationally opaque to the investors. The agents in the
economy are misspecification-averse and thus assign higher probabilities to lower
utility states. This leads to higher CDS rates, lower equity prices and lower expected
times to default. Estimating the model using data on financial institutions, I find
that the sudden increase in credit spreads in the summer of 2007 can be partially
explained by agents’ mistrust of the signals observed in the market. The bailout of
Bear Stearns in March 2008 and the liquidation of Lehman Brothers in September
2008 further exacerbated the agents’ doubts about signal quality and introduced
mistrust about the agents’ pricing models, accounting for the further increases in
credit spreads after these events.
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1 Introduction

When making consumption decisions, an investor faces uncertainty about both the rele-

vant underlying state and the data-generating process governing the evolution of the state.

While uncertainty about the state is risk that the investor understands and can model,

uncertainty about the data-generating process represents agents’ pessimism about their

ability to identify the correct model. This paper argues that prices of credit securities

are sensitive to the investors’ preferences toward model uncertainty and that the implied

time-variation in the level of model uncertainty is a source of variation in credit spreads

that explains the asymmetric response of credit spreads to upturns and downturns in the

economy.

I analyze the effects of model misspecification on default swap spreads in secondary

markets for the corporate debt of firms that are not perfectly transparent to the investors.

The agents in the economy are misspecification-averse and thus mistrust the statistical

model of the fundamental value of assets of firms and of the firms’ observed earnings

process. This mistrust reflects the fact that, when it is difficult for investors to observe

firms’ assets directly, they are forced to rely on imprecise accounting information. In

this situation, investors must draw inference from accounting data and other publicly

available information. Investors realize that, although they may be able to pick a model

of the fundamental asset value and the accounting signals to best fit the historical data,

this may not be the true data-generating model. Under the assumption that investors are

misspecification-averse, I derive the asset prices in the economy, explicitly accounting for

the implications of imperfect information and model misspecification.

I show several significant implications of model misspecification for the level and vari-

ation in the term structure of secondary market default swap spreads. Compared to a

model with perfect information, model uncertainty increases the level of the yield curve
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and the default swap spread curve. Intuitively, in the presence of model misspecification,

investors must be compensated for the risk associated with choosing the “wrong” model to

describe the evolution of the underlying state. Notice that, as shown in Duffie and Lando

(2001), introducing imperfect information to a standard Black and Cox (1976) model has

the additional benefit of being able to explain high credit spreads at short maturities.

Next, I show that model uncertainty exacerbates the imperfect information problem

faced by the representative investors in the secondary asset markets. In filtering informa-

tion about the underlying state from the imperfect signals, agents must take into account

uncertainty about both the model governing the evolution of the underlying state and

the signals about the underlying state. The misspecification-averse agent assigns higher

probabilities to lower utility states. Further, how much these probabilities are higher than

under the reference model depends on the current conditional probability vector under

the reference model.

Model misspecification also impacts the joint probability distribution of the next pe-

riod’s signals and states. In particular, while in states of the economy when no firm

defaults, the misspecification averse agent perceives the probability of transitioning to a

default state to be higher than under the reference model. Thus, the expected time to

default of each firm decreases, increasing default swap spreads. Further, the misspecifi-

cation averse agent also perceives the transition probability matrix associated with the

underlying state to be time varying. The time-variation in the transition probability ma-

trix induces additional time-variation in the expected time to default of each firm and,

thus, in default swap spreads.

In this paper, I argue that the increases in CDS spreads observed during the 2007–

2008 crisis were due to increases in investors’ doubts about the validity of their pricing

models and the quality of the signals available to market participants. On August 9, 2007,
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France’s largest bank BNP Paribas announced that it was having difficulties because two

of its off-balance-sheet funds had loaded up on securities based on American subprime

mortgages. But Paribas was not alone in its troubles: a month before, the German

bank IKB announced similar difficulties, and the Paribas announcement was followed the

next day by Northern Rock’s revelation that it had only had enough reserve cash to last

until the end of the month. These and other similar announcements lead to a freeze

of the credit markets as banks lost faith in each other’s balance sheets. The situation

was particularly surprising considering the market conditions shortly before the crisis

began. At the beginning of 2007, financial markets were liquidity-unconstrained and

credit spreads were at historical lows. Even as late as May 2007, it would have been

hard to predict the magnitude of the response that the losses on subprime mortgages had

generated. Compared to the total value of financial instruments traded worldwide, the

subprime losses were relatively small: even the worst-case estimates put them at around

USD 250 billion. 1 Further, for investors familiar with the instruments, the losses were

not unexpected. By definition, the subprime mortgages were part of the riskiest segment

of the mortgage market, so it was hardly surprising some borrowers would default on the

loans. Yet, despite their predictability, the defaults had precipitated the current liquidity

crisis that spread between the credit markets.

(Figure 1 about here.)

Using observations of the CDS spreads on financial institutions, I estimate the degree

of misspecification aversion of the investors in the secondary debt markets. To evaluate

the changes in investors’ aversion to misspecification during the crisis, I estimate the

misspecification aversion coefficients using three sub-periods– before the start of the crisis

in July 2007, from the start of the crisis to the bailout of Bear Stearns in March 2008, and

1Source: Caballero and Krishnamurthy (2008b)
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from the bailout of Bear Stearns to the liquidation of Lehman Brothers in September 2008

– and find that the three estimates are not statistically significantly different, implying

that investors’ misspecification preferences did not change during the crisis. In terms of

the model, this implies that the observed changes in credit spreads during the financial

crisis were due not to changing misspecification attitudes on the part of the investors but

rather due to an increase in the amount of misspecification in the economy.

Since the investors’ aversion to misspecification did not change significantly during the

crisis, I use the pre-crisis estimate of the misspecification aversion coefficient to compute

the model-implied time series of CDS spreads, equity prices and the quantity of misspeci-

fication. Measuring the amount of misspecification using the expected log likelihood ratio

(or relative entropy) between the reference and the worst-case models, I find that the

amount of misspecification did in fact increase during the financial crisis. Further, the

way that total entropy is decomposed into the contribution from misspecification of the

distribution of the future signals and state and the contribution from misspecification of

the conditional distribution over the current state changed during the crisis. More specif-

ically, the initial BNP Paribas announcement in August 2007 lead to an increase in the

relative entropy due to current period conditional probability misspecification. Intuitively,

the BNP Paribas announcement and the subsequent Northern Rock revelations lead to

an increase in ambiguity about the quality of the signals available to market participants.

The bailout of Bear Stearns and the bailout of Lehman Brothers, on the other hand, lead

to an increase in entropy due to misspecification of the distribution of future signals and

states. That is, the effective default of these two institutions increased investors’ doubts

about the quality of the surviving financial institutions. Entropy stabilizes toward the

end of the crisis but at a higher level than before the start of the crisis.

To evaluate the quality of the fit of the model, I compare the model-implied CDS
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spreads and equity prices to the corresponding quantities observed in the data. The model-

implied CDS spreads match both the levels and the changes in CDS spreads observed

during the crisis, although the performance of the model deteriorates after the liquidation

of Lehman Brothers. Further, although the model does not match the overall levels of

equity prices and, in fact, is not geared to do so, it does match the changes in equity

prices observed during the crisis.

Next, I examine the impact of each source of ambiguity on CDS spreads in greater

detail. I reformulate the model to allow investors to have different degrees of aversion

to ambiguity about the underlying dynamics and ambiguity about the signal quality. In

this formulation, I can alternatively set one or the other degree of ambiguity aversion

to zero and thus examine separately the contributions to the behavior of CDS rates

from the two sources of ambiguity. I find that, while both sources of ambiguity are

important for matching the time series evolution of CDS rates, the relative importance

of the contributions from different sources evolves over time. At the start of the crisis,

aversion to ambiguity about signal quality plays a greater role while in the later part of

the crisis the behavior of CDS rates is influenced more strongly by aversion to ambiguity

about the underlying dynamics.

The rest of the paper is organized as follows. I review the related literature in Section

2. In Section 3, I solve a three period example to illustrate the impact of ambiguity

aversion on investors’ beliefs. I describe the model considered in the paper in Section 4.

The results of the estimation of the model are presented in Section 5. Section 6 concludes.

Technical details are relegated to the appendix.
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2 Literature Review

A rapidly growing literature studies the behavior of asset prices in the presence of am-

biguity in dynamic economies. A substantial part of this literature considers investor

ambiguity about the data-generating model. Anderson et al. (2003) derive the pricing

semigroups associated with robust perturbations of the true state probability law. Tro-

jani and Vanini (2002) use their framework to address the equity premium and the in-

terest rate puzzles, while Leippold et al. (2008) consider also the excess volatility puzzle.

Gagliardini et al. (2009) study the term structure implications of adding ambiguity to a

production economy. This setting has also been used to study the portfolio behavior of

ambiguity-averse investors and the implications for the options markets (see e.g. Trojani

and Vanini (2004) and Liu et al. (2005)).

The second strand in the literature, however, assumes that, although the agents in the

economy know the “true” data-generating model, they face uncertainty about the quality

of the observed signal about an unobservable underlying. Chen and Epstein (2002) study

the equity premium and the interest rate puzzles in this set-up, and Epstein and Schneider

(2008) consider the implications for the excess volatility puzzle. The portfolio allocation

implications of this setting have also been studied extensively in e.g. Uppal and Wang

(2003) and Epstein and Miao (2003).

However, none of these papers study the relationship between ambiguity aversion

and the term structure of credit spreads. Following Hansen and Sargent (2005, 2007), I

introduce model misspecification by considering martingale distortions to the reference

model probability law. As Hansen and Sargent (2007) show, the martingale distortion can

be factored into distortions of the conditional distribution of the underlying state (signal

quality) and the evolution law of the hidden state (asset value dynamics). I assume that

the representative investor in the secondary debt market has max-min preferences over
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consumption paths under possible models.

This paper is also related to the literature on preference-based explanations for credit

spreads. Chen (2010) studies two puzzles about corporate debt: the credit spread puzzle

– why yield spreads between corporate bonds and treasuries are high and volatile – and

the under-leverage puzzle – why firms use debt conservatively despite seemingly large tax

benefits and low costs of financial distress. The paper argues that both of these puzzles

can be explained by two observations: defaults are more highly concentrated during bad

times, when marginal utility is high, and the losses associated with default are higher

during such times. Thus, investors demand high risk premia for holding defaultable

claims, including corporate bonds and levered firms.

Using similar intuition, Chen et al. (2009) argue that the credit spread puzzle can be

explained by the covariation between default rates and market Sharpe ratios. That is,

investors must be compensated more for holding credit risk securities because default rates

(and, hence, expected losses from default) increase at the same time as market returns are

more uncertain. More specifically, the authors investigate the credit spread implications

of the Campbell and Cochrane (1999) pricing kernel calibrated to equity returns and

aggregate consumption data. Identifying the historical surplus–consumption ratio from

aggregate consumption data, the paper finds that the implied level and time-variation of

spreads match historical levels well.

3 Three Period Example

In this section, I consider a three period economy consisting of just one firm. In this

setting, I can examine analytically the effect of ambiguity aversion on the investors’ per-

ceived beliefs. The setting in this section is an extremely simplified version of the model
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in Section 4 and provides the main intuition for the more general results.

More specifically, consider a firm whose payoffs V each period are given as in the event

tree in Fig. 2. At date 0, the firm pays V0 to the investors for sure. Between dates 0

and 1, the payoff from the firm increases to Vh with probability ph or decreases to Vl with

probability pl = 1 − ph. Similarly, the probability of the firm payoff increasing between

dates 1 and 2 is ph and the probability of the firm payoff decreasing between dates 1 and

2 is pl = 1− ph. Finally, notice that, by assumption, the tree is recombining so that the

firm payoff at date 2 if the firm payoff first decreases between dates 0 and 1 and then

increases between dates 1 and 2 is the same as the payoff of a firm which first increases

and then decreases in value. This simplifying assumption reduces notational complexity

without detracting from the main intuition of the model.

(Figure 2 about here.)

In this example, I focus on the investors’ problem at date 1. In particular, I assume

that, at the intermediate date 1, the investors in the firm do not observe the realized payoff

V1 (which is paid into an interest-free account on their behalf). Instead, the representative

investor in the firm observes an imperfect but unbiased signal about the true realization:

y = V1 + u. Given a signal y at date 1, the representative investor forms a posterior

probability πh of the firm payoff being in the high state at date 1:

πh =
phf(y − Vh)

phf(y − Vh) + plf(y − Vl)
,

where f(·) is the probability distribution function of the signal error, u. The corresponding

posterior probability of being in the low state at date 1 is then given by:

πl =
plf(y − Vh)

phf(y − Vh) + plf(y − Vl)
.
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The investors in this firm are risk-neutral but ambiguity-averse. That is, in making

investment decisions at date 1, the investors in the firm consider two questions:

1. Given a realization of the firm payoff at date 1, what is the worst-case probability of

the firm payoff increasing between dates 1 and 2?

2. Given a signal about the firm payoff at date 1,what is the worst-case probability of the

firm payoff being in the high state (i.e. V1 = Vh) at date 1?

The first question captures investors doubts about the validity of the statistical model

they have for the evolution of firm payoffs in the future. Notice that, although I con-

sider the imperfect information setting in this example, this concern remains valid even in

perfect information settings as, in making investment and consumption decisions, agents

make predictions about the future evolution of their cash flows. The second question cap-

tures investors doubts about the validity of filter that they use to construct the posterior

probabilities at date 1.

More formally, denote by p̃hh the perceived probability of the firm payoff increasing

from Vh at date 1 to Vhh at date 2, p̃lh the perceived probability of the firm payoff

increasing from Vl at date 1 to Vhl at date 2 and by π̃h the perceived probability of Vh

being the realized firm payoff at date 1. The corresponding probability tree with distorted

probabilities is presented in Fig. 3. The ambiguity-averse investor solves:

min
π̃,p̃

π̃h (Vh + p̃hhVhh + p̃hlVhl) + π̃l (Vl + p̃lhVlh + p̃llVll) (3.1)

+ θd

[
π̃h

(
p̃hh log

p̃hh
ph

+ p̃hl log
p̃hl
pl

)
+ π̃l

(
p̃lh log

p̃lh
ph

+ p̃ll log
p̃ll
pl

)]
+ θs

(
π̃h log

π̃h
πh

+ π̃l log
π̃l
πl

)
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where the minimization is subject to:

1 = π̃h + π̃l

1 = p̃hh + p̃hl

1 = p̃lh + p̃ll.

The minimization problem (3.1) has three components. The first,

Ẽ[V1 + V2|y] = π̃h (Vh + p̃hhVhh + p̃hlVhl) + π̃l (Vl + p̃lhVlh + p̃llVll) ,

is the usual expected utility component but calculated using the distorted probabilities.

The remaining two components measure the entropy between the reference and the mis-

specified probability laws and discipline the choice of the worst-case likelihood. The en-

tropy due to a misspecification of the underlying dynamics (that is, the entropy associated

a different choice of p̃hh and p̃lh) is:

ε1(p̃hh, p̃lh, π̃h) = π̃h

(
p̃hh log

p̃hh
ph

+ p̃hl log
p̃hl
pl

)
+ π̃l

(
p̃lh log

p̃lh
ph

+ p̃ll log
p̃ll
pl

)
,

and the entropy due to a misspecification of the signal quality (that is, the entropy

associated with a different choice of π̃h) is:

ε2(π̃h) = π̃h log
π̃h
πh

+ π̃l log
π̃l
πl
.

θ−1
d and θ−1

s measure the degree of investors’ ambiguity aversion toward ambiguity about

the underlying dynamics and ambiguity about the signal quality, respectively. For θ−1
d = 0

and θ−1
s = 0, the investors’ problem reduces to that of the ambiguity-neutral investor. As
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either θ−1
d or θ−1

s increases, the degree of ambiguity aversion of the representative agent

increases and the agent considers a large set of possible models when making investment

decisions.

(Figure 3 about here.)

Solving the first order conditions, we obtain:

p̃hh
ph

=
exp

(
−θ−1

d Vhh
)

E
[
exp(−θ−1

d V2)
∣∣V1 = Vh

] (3.2)

p̃lh
ph

=
exp

(
−θ−1

d Vlh
)

E
[
exp(−θ−1

d V2)
∣∣V1 = Vl

] (3.3)

π̃h
πh

=
exp

(
−θ−1

s Vh + θd
θs

logE
[
exp

(
−θ−1

d V2

)
)
∣∣V1 = Vh

])
E
[

exp
(
−θ−1

s V1 + θd
θs

logE
[
exp

(
−θ−1

d V2

)∣∣V1

])∣∣∣ y] (3.4)

Notice first that, in general, p̃hh 6= p̃lh so that, under the misspecified model, the proba-

bility of the firm payoff increasing between date 1 and date 2 is state-contingent. Next,

we see that the ambiguity-averse agent tilts the probability distribution toward the lower

utility states using an exponential tilt. Thus, the distorted probability of the firm pay-

off increasing between dates 1 and 2 is lower than the reference model probability and

decreases as the agent becomes more averse to ambiguity about the underlying dynam-

ics. Similarly, the distorted posterior probability of the firm payoff being high at date 1

is lower than the reference model probability and decreases as the agent becomes more

averse to ambiguity about the signal quality. Notice also that the tilt in the posterior

probabilities incorporates the investors’ distorted beliefs about the probability of the firm

payoff increasing between dates 1 and 2. Finally, (3.2)-(3.4) imply that the minimized
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objective of the ambiguity-averse investor is given by:

J = −θs logE
[

exp

(
−θ−1

s V1 +
θd
θs

logE
[
exp(−θ−1

d V2)
∣∣V1

])∣∣∣∣ y] . (3.5)

Thus, in calculating expected utility, the ambiguity-averse investor applies an exponential

tilt away from the higher utility states.

There is no independent study of the magnitude of ambiguity aversion in the literature.

One way of interpreting the degree of ambiguity aversion is through a thought experiment

related to the Ellsberg Paradox (Ellsberg (1961)). Suppose that there are two urns. The

participants in the experiment know that there are 50 black and 50 white balls in urn

1. Urn 2 also contains 100 balls but, unlike urn 1, either contains 100 white balls or 100

black balls. The participants are asked to pick a ball from an urn and are given a prize

if they pick a black ball. Experimental evidence suggests that participants prefer to bet

on urn 1 (see e.g. Camerer (1999) and Halevy (2007)). The Ellsberg Paradox is that,

if the participants are asked to pick a white ball, they still prefer to bet on urn 1. This

effect cannot be explained by the standard expected utility model with any beliefs or

any risk aversion level. This behavior is, however, consistent with ambiguity aversion as,

for an ambiguity-averse agent picking a black ball, the worst case beliefs imply that urn

2 contains only white balls while, for the agent picking a white ball, the corresponding

worst case belief is that urn 2 contains only black balls. Thus, ambiguity aversion and

risk aversion have distinct behavioral meanings.

More formally, denote by w the wealth of a risk-neutral, ambiguity-averse participant

and by d the prize money. Since the distribution of balls in urn 1 is known for sure to be

(1/2, 1/2), the participant’s certainty equivalent from picking a ball from urn 1 is:

1

2
(w + d) +

1

2
w. (3.6)
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The distribution of balls in urn 2 is, on the other hand, unknown and the participant

evaluates the gamble using a version of the recursion (3.5):

−θ log

[
1

2
exp

(
−w + d

θ

)
+

1

2
exp

(
−w
θ

)]
. (3.7)

Notice that, since the exponential function is more concave than a linear function, the

expression in (3.6) is larger than that in (3.7), so that the agent prefers to bet on urn 1

rather than urn 2. The difference between the certainty equivalents in (3.6) and (3.7) is a

measure of the ambiguity premium. Fig. 4 plots the ambiguity premium as a function of

the ambiguity aversion parameter, θ, for a prize-wealth ratio of 1%. Increasing the prize-

wealth ratio raises the ambiguity premium. Camerer (1999) reports that the ambiguity

premium is typically on the order of 10 – 20 percent of the expected value of a bet in

the Ellsberg-style experiments. Thus, except for extreme levels of the ambiguity aversion

coefficient, the ambiguity premium seems small and reasonable.

(Figure 4 about here.)

Return now to the three period tree in Fig. 2. Fig. 5 plots the distorted probability

of the firm payoff increasing between date 1 and date 2 as a function of the reference

probability of the same event for two different levels of investors’ ambiguity aversion to

misspecification of the underlying dynamics, θ−1
d . As the degree of ambiguity aversion

increases, the probability becomes more distorted. Furthermore, the distortion is non-

linear in the reference model probability, ph, and is larger for intermediate values of

ph. Intuitively, if the agent knows that the firm payoff increases between dates 1 and

2 for sure, then he has no misspecification doubts and, thus, the implied misspecified

probability coincides with the reference model probability. Similarly, Fig. 6 plots the

distorted posterior probability of the high state at date 1 as a function of the reference
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probability of the same event for two different levels of investors’ ambiguity aversion to

misspecification of the signal quality, θ−1
s . Similarly to the probability of an increase,

as the degree of ambiguity aversion increases, the distortion increases and is larger for

intermediate levels of the reference model probability, πh.

(Figure 5 about here.)

(Figure 6 about here.)

The interaction between the two sources of ambiguity is illustrated in Fig. 7, which

plots the distorted probability of default as a function of the reference model probability

for different combinations of θ−1
d and θ−1

2 . Notice first that, even for low levels of the

reference model probability of default, the distorted probability of default can be quite

high: for the case θ−1
d = θ−1

s = 0.5, a reference model default probability of 25 bps trans-

lates into a perceived 65% probability for the ambiguity-averse agent. Notice further that,

although the distortion increases when the degree of ambiguity aversion to either source

of ambiguity increases, the relation between the reference and the distorted probability

is different depending on whether the agent is more averse to ambiguity about the un-

derlying dynamics or the signal quality. More specifically, for the case when the agent

is more averse to ambiguity about the underlying dynamics (θ−1
d = 0.5, θ−1

s = 0.1), the

distorted probability of default increases over the whole range of the reference probability.

On the other hand, for the case when the agent is more averse to ambiguity about the

signal quality (θ−1
d = 0.1, θ−1

s = 0.5), the distorted probability of default levels off. That

is, while the distorted probability of default for the agent more averse to ambiguity about

underlying dynamics increases faster than the reference model probability, the distorted

probability of default for the agent more averse to ambiguity about the signal quality

increases slower than the reference probability.
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(Figure 7 about here.)

Consider finally the two contributions, ε1 and ε2, plotted in Fig. 8. The left panel

plots the entropy due to misspecification of the underlying dynamics, ε1, as a function

of the probability of the firm payoff increasing between dates 1 and 2 for two different

levels of the ambiguity aversion to misspecification of the underlying dynamics, while the

right panel plots the entropy due to misspecification of the signal quality as a function

of the reference model posterior probability of the high state at date 1 for two different

levels of the ambiguity aversion to misspecification of the signal quality. As the degree

of ambiguity aversion increases to the corresponding source of ambiguity, the entropy

increases. Furthermore, entropy is non-linear in the corresponding probability, larger for

intermediate levels of the probability and is zero at the extremes of the distribution.

Thus, for example, the entropy due to misspecification of the underlying dynamics is

larger when the probability of the firm payoff increasing between dates 1 and 2 is close

to 1/2. Intuitively, if the agent knows that the firm payoff increases between dates 1 and

2 for sure, then he has no misspecification doubts and, thus, the entropy between the

misspecified and the reference models is zero.

(Figure 8 about here.)

4 Model

In this section, I present the economy considered in this paper. I begin by describing the

reference model used for pricing credit securities and then proceed to the misspecification

problem faced by the representative agent in the economy.
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4.1 Reference model

As the reference model, I consider a modified version of the Black and Cox (1976) economy.

Consider a (sector of the) economy consisting of I firms, indexed by i = 1, . . . , I and denote

by Ait = eait the fundamental value of the assets of firm i at date t = 1, 2, . . .. To fix ideas,

assume that there are ny = 12 data periods in a year, so that each period corresponds to

a month. I assume that the log-asset value of each firm can be decomposed into the sum

of two components:

ait = zit + ρizct, (4.1)

where zit is an idiosyncratic shock to the asset value of firm i, zct is an aggregate shock

to the asset values of all the firms in the sector and ρi is the loading of firm i on the

aggregate component. Denote by zt = [z1t, . . . , zIt, zct]
′ the vector of the components of

asset values at date t. I assume that the vector zt evolves according to an N -state Markov

chain, with possible values ξ1, . . . , ξN and the transition probability matrix Λ defined as:

{Λ}jk ≡ λjk = P (zt+1 = ξk| zt = ξj) . (4.2)

There are two types of agents in the economy: managers and investors. All the day-

to-day operations of the firm are delegated to the respective manager. I assume that there

are no agency problems between a firm’s managers and the equity holders of the firm,

so that the managers act in the best interest of the equity holders. Further, similarly

to Duffie and Lando (2001), I assume that the managers are better informed about the

firm they manage than the participants in the public markets and, in particular, that

the managers of the firm observe perfectly the evolution of the fundamental value of the

firm’s assets. To prevent information spill-over, I assume that managers are precluded

from trading in the public assets markets.
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In this paper, I abstract from modeling the operational decisions of the firm managers

and, in particular, from modeling the optimal capital structure, dividend payment and

default decisions faced by the managers. As in Leland (1994) and Duffie and Lando

(2001), I assume that each firm i issues perpetual debt with face value Di. This debt

is serviced by a constant coupon rate Ci. While firm i is in operation, it generates a

constant fraction δi of assets as cash-flows which accrue, minus the coupon payments, as

equity in the firm.

The managers decide on behalf of the equity holders when to default. As in Black

and Cox (1976), I abstract from modeling the liquidation decision faced by the managers

and assume instead that a firm defaults automatically whenever the fundamental value of

the firm’s assets reaches the lowest possible value implied by the Markov chain {zt}+∞
t=1 .

In particular, denote by ξji the ith element of the asset values vector in state j, ξj. Let

i∗ = argminj=1,...,Nξji+ρiξjc be the state index at which firm i achieves its lowest possible

value and by aBi = ξi∗ the corresponding state. Then the (stochastic) default date τi of

firm i is the first hitting time of the state aBi : τi = inf {t : zt = aBi}. In economic terms,

the exogenous default rule can be interpreted as a debt covenant. The firm is liquidated at

the present value of the discontinued cash flows, with the proceeds distributed among the

firm’s primary debt holders and the equity holders receiving 0. For simplicity, I assume

that each firm has a single default state and that firms do not default simultaneously.

Notice that, since managers observe perfectly the asset value evolution of the firm under

their management, there is no uncertainty about the firm being liquidated upon hitting

its default boundary. Finally, denote by aB =
⋃I
i=1 aBi the union of the default states of

all the firms and by acB its complement, which is the set of states where none of the firms

default.

Consider now the participants in the public markets. Similarly to Duffie and Lando
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(2001), I assume that the representative investor does not observe the true evolution

of asset values in the sector and receives instead imperfect, unbiased signals about the

fundamental value of the assets of each firm, Âit = eyit , and the aggregate component of

asset values in the sector, Âct = eyct . More specifically, assume that yit = ait + uit and

yct = zct + uct where the signal errors ut = [u1t, . . . , uIt, uct]
′ are serially uncorrelated and

normally distributed, independent of the true realization of zt: ut ∼ N (u,Σu). Here, u is

the mean signal error and Σ−1
u the signal quality. At each date t, the representative agent

also observe whether any of the default states have been reached and any of the firms

have been liquidated. Thus, the information set of the representative agent at date t is:

Gt = σ
{
ys, 1zs∈acB : s = 1, . . . , t

}
,

where yt = [y1t, . . . , yIt, yct]
′ is the full signal vector at date t.

Denote by pjt the probability, conditional on the date t information set of the repre-

sentative investors, of the vector z being in state j at date t:

pjt = P (zt = ξj| Gt) .

For mathematical reasons, it is easier to formulate the updating rule in terms of unnor-

malized probabilities ~πt, which are related to the proper probabilities by:

pjt =
πjt∑N
j=1 πjt

, j = 1, . . . , N.

Let πj0 = P(z1 = ξj) be the prior probability. Then the following result holds.

Lemma 4.1. (Wonham Filter)

Assume that the transition probability matrix, Λ, and the prior distribution πj0 are
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known. Then the date 1 update to the unnormalized probability vector is given by:

πj1 = 1ξj /∈aBπj0f(y1 − ξj), j = 1, . . . , N, (4.3)

where f(·) is the density function of the observation errors, u. For t > 1, the “predict”

step of the update to the unnormalized probability vector is given by:

π̃t+1 = diag(f(yt+1))Λ′~πt, (4.4)

where f(y) = [f(y − ξ1), . . . , f(y − ξN)]′ and diag(·) creates a diagonal matrix from the

vector ·. Then, conditional on no firm defaulting in period t+1, the updated unnormalized

probability vector is given by:

~πt+1 = diag(1acB)π̃t+1,

where 1acB =
[
1ξ1∈acB , . . . ,1ξN∈acB

]′
.

Proof. See e.g. Frey and Schmidt (2009).

Finally, consider the utility of the representative agent. I assume the representative

agent is risk-neutral and, thus, holds all the claims to the firm’s asset value. Thus, the

date t expected present value of the utility of the representative agent is given by:

Jt = E

[
+∞∑
s=0

βs
I∑
i=1

δiAi,t+s

∣∣∣∣∣Gt
]
, (4.5)

where β is the subjective discount factor. For the discussion below, it is useful to represent
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the expected present value of utility in recursive form:

Jt = E

[
I∑
i=1

δiAit + β1zt+1∈acBJt+1 + β
I∑
i=1

1zt+1=aBi
Jτi

∣∣∣∣∣Gt
]
, (4.6)

where Jτi is the value function of the representative agent in case firm i defaults.

4.2 Asset prices

In this paper, I consider three types of claims to the assets of the firm: a claim to the

firm’s equity, a zero-coupon, risky bond and a credit default swap (CDS) written on the

bond. Recall that equity in firm i accrues as a constant fraction δi of the fundamental

asset value and that the equity holders receive 0 in case of the firm being liquidated.

Thus, the date t price of a claim to equity of firm i, Vit, is given by:

Vit = E

[
τi∑
s=0

βs(δiAi,t+s − Ci)

∣∣∣∣∣Gt
]
,

where τi is the (stochastic) default date of the firm i. Notice that the equity price satisfies

the Euler equation:

Vit = E [δiAit − Ci + β1τi>t+1Vi,t+1| Gt] . (4.7)

Consider now the default swaps written on the primary debt of firm i. With a given

maturity T , a default swap is an exchange of an annuity stream at a constant coupon

rate until maturity or default, whichever is first, in return for a payment of X at default,

if default is before T , where X is the difference between the face value and the recovery

value on the stipulated underlying bond. A default swap can thus be thought of as a

default insurance contract for bond holders that expires at a given date T , and makes up

the difference between face and recovery values in the event of default.
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I assume, as typical in practice, that the default swap annuity payments are made

semiannually, and that the default swaps maturity date T is a coupon date. As in Duffie

and Lando (2001), I take the underlying bond for the default swap on firm i to be the

consol bond issued by firm i. Recall that, in case of default, the debt holders receive the

present value of the discontinued cash flows. Thus, the payment Xi per unit of primary

debt if firm i defaults before the swap maturity date T is given by:

Xi = 1− δi(I − βΛ)−1
i∗ e

ξ

(1− β)Di

.

The at-market default swap spread is the annualized coupon rate ci(t, T ) that makes the

default swap sell at date t for a market value of 0. Thus, with T = t + 6n for a given

positive integer n,2 the CDS spread is given by:

ci(t, T ) =
2XiE [βτi−t1τi<T | Gt]∑n
s=1 β

6sE [1τi≥t+6s| Gt]
. (4.8)

default swap spreads are a standard for price quotation and credit information in bond

markets. In this setting, they have the additional virtue of providing implicitly the term

structure of credit spreads for par floating-rate bonds of the same credit quality as the

underlying consol bond, in terms of default time and recovery at default. Denote by

Bi(t, T ) the date t price of a zero-coupon bond with maturity date T on the debt of firm

i. The implicit discount curve is then given by:

Bi (t, t+ 6) =
1

1 + ci (t, t+ 6)

Bi (t, t+ 6s) =
1− ci(t,t+6s)

2

∑s−1
j=1 Bi (t, t+ 6j)

1 + ci (t, t+ 6s) /2
.

2Recall that there are 12 data periods in a year
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4.3 Model misspecification

This paper studies asset prices in a setting where the representative agent makes decision

rules robust to possible misspecifications of asset value and accounting signals models. In

reality, the correct specification assumption of the reference model is overly restrictive. It

implies that, even though the participants in the public markets only observe imperfect

signals about the evolution of the fundamental asset value, they can still correctly identify

the parametric model that governs the relevant dynamics. More realistically, I assume

that the representative investor in the firm fears misspecification of the probability law

generated by the model above and believes instead that the signals are related to the true

asset value realizations by a family of likelihoods.

As in Hansen and Sargent (1995), Hansen et al. (1999), Tallarini Jr. (2000) and An-

derson et al. (2003), I model preferences of the representative agent in the presence of

model misspecification using the recursion:

Jt = −θs logE
[

exp

[
−U(zt) +Rt(βJt+1; θd)

θs

]∣∣∣∣Gt] , (4.9)

where:

Rt(βJt+1; θd) ≡ −θd logE
[

exp

(
−βJt+1

θd

)∣∣∣∣Ft] .
The tilted recursion (4.9) replaces the standard utility recursion (4.6), incorporating the

representative agent’s misspecification doubts in two steps. First, the tilted continuation

function Rt makes an additional risk adjustment to the continuation value function of

the representative agent, accounting for misspecification fears about the fundamental

asset value evolution dynamics. Second, the tilted expectations over the current period

utility adjusts for misspecification fears about the filtered probability distribution over

the current state. As emphasized by Hansen and Sargent (1995), the log-exp specification
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of the recursion links risk-sensitive control theory and a more general recursive utility

specification of Epstein and Zin (1989). The degree of the representative agent’s aversion

to misspecification of the underlying dynamics is quantified by θ−1
d (where d stands for

dynamics) and the degree of the representative agent’s aversion to misspecification of the

filter distribution is quantified by θ−1
s (where s stands for signals). When θ−1

s = θ−1
d = 0,

the risk-sensitive recursion (4.9) reverts to the usual utility recursion under Von Neumann-

Morgenstern form of state additivity. For values of θ−1
d greater than zero, the recursion

(4.9) implies an increased aversion to risk associated with the time evolution of the hidden

state vis a vis the Von Neumann-Morgenstern specification. Similarly, for values of θ−1
s

greater than zero, the recursion implies an increased aversion to risk associated with the

unobservability of the true state vis a vis the Von Neumann-Morgenstern specification.

Maenhout (2004) links the degree of misspecification to the value function itself, so that

the agent becomes more misspecification-averse as the present value of her utility increases.

Finally, notice that, since the distorted continuation value function Rt conditions on the

full information set Ft (and, hence, on the true realization of the hidden state), the

investors in this economy have the option of focusing their attention on misspecification

of the joint probability distribution of future signals and state.

To understand better the recursion (4.9), consider the following static optimization

problem:

min
m≥0; E[m]=1

E [mV ] + θE [m logm] . (4.10)

The random variable m is the likelihood ratio between the reference model and an al-

ternative model. m implies a distorted expectation operator: Ẽ [V ] = E [mV ]. The

optimization problem (4.10) then minimizes the expected value of the payoff V under al-

ternative models but is penalized in utility terms for deviations from the reference model

(parametrized by m = 1). The term E[m logm] measures the discrepancy in relative
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entropy terms between the reference model and an alternative model. As noted in Ja-

cobson (1973), the relative entropy E [m logm] is the expected log-likelihood between the

reference and the misspecified models. Thus, the parameter θ can be interpreted as a

penalization parameter for large deviations away from the reference model. The problem

(4.10) can thus be interpreted as a robust way of alternating probability measures. The

minimizing choice of m, the so-called worst-case model, is given by:

m∗ =
exp

(
−1
θ
V
)

E
[
exp

(
−1
θ
V
)]

and the outcome of the minimization problem by:

−θ logE
[
exp

(
−1

θ
V

)]
.

Thus, in choosing between alternative models, the representative agent tilts the probabil-

ity toward bad (in terms of payoffs) states.

Turn now back to the recursion (4.9). Hansen and Sargent (2007) show that, corre-

sponding to the tilted continuation function Rt is the worst-case likelihood ratio:

φt(zt+1, yt+1) =
exp

(
−βJt+1

θd

)
E
[

exp
(
−βJt+1

θd

)∣∣∣Ft] . (4.11)

φt captures the difference between the evolution of future signals and states under the

misspecified model and under the reference model. In particular, φt is the date t prob-

ability distortion to the joint distribution of next period’s signals and state. Relative to

the reference model distribution, φt tilts the joint distribution toward lower continuation

value states, decreasing the expected future value of the continuation utility. Similarly,
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corresponding to the recursion (4.9), is the worst-case likelihood ratio:

ψt(z) =
exp

(
−U(z)+Rt(βJt+1;θd)

θs

)
E
[

exp
(
−U(z)+Rt(βJt+1;θd)

θs

)∣∣∣Gt] (4.12)

between the conditional distribution over the state at date t under the misspecfied and ref-

erence models. ψt tilts the conditional distribution toward lower utility states, decreasing

the expected value of utility at the current date.

An alternative interpretation of the recursion (4.9) is in terms of the smooth robustness

preferences of Klibanoff et al. (2005, 2009) and recursive preferences of Epstein and Zin

(1989). In the smooth ambiguity preference setting, the representative agent does not

choose the “worst-case model” and instead assigns a preference ordering to the alternative

models. In particular, let u be the agent’s utility over realizations of consumption, µ index

different models, f the agent’s utility function over different models and π the belief

vector over the different models. Then, an agent with the smooth robustness preferences

evaluates consumption according to:

f−1 (Eπ [f (E [u|µ])]) .

Compare this to the recursion (4.9). Notice first that the tilted continuation utility,

R(βJt+1; θd), corresponds to the continuation utility for an agent with Epstein and Zin

(1989) preferences, so corresponding to the inner expectation conditional on a “model”

in smooth utility preferences, the worst-case utility model evaluates future consumption

using Epstein and Zin (1989) preferences conditional on the current state. The recursion

(4.9) then uses an exponential utility function to rank continuation values and current

period utilities for different realizations of the state.
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To quantify the amount of distortion in the economy, Hansen and Sargent (2007)

introduce measures of the conditional relative entropy between the reference and the

distorted models. In particular, under the full information setting, the conditional relative

entropy between the reference and the worst case model of the future state and signals

evolution is defined as:

ε1t (φt+1, ξj) =
N∑
k=1

∫
τ(ξk, yt+1|ξj)φ(ξk, yt+1) log φ(ξk, yt+1)dyt+1

and the conditional relative entropy between the reference and the worst case model of

the current state by:

ε2t (ψt) =
N∑
j=1

pjψj logψj.

The total conditional relative entropy between the reference model and the worst case

model at date t is then given by:

εt = ε2t (ψt) + Ẽ
[
ε1t (φt+1, zt)

∣∣Gt] ≡ ε2t (ψt) + ε̂1t (φt+1). (4.13)

In general, the recursion (4.9) does not have a closed-form solution. Instead, I look for

a first order approximation to the representative agent’s value function around the point

θ−1
d = θ−1

s = 0, which corresponds to the solution under the reference model. Notice

that the approximation I construct here is different in its nature from the small noise

approximations constructed in Campi and James (1996) and Anderson et al. (2010) as,

instead of approximating the reference model value function around the deterministic

steady state, I approximate around the value function corresponding to the zero signal

precision case.3 The following result holds:

3When the signal precision approaches 0, the agent does not update the conditional probability dis-
tribution and, hence, the stationary distribution can be used as the prior distribution.
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Lemma 4.2. The first order approximation to the value function around the point θ−1
d =

θ−1
s = 0 is given by;

J(π; θ−1
d , θ−1

s ) ≈ J0(π) + θ−1
d Jθ−1

d
(π) + εJε(π), (4.14)

where ε = θ−1
s /θ−1

d − 1. Here, J0 is the value function of the ambiguity-neutral agent,

Jθ−1
d

measures the change in the value function as the overall level of ambiguity increases

and Jε measures the change in the value function as the agent becomes more averse to

ambiguity about the signal quality than ambiguity about the underlying dynamics. In the

non-default states of the economy, the first order approximations to J0, Jθ−1
d

, and Jε in

terms of log-deviations, π̂, from the stationary distribution of the underlying Markov chain

are given, respectively, by:

J0(π) ≈ γ00 + γ′01diag(π̄)π̂ (4.15)

Jθ−1
d

(π) ≈ γ10 + γ′11diag(π̄)π̂ (4.16)

Jε(π) ≈ γε0 + γ′ε1diag(π̄)π̂, (4.17)

where the coefficients γ00, γ01, γ10, γ11, γε0 and γε1 solve the system (C.2)-(C.10). The

first order approximation to the implied distortion to the conditional joint distribution of

next period’s signals and state is then given by:

φt (zt+1, yt+1) ≈ 1− θ−1
d β (J0(πt+1)− E [J0(πt+1)| Ft]) (4.18)

−
(
θ−1
s − θ−1

d

)
β (Jε(πt+1)− E [Jε(πt+1)| Ft]) ,

and the first order approximation to the implied distortion to the conditional distribution
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of the current state by:

ψt(zt) ≈ 1−
(
θ−1
d − θ

−1
s

)
β (E [Jε(πt+1)| Ft]− E [Jε(πt+1)| Gt]) (4.19)

− θ−1
s (U(zt) + βE [J0(πt+1)| Ft]− E [U(zt) + βJ0(πt+1)| Gt]) .

Proof. See Appendix C.1.

Notice that J0 is the value function of the representative agent under the reference

model. The vector γ01 captures the first-order dependence of the reference model value

function on the conditional distribution of the hidden state. From (C.3) we can see that

the right hand side of the equation determining γ01,j is positive when the agent’s utility in

state j is higher than the stationary probability distribution weighted average of utility in

different states. Thus, γ01,j is positive for states that have higher utility and negative for

lower utility states. Intuitively, the expected present value of the representative agent’s

utility should be higher when the probability of the economy being in a good state is higher

and lower when the probability of being in a bad state is higher. Jθ−1
d

measures the change

in the value function as the overall level of ambiguity increases. Since the ambiguity-averse

agent is solving a minimization problem in determining optimal consumption and portfolio

choices, Jθ−1
d

is negative. Thus, as the agent becomes more ambiguity averse overall,

his value function decreases. Jε, on the other hand, measures the change to the value

function of the ambiguity-averse agent as the agent becomes more averse to ambiguity

about signal quality than ambiguity about the underlying dynamics. Thus, keeping the

level of aversion to ambiguity about the underlying dynamics, Jε is also negative as the

agent imposes a smaller entropy cost on choosing more distorted (toward lower utility

states) posterior distributions. Notice that, since both Jθ−1
d

and Jε are time-varying,

the agent’s perceived risk attitudes change depending on the conditional distribution of
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the hidden state, with the vectors γ11 and γε1 describing the loadings on the individual

components of the probability vector.

Consider now the first order approximation to the worst-case distortion to the con-

ditional joint distribution of next period’s signals and states. Notice first that, when

the representative agent has equal degree of aversion to both sources of ambiguity, so

that θs = θd, the first order approximation depends only on the value function of the

ambiguity-neutral agent, J0. Recall that Jε is the derivative of the value function of the

ambiguity-averse agent in the direction of greater aversion to ambiguity about the sig-

nal quality. Since the value function of the ambiguity-averse agent is lower than that of

the ambiguity-neutral agent, the distortion to the conditional joint distribution of next

period’s signals and state is smaller when the agent in more averse to ambiguity about

signal quality than ambiguity about the underlying dynamics. That is, if the agent is more

averse to ambiguity about signal quality than ambiguity about the underlying dynamics

(so that θ−1
d < θ−1

s ) , the aversion to ambiguity about signal quality mitigates the impact

of ambiguity about the underlying dynamics on the perceived transition probabilities. On

the other hand, if the agent is more averse to ambiguity about the underlying dynam-

ics (so that θ−1
d > θ−1

s ) , the aversion to ambiguity about signal quality exacerbates the

impact of ambiguity about the underlying dynamics on the perceived transition probabili-

ties. Intuitively, if the agent is more averse to ambiguity about signal quality, then he will

not apply as a large of a distortion to the transition probabilities since misspecification of

the underlying dynamics is a smaller concern in his mind. If, however, the agent is more

averse to ambiguity about the underlying dynamics, then misspecification of the transition

probabilities is a primary concern which only worsens due to misspecification concerns

about the posterior distribution over the possible realizations of the current state.

Similarly, when θs = θd, the first order approximation to the worst-case distortion to
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the posterior distribution of the current state also depends only on the value function of the

ambiguity-neutral agent. If the agent is more averse to ambiguity about the signal quality

than about the underlying dynamics (so that θ−1
d < θ−1

s ), the aversion to ambiguity about

the underlying dynamics exacerbates the impact of the ambiguity about the signal quality.

If, on the other hand, the agent is more averse to ambiguity about the underlying dynamics

(so that θ−1
d > θ−1

s ), the aversion to ambiguity about the underlying dynamics mitigates

the impact of the ambiguity about the signal quality. Intuitively, if the representative

agent is more averse to ambiguity about the underlying dynamics, he will not apply as

large a distortion to the current period posterior probabilities since misspecification of the

filter dynamics is a smaller concern in his mind. If, however, the agent is more averse to

ambiguity about the signal quality, then misspecification of the current period posterior

probabilities is a primary concern which only worsens due to misspecification concerns

about the transition probabilities.

Substituting for J0 and Jε in (4.18)-(4.19), we can express:

φt(z
∗ = ξk, y

∗|z = ξj) = 1 + θ−1
d

(
ϕ01,jk + ϕ′π1,jkdiag(π)π̂ + ϕ′y1,jk log f(y∗ − ξk)

)
+
(
θ−1
s − θ−1

d

) (
ϕ0ε,jk + ϕ′πε,jkdiag(π)π̂ + ϕ′yε,jk log f(y∗ − ξk)

)
ψt(ξj) = 1 + θ−1

s

(
ζ01,j + ζ ′11,jdiag(π)π̂

)
+
(
θ−1
d − θ

−1
s

) (
ζ0ε,j + ζ ′1ε,jdiag(π)π̂

)
where the expansion coefficients are given by (C.11)-(C.20). Integrating over the future

state, the implied transition probability matrix is:

λ̃jk ≡ P̃ (zt+1 = ξk| zt = ξj)

≈ λjk
[
1 + θ−1

d

(
ϕ01,jk + ϕ′π1,jkdiag(π)π̂ + ϕ′y1,jk∆

1
k

)]
(4.20)

+ λjk
(
θ−1
s − θ−1

d

) (
ϕ0ε,jk + ϕ′πε,jkdiag(π)π̂ + ϕ′yε,jk∆

1
k

)
.
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Notice that this implies that, unlike the reference model, the transition probability matrix

under the misspecified model is time-dependent. This effect introduces additional time

variation into asset prices above that implied by the time evolution of fundamental asset

values under the reference model.

4.4 Asset prices under the misspecified model

Since the representative agent evaluates expectations under the worst-case measure when

making consumption decisions, the Euler equation holds under the worst-case likelihood

and assets can be priced using the worst-case Euler equation. In particular, under the

misspecified model, the date t price of a claim to the equity of firm i satisfies:

Vit = Ẽ [δiAit − Ci + β1τi>t+1Vi,t+1| Gt] . (4.21)

As with the value function, consider a first order expansion of the equity price around

the reference model equity price. That is, I look for a first order approximation to the

solution of the worst-case Euler equation (4.21) in the form:

Vi(πt; θ
−1
d , θ−1

s ) ≈ Vi0(πt) + θ−1
d Viθ−1

d
(πt) + εViε(πt). (4.22)

The following result holds:

Lemma 4.3. The first order approximations to Vi0, Viθ−1
d

, and Viε in terms of log-

deviations, π̂, from the stationary distribution of the underlying Markov chain, are given,
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respectively, by:

Vi0(πt) = νi,00 + ν ′i,01diag(π)π̂ +O2(π̂) (4.23)

Viθ−1
d

(πt) = νi,10 + ν ′i,11diag(π)π̂ +O2(π̂) (4.24)

Viε(πt) = νi,ε0 + ν ′i,ε1diag(π)π̂ +O2(π̂), (4.25)

where the coefficients νi,00, νi,01, νi,10, νi,11, νi,ε0 and νi,ε1 solve the system of linear equa-

tions in Appendix C.2.

Proof. See Appendix C.2.

Consider now the CDS spreads under the misspecified model. Recall that the spread

on a default swap with maturity T = t+ 6n on the primary debt of firm i is given by:

ci(t, T ) =
2XẼ [βτi−t1τi<T | Gt]∑n
k=1 β

6sẼ [1τi≥t+6s| Gt]
. (4.26)

The misspecification concerns of the representative agent influence the CDS calculations

in two ways. First, the conditional probability of the current state is distorted using

ψ(ξj), with the lower utility states receiving a higher probability. Second, the transition

probability matrix Λ is replaced with the time-dependent distorted probability matrix Λ̃.

Introduce the following notation:

Υi (π, t, T ) = Ẽ
[
βτi−t1τi<T

∣∣Gt]
Ψi (π, t, T ) = Ẽ [1τi≥T | Gt] ,

so that:

ci(t, T ) =
2XiΥ

i (π, t, T )∑n
k=1 β

6sΨi (π, t, t+ 6s)
.
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By definition:

Υi (π, t, T ) =
N∑
j=1

pjtψ(ξj)
T−t∑
s=1

βsẼ [1τi=t+s| zt = ξj]

=
N∑
j=1

pjtψ(ξj)
T−t∑
s=1

βsP̃ (τi = t+ s| zt = ξj)

Ψi (π, t, T ) =
N∑
j=1

pjtψ(ξj)

(
1−

T−t∑
s=1

Ẽ [1τi=t+s| zt = ξj]

)

=
N∑
j=1

pjtψ(ξj)

(
1−

T−t∑
s=1

P̃ (τi = t+ s| zt = ξj)

)
.

Let q̃nij = P̃ (zt+n = ξj, zt+n−1 6= ξj, . . . , zt+1 6= ξj| zt = ξi) be the probability that t + n

is the first hitting time of state j conditional on being in state i at date t, so that

P̃ (τi = t+ n| zt = ξj) = q̃nji∗ . Introduce also the matrix of the first hitting time proba-

bilities: Q̃n =
{
q̃nij
}N
i,j=1

and let Q̃n
0 = diag(Q̃n). Then, from Seneta (1981), Q̃n is given

recursively by:

Q̃n = Λ̃Q̃n
0 .

Notice that, since Λ̃ is time-dependent, the first hitting time distribution under the mis-

specified model is also time-dependent.

Consider now the contagion effect of the default of firm i at date τi on the expected

time to default of the surviving firms. I will use the following property of Markov chains:

Lemma 4.4. Let {Xt}t≥0 be a Markov chain on the probability space (Ω,F ,P) with tran-

sition matrix P and state space I. Define the hitting time of a subset A of I to be the

random variable τA : Ω→ {0, 1, 2, . . .} such that τA(ω) = inf {t ≥ 0 : Xt(ω) ∈ A}. Denote

by kA(i) the mean time taken for (Xt)t≥0 to reach A after starting from state i:

kA(i) = E [τA|X0 = i] .
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Let Q denote the matrix obtained by deleting the rows and columns corresponding to the

set A from P . Then:

kA(i) =
∑
j /∈A

(I −Q)−1
ij (4.27)

Proof. See e.g. Seneta (1981).

Similarly to Frey and Schmidt (2010), I define the contagion effect as the change in the

expected time to default of firm j at the default time τi of firm i, which is given by:

k̂aBj (τi)− k̂aBj (τi − 1) ≡ Ẽ
[
kaBj

∣∣∣Gτi]− Ẽ
[
kaBj

∣∣∣Gτi−1

]
. (4.28)

Notice that there are two opposing effects of observing one of the firms default. On

the one hand, it reveals to the representative agent the current state of the economy,

thus reducing the misspecification concerns faced by the agent. On the other hand, the

conditional probability of the other firms defaulting next period increases as the agent

knows that the aggregate component of the fundamental value is in its lowest state.

5 The 2007–2008 Financial Crisis

In this section, I estimate the model in Section 4 using data on financial institutions.

Although the returns on the equity of financial institutions accounts for a small portion

of the overall level of consumption in the economy, these institutions were at the forefront

of the 2007 financial crisis and, thus, to understand the asset price movements during

the crisis, it is important to understand the movements in the prices of claims on these

institutions. I begin by estimating the parameters of the reference model using the obser-

vations of book equity of financial institutions as firm-specific signals and the Case-Shiller

10 Cities Housing (CS10) Index as the signal about the common component of the asset
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values. Although book equity of financial institutions make for imperfect signals, both

because by it’s nature the series is backward-looking and because of the infrequency of ob-

servation, using observations of market equity is also fraught with difficulty. The problem

of inverting market prices to obtain time series observations of risk-neutral probabilities

is a complex problem in general. For the model considered in this paper, the matter is

complicated by the fact that all market prices reflect the worst-case distortions imposed

by the preferences of the representative agent. Thus, if market prices were to be used

as firm-specific signals, then estimation could no longer be decomposed into two parts

– estimating independently the parameters of the reference model and then using these

parameters as inputs to estimate the ambiguity preference parameters, further complicat-

ing the estimation procedure. While I believe that observations of market equity for the

institutions concerned provide interesting insights into the nature of risk and uncertainty

in the market, in the current paper I prefer to use these time series to provide an outside

test for the validity of the estimated parameters. I choose observations of the CS10 Index

as the aggregate signal to capture the exposure of the financial institutions to risks associ-

ated with the national housing market. Notice from Table I that the financial institutions

considered have higher correlations with the CS10 Index than with stock market indices,

such as the S&P 500 index.

(Table I about here.)

Next, I use historical observations of CDS spreads for the financial institutions prior

to the start of the crisis to obtain an estimate of θs and θd – the parameters governing

the investors’ aversion to misspecification of the filter distribution and underlying dynam-

ics, respectively. Using these estimates, I compute the implied relative entropy between

the reference and the worst-case models and decompose the entropy calculation into the

36



contributions from misspecification of the signal model and misspecification of the funda-

mental value of assets model for the whole time series. Next, I compare the model-implied

CDS rates and equity prices to the observed time series. Finally, I examine the differential

effect of the two sources of misspecification in the model on asset prices.

5.1 Estimating the reference model

To estimate the reference model, I use historical observations of the firm-specific signals

and the aggregate signal. Below, I provide the outline of the estimation procedure. The

details of the estimation are provided in Appendix A.

As observations of firm-specific signals, I use balance sheet data from COMPUSTAT.

In particular, I use observations of book equity as the accounting signals. As observations

of the aggregate signals, I take the time series of the Case-Shiller 10 Cities index. Notice

that, while balance sheet data are observed at a quarterly frequency only, observations

of the CS10 Index are available at a monthly frequency. The procedure described in

Appendix A accounts explicitly for this dual frequency of observations. Notice that, to

estimate the reference model, I only use observations up to Q2 2007 to avoid introducing

measurement error by including observations of the accounting signal which reflect mark-

downs taken since the start of the crisis, as well as the increased ambiguity discount in

credit derivatives held on the balance sheets of these institutions.

Recall that the reference model is described by the parameters:

• Λ, {ξj}Nj=1: transition probability matrix and states of the fundamental asset values

• {ρi}Ii=1: firm-specific loadings on the common component

• Σu: signal error covariance matrix

• {Di, Ci}Ii=1: level of perpetual debt and coupon payments
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• {δi}Ii=1: fraction of assets generated as cash-flows.

I begin the estimation by identifying the face value of the perpetual bond issued by

firm i, Di, with the last pre-crisis (Q2 2007) observation of the firm’s value of long-term

debt; notice that, since the model-implied debt has infinite maturity, long-term debt is a

better measure than total debt as it excludes short-term liabilities. The coupon payment,

Ci, is then chosen to make the level of debt Di optimal. Following the model assumption

that each firm generates a constant fraction δi of assets as cash-flows, I identify δi as

the time-series average of the total earnings as a fraction of total assets. The rest of the

parameters are estimated using the Gibbs sampling procedure of Appendix A.

The estimated reference model parameters are presented in Tables II – III and the

filtered time series of the expected fundamental value of each firm’s assets under the

reference model is plotted in Fig. 9. Notice first that, while changes in the filtered

fundamental asset values mimic the observed changes in the corresponding book values,

the level of the fundamental asset values are lower than that of the book values. Notice

also that the states of the economy are highly persistent. The probability of the firm-

specific component of asset values staying in the same state next period is around 54% and

the probability of the aggregate component of asset values staying in the same state next

period is around 99%. Notice also that, although book values have a high correlation

with the Case Shiller 10 Index, the estimated firm-specific loadings on the aggregate

component of asset values is lower, ranging from 27% for JP Morgan and less than 1%

for Bear Stearns. Finally, notice that the signal errors have low cross-correlations of at

most 7% and a higher variance, ranging from 73% for the Case Shiller 10 Index to 15%

for Goldman Sachs.

(Table II about here.)

(Table III about here.)
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(Figure 9 about here.)

5.2 Estimating the misspecification preference parameter

Consider now estimating the degree of aversion toward misspecification of the underlying

dynamics, θ−1
d , and misspecification of the filter distribution, θ−1

s . Rewrite the CDS

equation (4.26) as:

0 = 2XiΥ
i (π, t, T )− ci(t, T )

n∑
k=1

β6sΨi (π, t, t+ 6s) .

Recall that the expectation functions Υi and Ψi are calculated using the worst-case like-

lihood and, thus, depend on investors’ preferences toward ambiguity. Thus, to estimate

θ−1
d and θ−1

s , I assume that the CDS rates are observed with a measurement error. In

particular, assume that the observation equation is given by:

0 = 2XiΥ
i (π, t, T )− ĉi(t, T )

n∑
k=1

β6sΨi (π, t, t+ 6s) + ηiT,t,

where ĉi(t, T ) are the observed CDS rates and the vector of maturity-specific measurement

errors ηit = [ηi1,t, . . . , ηiT,t] is normally distributed and i.i.d. across time and firms: ηi ∼

N(0,Ση). Taking the point estimates from the Gibbs sampling procedure as estimates

of the reference model parameters, I make draws of the vector θ−1 =
[
θ−1
d θ−1

s

]′
using a

Random Walk Metropolis algorithm with a flat prior. The accept/reject probability for

the draws of θ−1 is the ratio of the likelihood of the CDS rates for all firm, at all available

data points and for all available maturities.

To evaluate whether the investors’ attitudes toward ambiguity change during the crisis,

I conduct three different estimations of the parameters θ−1
d and θ−1

s using different data
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sub-periods: the pre-crisis period, the period from the start of the crisis to the bailout of

Bear Stearns and the period from the bailout of Bear Stearns to the liquidation of Lehman

Brothers. The results of these estimations are presented in Table IV. Notice that the

estimation suggests that the investors in this market exhibit a higher degree of aversion to

ambiguity about the filter distribution than to ambiguity about the underlying dynamics.

Notice further that the three different periods do not yield significantly different estimates

of θ−1
d and θ−1

s , suggesting that the investors attitudes toward model misspecification do

not change significantly during the crisis period. Instead, the observed changes in CDS

rates are due to the amount of ambiguity faced by agents in the markets and to shifts in

what kind of misspecification the agents are more concerned about.

(Table IV about here.)

Consider now the model-implied time series evolution of credit spreads. Since the

estimate of θ−1 does not change during the crisis, I use the pre-crisis estimates of θ−1
d and

θ−1
s to compute the model-implied CDS spreads. Table V presents the observed 5 year

CDS spreads for the financial institutions at five dates of interest – before the start of

the crisis, July 2007, at the start of the crisis in August 2007, after the bailout of Bear

Stearns in March 2008, after the liquidation of Lehman Brothers in September 2008 and

after the introduction of TARP in October 2008 – together with the model-implied CDS

rates at these dates. Notice first that the model-implied CDS rates follow the observed

pattern of increasing during the financial crisis. Further, for most institutions, the implied

CDS rates match the levels of CDS spreads over time, although the performance of the

estimated model worsens after the liquidation of Lehman Brothers.

(Table V about here.)
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Recall that the estimates of the ambiguity aversion parameters θ−1
d and θ−1

s do not

change significantly over the crisis. What then generates the time series behavior of CDS

rates that we observed during the crisis? In this paper, I argue that the observed rapid

increases in CDS spreads are driven by changes in the amount of total ambiguity faced by

investors in the market, as well as changes in how this total amount of ambiguity is de-

composed into the amount of ambiguity about the underlying dynamics and the amount

of ambiguity about the filter distribution. In Fig. 10, I plot the time series evolution

of ambiguity, as measured by the conditional relative entropy between the reference and

the worst-case likelihoods4, during the crisis. Notice that at the beginning of the crisis

(after the BNP Paribas announcement in August 2007), only ambiguity about the filter

distribution increased. Intuitively, at the beginning of the crisis, although investors ob-

served the negative reports released by financial institutions, since no defaults of major

institutions occurred, they could interpret these new signals as informing about the qual-

ity of information and not about the quality of the assets on the balance sheets of these

institutions. Contrast this with the changes to the amount of ambiguity after the bailout

of Bear Stearns in March 2008 and after the liquidation of Lehman Brothers in September

2008. In these cases, it is the amount of ambiguity about the underlying dynamics that

increases. Unlike the start of the crisis, investors now observed default by major financial

institutions, which increased their uncertainty about the quality of assets held by finan-

cial institutions. Notice also that, although the amount of total entropy decreased a little

after the introduction of TARP in October 2008, it was still higher than before the start

of the crisis, which is consistent with the Caballero and Krishnamurthy (2008a) intuition

that ambiguity increased during the crisis.

(Figure 10 about here.)

4See the definition of conditional relative entropy in eq. (4.13)
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To further understand the time series evolution of asset prices during the crisis, con-

sider the time series evolution of expected time to default of the financial institutions.

Table VI presents the expected time to default for the financial institutions at five dates

of interest – before the start of the crisis, July 2007, at the start of the crisis in August

2007, after the bailout of Bear Stearns in March 2008, after the liquidation of Lehman

Brothers in September 2008 and after the introduction of TARP in October 2008 – to-

gether with the percentage change in the time to default relative to the previous month.

The initial BNP Paribas announcement in August 2007 only lead to a decrease in the

expected time to default for only Bank of America, Goldman Sachs and Morgan Stan-

ley. This coincides with the intuition that investors interpreted the announcements by

financial institutions at the beginning of the crisis as increasing the amount of ambiguity

about the filter distribution, and not necessarily indicative of the quality of assets held

by the financial institutions. More interesting is the fact that the bailout of Bear Stearns

in March 2008 lead to a decrease in the expected time to default for only some firms. In

contrast, the liquidation of Lehman Brothers in September 2008 decreased the expected

time to default for all institutions except Goldman Sachs and Morgan Stanley. Thus,

while the bailout of Bear Stearns induced contagion effects for some of the financial in-

stitutions, the effect was not as widespread as that induced by the liquidation of Lehman

Brothers. Intuitively, while the bailout of Bear Stearns increased the ambiguity about

the underlying dynamics, the fact that the institution was bailed out and not liquidated

implied a guarantee for the other institutions and thus mitigated the contagion effects.

The liquidation of Lehman Brothers, on the other hand, removed this guarantee and thus

the liquidation had more systematic effects.

(Table VI about here.)

Compare this to the evolution of expected times to default under the reference model,
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presented in Panel B of Table VI. Notice first that, under the reference model, the

expected time to default is longer at all dates than under the misspecified model. Intu-

itively, the misspecification-averse agent perceives the probability of default next period to

be greater than under the reference model, decreasing the expected time to default. Next,

consider the time evolution of the expected times to default. The initial BNP Paribas

announcement leads to a slight ( 0.03%) decrease in the expected time to default for each

of the institutions. As under the misspecified model, the decrease in the expected time

to default is much greater after the bailout of Bear Stearns. Notice, however, that the

decrease under the reference model is greater than under the misspecified model. Intu-

itively, since the misspecification-averse agent already has more pessimistic views of the

future, observing the bailout of Bear Stearns did not have as a large of an impact on her

beliefs as it did on the beliefs under the reference model. Similarly, the decrease under

the reference model after the liquidations of Lehman Brothers is larger than under the

misspecified model. After introduction of TARP in October 2008, however, the increase

in the expected time to default under the reference model is much smaller than under the

misspecified model.

Finally, consider the implied time series evolution of equity prices during the crisis.

Fig. 11 plots the observed evolution of equity prices together with the model-implied

evolution. Although we cannot hope to match the level of equity prices since the firm

earnings model in the paper is extremely simplistic, the model should be able to match

the observed movements in equity prices. Comparing the model-implied evolution to

the true evolution of equity prices, we see that the model-implied equity prices lag the

observed equity prices. This is not surprising since the signals used to construct the time

series evolution of conditional probabilities are backward-looking; for example, the Case-

Shiller 10 Index is constructed using observations over the previous three months. The
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model is able to capture the overall downward trend of equity prices during the crisis and

especially well the sharp drop in equity prices after the bailout of Bear Stearns and after

the liquidation of Lehman Brothers.

(Figure 11 about here.)

5.3 Sources of ambiguity and CDS rates

I will now investigate the impact of ambiguity aversion on CDS rates and the expected

times to default of the financial institutions examined in Section 5 in greater detail. In

order to evaluate the disparate effect of the two sources of ambiguity on market quantities,

I will examine two cases:

1. Investors are averse to ambiguity about the underlying dynamics but not to ambiguity

about the signal quality (θ−1
s = 0).

2. Investors are averse to ambiguity about the signal quality but not to ambiguity about

the underlying dynamics (θ−1
d = 0).

In this exercise, I assume that the value of the non-zero degree of ambiguity aversion is the

value estimated in Section 5 using the pre-crisis data (see Table IV). This allows me to

examine the counterfactual implication of having only one source of ambiguity for market

prices. While it is possible to estimate the full model with different degrees of aversion

to different sources of ambiguity using a version of the Metropolis-Hastings algorithm

described in the previous section, it would be less illuminating about the differential

impact of the two sources of ambiguity and I leave that exercise for future research.

Consider now the CDS rates implied for different sources of ambiguity. Table VII

presents the percent deviation between the model-implied and the observed five year

CDS rates for different financial institutions at five dates of interest – before the start
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of the crisis in July 2007, at the start of the crisis in August 2007, after the bailout of

Bear Stearns in March 2008, after the liquidation of Lehman Brothers in September 2008

and after the introduction of TARP in October 2008 – for three different specifications

of ambiguity preference. In particular, the column “Main” refers to the case in the main

body of the paper, with the representative agent averse to ambiguity about both the

underlying dynamics and the filter distribution; the column θ−1
s refers to the case when

the representative agent is averse to ambiguity about the underlying dynamics only; the

column θ−1
d = 0 refers to the case when the representative agent is averse to ambiguity

about the filter distribution only. Notice first that, the model with aversion to both

sources of ambiguity fits the data better overall than either the model with aversion to

only the underlying dynamics or the model with aversion to only the filter distribution.

Thus, both sources of ambiguity are important in explaining the behavior of CDS rates

during the crisis. Notice also that neither the model with aversion to only ambiguity

about the underlying dynamics outperforms consistently the model with aversion to only

ambiguity about filter distribution nor vice versa. This is consistent with the intuition

provided by the time series of the different contributions to entropy in Fig. 10. More

specifically, at the start of the crisis (July – August, 2007), the model with aversion to

only ambiguity about the filter distribution outperforms the model with aversion to only

ambiguity about the underlying dynamics, implying that, during this period, ambiguity

about the filter distribution had a stronger impact on CDS rates. This relationship

reversed as the crisis progressed, with the model with aversion to only ambiguity about

the underlying dynamics outperforming the model with aversion to only ambiguity about

the filter distribution. Thus, during the later part of the crisis, ambiguity about the

underlying dynamics had a stronger impact on CDS spreads.

(Table VII about here.)
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6 Conclusion

In this paper, I consider the implications of model misspecification for default swap

spreads. Using an incomplete information version of the Black and Cox (1976) model

of credit spreads as the reference model, I find that introducing misspecification concerns

exacerbates the imperfect information problem faced by the representative agent. This

leads to an increased level of default swap spreads overall and greater sensitivity of CDS

spreads to bad news. The misspecification-averse agent perceives the probability of de-

fault next period to be higher than under the reference model, increasing CDS spreads and

decreasing expected time to default. Observing a bad signal not only increases the con-

ditional probability of being in a low-payoff state in the current period but also increased

the perceived probability of default in the next period.

To investigate whether the model can produce reasonable magnitudes of CDS spreads,

I estimated the parameters of the reference model using observations of the book value of

equity of several financial institutions as firm-specific signals and of Case Shiller 10 Index

as observations of aggregate signals. The misspecification preference parameters θ−1
d and

θ−1
s were then estimated using observations of CDS spreads for the financial institutions

over time. The results of the estimation procedure suggest that, while agents’ preference

toward model misspecification did not change during the crisis, the amount of entropy in

the economy and how that entropy is decomposed into the contributions from misspeci-

fication of the joint distribution of next period’s signals and state and misspecification of

the conditional probability distribution of the current state did change. In particular, the

initial BNP Paribas announcement in August 2007 lead to an increase in ambiguity about

the filter distribution. The bailout of Bear Stearns in March 2008 and the liquidation of

Lehman Brothers in September 2008 on the other hand lead to an increase in the amount

of ambiguity about the underlying dynamics.
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Examining the implied time-series evolution of equity prices, I find that, while the

model is able to match the overall movements of the equity prices, the model-implied

equity prices lag the observed equity prices. A possible avenue of future research is to

estimate the model under the assumption that the representative agent in the economy

observes more information than the econometrician estimating the model. While allowing

for equity prices to adjust quicker to news in the market, this would also allow us to

estimate the model at a higher frequency and, thus, extract more information from the

observed CDS spreads.

I turn next to examining the disparate effect of the two sources of ambiguity aversion

on market prices. I find that, while both sources of ambiguity play an important role in

determining CDS spreads, aversion to different sources of ambiguity plays an important

role during different times. In particular, the model with aversion to only ambiguity about

the filter distribution is better able to explain the evolution of CDS spreads at the start

of the crisis, while aversion to only ambiguity about the underlying dynamics performs

better during the later part of the crisis. Notice that this corresponds to the intuition

delivered by looking at the time series evolution of the two contributions to entropy.

Notice that, while the model described in this paper is geared toward explaining the

observed increases in CDS spreads, similar intuition could be used to explain observed

changes to prices of collateralized debt obligations (CDOs) and other complex securities.

In fact, since arguably CDOs have a more complicated underlying structure than default

swaps, model misspecification concerns would be even more relevant in pricing these

securities. A formal treatment of this problem, however, is left for future research.
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A Reference Model Estimation

I estimate the time series parameters of the reference model using a Gibbs sampling
procedure. Recall the Gibbs sampling allows to sequentially make parameter draws from
conditional posteriors. Because the model can be broken down into as many conditional
posteriors as needed, it is possible to fully estimate the reference model specified in Section
4.

Recall that for the model of Section 4.1, the observations in the economy are given by:

yit = ξi,st + ρiξI+1,st + uit, i = 1, . . . , I

yct = ξI+1,st + uct,

where st is the indicator of the state at date t. In reality, observations of book value occur
at a quarterly frequency while observations of the aggregate signal occur at a monthly
frequency. Denote by ny the number of periods in between observations of firm-specific
signals and by ty the number of available observations of the firm-specific signals.

To reduce the number of parameters to be estimated, I impose additional restrictions
on the model. In particular, I assume that the vector of the firm-specific components
zft ≡ [z1t, . . . , zIt] of the hidden state vector z evolves independently of the aggregate
component, zct. That is, I assume that zft and zct evolve as two independent Markov
chains. The vector of firm-specific components zf evolves as an nf -state Markov chain,
with values ζf1, . . . , ζf,nf and transition probability matrix Ωf defined by:

{Ωf}jk ≡ ωf,ik = P (zf,t+1 = ζfk| zft = ζfj) .

Similarly, the aggregate component zct evolves as an nc Markov chain, with values ζc1, . . . , ζcnc
and transition matrix Ωc defined by:

{Ωc}jk ≡ ωci,jk = P (zc,t+1 = ζck| zct = ζcj) .

I impose also the assumption that the signal errors of the aggregate signal are uncorrelated
with the signal errors of the firm-specific signals but allow for the errors of the firm-specific
signals to be cross-sectionally correlated. That is, I partition the signal covariance matrix
into:

Σu =

[
Σuf

~0I,1
~01,I Σuc

]
,

where Σuf is the covariance matrix of the firm-specific signals and Σuc is the variance of
the aggregate signal. Notice that this formulation allows me to estimate the firm value at
default directly from the signal observations: since zft and zct evolve as two independent
Markov chains, it is possible to recover the lowest value of the firm-specific component
and the lowest value of the common component without observing default.
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Denote by Θ the full set of parameters to be estimated:

Θ =
{

Ωf ,Ωc, ζf1, . . . , ζfnf , ζc1, . . . , ζcnc , ρ1, . . . , ρI ,Σuf ,Σuc, {sft}tyt=1 , {sct}
T
t=1

}
and by Θ−A the set of all parameters except A: Θ−A = Θ\A. With the above assumptions,
the main steps in the Gibbs procedure are as follows:

Step 1. Conditional on a draw of Θ−Ωf , make a draw of Ωf

Step 2. Conditional on a draw of Θ−Ωc , make a draw of Ωc

Step 3. Conditional on a draw of Θ−{ζci}nci=1
, make a draw of ζc1, . . . , ζc,nc

Step 4. Conditional on a draw of Θ−{ζfi}nf
i=1

, make a draw of ζf1, . . . , ζf,nf

Step 5. Conditional on a draw of Θ−{ρi}Ii=1
, make a draw of ρ1, . . . , ρI

Step 6. Conditional on a draw of Θ−Σuf , make a draw of Σuf

Step 7. Conditional on a draw of Θ−Σuc , make a draw of Σuc

Step 8. Conditional on a draw of Θ−{sct}Tt=1
, make a draw of {sct}Tt=1

Step 9. Conditional on a draw of Θ−{sft}ty
t=1

, make a draw of {sft}tyt=1

Step 10. Permute the state indicators

For the conditional posteriors below, I rely on Gibbs sampling results for regime-
switching models. The initial application of MCMC estimation methods to regime-
switching models in due to Albert and Chib (1993), who estimate an autoregressive model
with Markov jumps following a two-state Markov process. McCulloch and Tsay (1994)
extend this to situations where the regime-switching model includes non-regime-specific
(common) components. For the most part (and in the algorithm below), practical MCMC
estimation uses the principle of data augmentation and treats the indicators of the state
of the latent Markov chain as missing data. Treating observations of the latent Markov
chain as missing data allows for the use of conjugate priors in estimating the parameters of
the model. For a more exhaustive discussion of the use of MCMC methods for estimating
the parameters of Markov chains, see Fruhwirth-Schnatter (2006).

A.1 Conditional on a draw of Θ−Ωf
, make a draw of Ωf

Denote by Ω̃f the ny-periods-ahead transition probability matrix of the firm-specific value
vector zft: Ω̃f = Ω

ny
f . Since obsevations of the firm-specific signals occur only every ny

periods and the aggregate signals are not informative about the firm-specific state, I
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make draws of Ω̃f and then infer the corresponding draw of Ωf . Generalizing the results
of Albert and Chib (1993) and McCulloch and Tsay (1994) to the multiple state case, the
conjugate prior for the jth row of Ω̃f is :

ω̃f,j ∼ Dir
(
αfj1, . . . , α

f
j,nf

)
,

where Dir denotes the Dirichlet distribution5. The posterior is then given by:

ω̃f,j ∼ Dir
(
αfj1 + nfj1, . . . , α

f
j,nf

+ nfjnf

)
,

where nfjk is the number of times the Markov chain zf transitions from state j to state k

in the current draw of {sft}tyt=1. Once a draw of Ω̃f is made, the corresponding draw of

the original transition probability matrix is computed as Ωf = Ω̃
1
ny

f .

A.2 Conditional on a draw of Θ−Ωc
, make a draw of Ωc

Similarly to Ω̃f , the conjugate prior for the jth row of Ωc is the Dirichlet distribution:

ωc,j ∼ Dir
(
αcj1, . . . , α

c
j,nc

)
,

and the posterior is given by:

ωc,j ∼ Dir
(
αcj1 + ncj1, . . . , α

c
j,nc + ncj,nc

)
,

where ncjk is the number of times the Markov chain zc transitions from state j to state k

in the current draw of {sct}Tt=1.

A.3 Conditional on a draw of Θ−{ζci}nci=1
, make a draw of ζc1, . . . , ζc,nc

To derive the conditional posterior of ζci, i = 1, . . . , nc, notice that the firm-specific signals
contain information about the common component of the fundamental asset values. In
particular, notice that the likelihood function of the signals is given by:

L (y|Θ) ∝ exp

{
−1

2

ty∑
τ=1

ŷ′f,τ∆y
Σ−1
uf ŷf,τ∆y −

1

2

T∑
t=1

(yct − ζc,sct − uc)2

Σuc

}
,

where ŷf,τ∆y = yf,τ∆y − ζf,sf,τ∆y
− ρζc,sc,τ∆y

− uf . Let i1 < i2 < . . . < inj denote all the

time indices such that scik = j and let yc,j =
(
yci1 , . . . , ycinj

)′
. The conjugate prior is

5Recall that the Dirichlet distribution generalizes the beta distribution to the multinomial case
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given by:
ζcj ∼ N

(
ζc,0j, ΣucA

−1
c,0j

)
and the conditional prior by:

ζcj ∼ N
(
ζ̄cj, ΣucĀ

−1
cj

)
,

where

Ācj = nyjΣucρ
′Σ−1

uf ρ+ nj + Ac,0j

ζ̄cj = Ā−1
cj

[
Σucρ

′Σ−1
uf

nyj∑
k=1

(yf,τk∆y − ζf,s1τk∆y
− ūf ) +

nj∑
k=1

(yc,ik − uc) + Ac,0jζc,0j

]

A.4 Conditional on a draw of Θ−{ζfi}
nf
i=1

, make a draw of ζf1, . . . , ζf,nf

Denote: ỹft = yft − ρζcsct − ū. Let j1 < j2 < . . . < jnj denote all the time indices such

that sfjk = j and let ỹfj =
(
ỹf,j1 , . . . , ỹf,jnj

]′
. Then the conjugate prior distribution is:

ζfj ∼ N
(
ζf,0j, ΣufA

−1
f,0j

)
and the conditional posterior by:

ζfj ∼ N
(
ζ̄fj, Σuf Ā

−1
fj

)
,

where:

Āfj = nj + Af,j0

ζ̄fj = Ā−1
fj

[
nj∑
k=1

ỹf,jk + Af,j0ζf,j0

]

A.5 Conditional on a draw of Θ−{ρi}Ii=1,Σuf
, make a draw of ρ1, . . . , ρI

and

Define: ỹft = yft − uf − ζfsft . The prior distribution for the vector ρ is then

ρ ∼ N
(
β0,ΣufA

−1
0ρ

)
and the conjugate posterior is given by:

ρ ∼ N
(
β∗,ΣufA

−1
∗,ρ
)
,
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where:

A∗,ρ =

ty∑
t=1

ζ2
c,sct + A0ρ

β∗ = A−1
∗,ρ

(
ty∑
t=1

ỹftζc,sct + A0ρβ0

)
.

The conjugate prior for Σuf is given by:

Σuf ∼ IW (ν, V )

and the posterior is given by:

Σuf ∼ IW (ν + ty, V + S),

where

S =

ty∑
t=1

(
ỹf,t∆y − ρζc,sc,t∆y

)′ (
ỹf,t∆y − ρζc,sc,t∆y

)
+ (β∗ − β0)′A0ρ(β∗ − β0).

A.6 Conditional on a draw of Θ−Σuc
, make a draw of Σuc

In this case, the conjugate prior is an inverse χ2-distribution:

Σuc ∼
νcs̄

2
c

χ2(νc)

and the conditional posterior by:

Σuc ∼
νcs̄

2
c + TEc

χ2(νc + T )
,

where:

TEc =
T∑
t=1

(yct − ζcsct − uc)2.

A.7 Conditional on a draw of Θ−{sct}Tt=1
, make a draw of {sct}Tt=1

Denote by Sct the history of observations of the aggregate regime up to date t, Sc,−t the
full history of the aggregate regime except at date t. The conditional posterior is then

55



given by:

P
(
sct| {ycτ}Tτ=1, Sc,−t

)
∝ P(sct|sc,t−1)P(sc,t+1|sct) exp

{
−1

2

(yct − ζc,sct)2

Σuc

}
t 6= nny, n ∈ N

P
(
sct| {ycτ}Tτ=1, Sc,−t

)
∝ P(sct|sc,t−1)P(sc,t+1|sct) exp

{
−1

2

(yct − ζc,sct)2

Σuc

}
× exp

{
−1

2

(
yft − ζf,sft − ρζcsct

)′
Σ−1
uf

(
yft − ζf,sft − ρζcsct

)}
t = nny, n ∈ N

A.8 Conditional on a draw of Θ−{sft}
ty
t=1

, make a draw of {sft}
ty
t=1

Denote Sft the history of observations of the firm-specific regime up to date t, Sf,−t the full
history of observations of the firm-specific regime except at date t. Then, the conditional
posterior for sft is given by:

P
(
sft| {yfτ}Tτ=1, Sf,−t

)
∝ P(sft|sf,t−1)P(sf,t+1|sft)

× exp

{
−1

2

(
yft − ζf,sft − ρζcsct

)′
Σ−1
uf

(
yft − ζf,sft − ρζcsct

)}
.

A.9 Permute the state indicators

As discussed in Fruhwirth-Schnatter (2001), the behavior of the sampler described above
is somewhat unpredictable, and the sampler might be trapped at one modal region of
the Markov mixture posterior distribution or may jump occasionally between different
model regions causing label switching. A simple but efficient solution to obtain a sampler
that explores the full Markov mixture posterior distribution is suggested in Fruhwirth-
Schnatter (2006). Each draw from the Gibbs sampler is concluded by selecting randomly
one of nf ! possible permutations of the current labeling of the firm-specific states and one
nc! possible permutations of the current labeling of the aggregate states. This permuta-
tion is then applied to the transition probability matrices Ωf and Ωc, the state-specific

parameters ζf and ζc and the state indicators s
ty
f and sTc .

B Model Misspecification

In this section, I describe the derivation of the risk-sensitive recursion (4.9) and the
distortions (4.11)-(4.12) to the filtering distributions. I rely on the results of Hansen
and Sargent (2005), Hansen and Sargent (2007) to formulate the model misspecification
problem faced by the representative investor.

Let Mt be a non-negative Ft-measurable random variable, with E [Mt] = 1. Using
Mt as a Radon-Nikodym derivative generates a distorted probability measure that is
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absolutely continuous with respect to the probability measure over Ft generated by the
model (4.1). Under the distorted measure, the expectation of a bounded Ft-measurable
random variable Wt is Ẽ [Wt] = E [MtWt].

To construct the implied (distorted) conditional density, Hansen and Sargent (2007)
factor the martingale Mt into one-step-ahead random variables. More specifically, for a
non-negative martingale {Mt}t≥0 form:

mt+1 =

{
Mt+1

Mt
if Mt > 0

1 if Mt = 0

Then Mt+1 = mt+1Mt and, for any t ≥ 0, the martingale Mt can be represented as:

Mt = M0

t∏
j=1

mj,

where the random variable M0 has unconditional expectation equal to unity. Notice that,
by construction, mt+1 has date t conditional expectation equal to unity. Thus, for a
bounded Ft+1-measurable random variable Wt+1, the distorted conditional expectation
implied by the martingale {Mt}t≥0 is constructed as:

Ẽ [Wt+1| Ft] ≡
E [Mt+1Wt+1| Ft]

E [Mt+1| Ft]
=

E [Mt+1Wt+1| Ft]
Mt

= E [mt+1Wt+1| Ft] ,

provided that Mt > 0. Let Mt be the space of all non-negative Ft-measurable random
variables mt for which E [mt| Ft−1] = 1. The elements of Mt+1 represent all possible
distortions of the conditional distribution over Ft+1 given Ft; that is, each mt+1 ∈ Mt+1

represents a possible distortion to the underlying asset value dynamics. The amount
of distortion introduced by mt+1 is measured each period using the conditional relative
entropy between the reference and distorted models:

ε1t (mt+1) = E [mt+1 logmt+1| Ft] . (B.1)

To introduce distortion to the signal model, consider factoring the martingale Mt in
a different way. More specifically, introduce the Gt-measurable random variable M̂t =
E [Mt| Gt] and define:

ht =

{
Mt

M̂t
if M̂t > 0

1 if M̂t = 0

The Gt-measurable random variable M̂t implies a likelihood ratio for the partial infor-
mation set Gt while the Ft-measurable random variable ht represents distortions to the
probability distribution over Ft given Gt. Define Ht to be the space of all non-negative Ft-
measurable random variables ht for which E [ht| Gt] = 1. Similarly to (B.1), the amount
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of distortion induced by ht is measured as:

ε2t (ht) = E [ht log ht| Gt] . (B.2)

To solve for the worst-case likelihood, introduce an entropy penalization parameter
θ > 0 which captures the beliefs of the representative agent about the amount of misspec-
ification in the economy: as θ increases, the set of admissible alternative models decreases,
with the limiting case θ =∞ corresponding to only the reference model being admissible.
Begin by considering the full-information case. Corresponding to each Ft+1-measurable
random variable mt+1 is a relative density φ(z∗, y∗). The minimizing agent solves:

min
φ≥0

N∑
j=1

∫
[W (ξj, π

∗, y∗) + θ log φ(ξj, y
∗)]φ(ξj, y

∗)τ(ξj, y
∗|z, y)dy∗

subject to:
N∑
j=1

∫
φ(ξj, y

∗)τ(ξj, y
∗|z, y)dy∗ = 1,

where ∗ denote next period values and τ(z∗, y∗|z, y) is the joint transition probability:

τ(z∗, y∗|z, y) = |2πΣu|−
1
2 λzz∗ exp

[
−1

2
(y∗ − z∗ − u)′Σ−1

u (y∗ − z∗ − u)

]
. (B.3)

The solution to the minimization problem implies a transformation T 1 that maps the
value function that depends on next period’s state (ξj, π

∗, y∗) into a risk-adjusted value
function that depends on the current state (z, π, y):

T 1(W |θ) = −θ log
N∑
j=1

∫
exp

(
−W (ξj, π

∗, y∗)

θ

)
τ(ξj, y

∗|z, y)dy∗. (B.4)

The minimizing choice of φ is given by:

φt(z
∗, y∗) =

exp
(
−W (z∗,π∗,y∗)

θ

)
E
[

exp
(
−W (z∗,π∗,y∗)

θ

)∣∣∣Ft] .
Similarly, corresponding to each Gt-measurable random variable ht is a relative density

ψ(z), with the worst-case distortion given as the solution to:

min
ψ≥0

N∑
j=1

[
Ŵ (π, ξj) + θ logψ(ξj)

]
ψ(ξj)pj
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subject to:
N∑
j=1

ψ(ξj)pj = 1.

This implies another operator:

T 2(Ŵ |θ)(π) = −θ log
N∑
j=1

exp

(
−Ŵ (π, ξj)

θ

)
ψ(ξj)pj. (B.5)

The corresponding minimizing choice of ψ is given by:

ψt(z) =
exp

(
−Ŵ (π,z)

θ

)
E
[

exp
(
−Ŵ (π,z)

θ

)∣∣∣Gt] .
C Proofs

C.1 Proof of Lemma 4.2

To obtain a first order approximation to the value function around the point θ−1
d = θ−1

s =
0, we need to take a second order expansion of the risk-sensitive recursion. In particular,
introduce θ−1

s /θ−1
d = 1 + ε and rewrite the recursion (4.9) as:

exp
(
−θ−1

d (1 + ε)Jt
)

= E
[
exp

{
−θ−1

d (1 + ε)U(zt) + (1 + ε) logE
[
exp

(
−βθ−1

d Jt+1

)∣∣]}∣∣Gt] .
Then, taking a second order expansion of the above recursion, we have:

exp
(
−θ−1

d (1 + ε)Jt
)
≈ 1− J(p; 0, 0)θ−1

d +
θ−2
d

2

(
J(p; 0, 0)2 − 2

∂J(p; 0, 0)

∂θ−1
d

)
− ε
(
J(p; 0, 0) +

∂J(p; 0, 0)

∂ε

)
exp

{
−θ−1

d (1 + ε)U(zt) + (1 + ε) logE
[
exp

(
−βθ−1

d Jt+1

)∣∣]} ≈ 1− θ−1
d (U(zt) + βE [J(p; 0, 0)| Ft])

+
θ−2
d

2

{
(U(zt) + βE [J(p; 0, 0)| Ft])2 − 2βE

[
∂J(p; 0, 0)

∂θ−1
d

∣∣∣∣Ft]− β2E [J(p; 0, 0)| Ft]2
}

− θ−1
d ε

{
U(zt) + βE

[
J(p; 0, 0) +

∂J(p; 0, 0)

∂ε

∣∣∣∣Ft]} .
Denote:

J0 = J(p; 0, 0) Jθ−1
d

=
∂J(p; 0, 0)

∂θ−1
d

Jε =
∂J(p; 0, 0)

∂ε
,
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so that:

exp
(
−θ−1

d (1 + ε)Jt
)
≈ 1− J0θ

−1
d +

θ−2
d

2

(
J2

0 − 2Jθ−1
d

)
− ε (J0 + Jε)

exp
{
−θ−1

d (1 + ε)U(zt) + (1 + ε) logE
[
exp

(
−βθ−1

d Jt+1

)∣∣]} ≈ 1− θ−1
d (U(zt) + βE [J0(t+ 1)| Ft])

+
θ−2
d

2

{
(U(zt) + βE [J0(t+ 1)| Ft])2 − 2βE

[
Jθ−1

d
(t+ 1)

∣∣∣Ft]− β2E [J0(t+ 1)| Ft]2
}

− θ−1
d ε {U(zt) + βE [J0(t+ 1) + Jε(t+ 1)| Ft]}

Substituting into the risk-sensitive recursion and equating coefficients on powers of θ−1
d

and ε, we obtain the following system of equations for J0, Jθ−1
d

and Jε:

J0(t) = E [U(zt) + βJ0(t+ 1)| Gt]

2Jθ−1
d

(t) = J0(t)2 + E
[

2βJθ−1
d

(t+ 1) + β2E [J0(t+ 1)| Ft]2 − (U(zt) + βE [J0(t+ 1)| Ft])2
∣∣∣Gt]

Jε(t) = −J0(t) + E [U(zt) + β (J0(t+ 1) + Jε(t+ 1))| Gt] .

To solve the above system, notice that, since the unnormalized probability vector π
is proportional to the conditional probability vector p, we can use π as the state vari-
able as long as we recognize that J0 and J1 are homogeneous of degree 0 in π, so that
J0(απ) = J0(π), Jθ−1

d
(απ) = Jθ−1

d
(π) and Jε(απ) = Jε(π) ∀α ∈ R. I look for a first order

approximation to the solution in terms of log deviations from the steady state conditional
distribution. In particular, denote by π the stationary distribution of the Markov chain
{zt}t≥0: π = Λ′π. Notice that π is the steady state conditional distribution in the limiting
case of arbitrarily uninformative signals where Σ−1

u = 0. Introduce π̂ to be the vector of
log deviations from the stationary distribution:

π̂jt =

{
log π̃jt − log πj; j ∈ acB

0 j ∈ aB
, (C.1)

where π̃jt = f(yt − ξj)
∑N

k=1 λkjπk,t−1 is the unnormalized probability vector before con-
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ditioning on observations of default at date t, and approximate:

J0(π) ≈ J0(π) +
∂J0(π)′

∂π
diag(π)π̂

J0(π)2 ≈ J0(π)2 + 2J0(π)
∂J0(π)′

∂π
diag(π)π̂

Jθ−1
d

(π) ≈ Jθ−1
d

(π) +
∂Jθ−1

d
(π)′

∂π
diag(π)π̂

Jε(π) ≈ Jε(π) +
∂Jε(π)′

∂π
diag(π)π̂

(U(z) + βE [J0(πt+1)| Ft]) ≈ (U(z) + βJ0(π))2 + 2 (U(z) + βJ0(π)) β
∂J0(π)′

∂π
diag(π)π̂

E [J0(πt+1)| Ft]2 ≈ J0(π)2 + 2J0(π)
J0(π)′

∂π
diag(π)π̂.

For simplicity, denote: γ00 = J0(π), γ01 = ∂J0(π)
∂π

, γ10 = Jθ−1
d

(π), γ11 =
∂J
θ−1
d

(π)

∂π
, γε0 = Jε(π),

and γε1 = ∂Jε(π)
∂π

, so that:

J0(π) ≈ γ00 + γ′01diag(π)π̂

J0(π)2 ≈ γ2
00 + 2γ00γ

′
01diag(π)π̂

Jθ−1
d

(π) ≈ γ10 + γ′11diag(π)π̂

Jε ≈ γε0 + γ′ε1diag(π)π̂

(U(z) + βE [J0(πt+1)| Ft]) ≈ (U(z) + βγ00)2 + 2 (U(z) + βγ00) βγ′01diag(π)π̂

E [J0(πt+1)| Ft]2 ≈ γ2
00 + 2γ00γ

′
01diag(π)π̂.

Notice that the restrictions J0(απ) = J0(π), Jθ−1
d

(απ) = Jθ−1
d

(π) and Jε(απ) = Jε(π)

imply that: ∑
j∈acB

γ01,jπj = 0

∑
j∈acB

γ11,jπj = 0

∑
j∈acB

γε1,jπj = 0.

Consider now the updating rule for log deviations from the steady state. Recall that
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unnormalized probabilities are updated according to:

π∗i = f(y∗ − ξj)
N∑
k=1

λkjπk,

or, equivalently,
π∗j
πj

= f(y∗ − ξj)
∑
k∈acB

λkj
πk
πj

πk
πk
.

Taking logs of both sides, we obtain the following updating rule for log deviations from
the stationary distribution:

π̂∗j = log f(y∗ − ξj) + log

∑
k∈acB

λkj
πk
πj

exp(π̂k)

 .

Approximating once again around π̂ =
−→
0 , we obtain:

π̂∗j ≈ log f(y∗ − ξj) + log

∑
k∈acB

λkj
πk
πj

+

∑
k∈acB

λkjπk

−1 ∑
k∈acB

λkjπkπ̂k.

Denote: L0j = log
(∑

k∈acB
λkj

πk
πj

)
, L1,jk =

(∑
k∈acB

λkjπk

)−1

λkj, so that the first order

approximation to the evolution equation is given by:

π̂∗j ≈ log f(y∗ − ξk) + L0j + L′1jdiag(π)π̂.

Notice also that, after observing the default state of firm i, i∗, the predicted vector of
conditional distribution is given by:

π̂∗j = log f(y∗ − ξj) + log λi∗j − log πj, ∀j ∈ acB.

Similarly, approximate:

pj =
πj

1′Nπ
≈ πj(1 + π̂j − π′π̂).

Substituting into the above system and equating coefficients, we obtain the following
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system:

γ00 =
∑
j∈acB

πj

U(ξj) + β
∑
k∈acB

λjk
(
γ00 + γ′01diag(π)diag(1acB)[∆1

k + L0]
) (C.2)

+β
∑
j∈acB

πj

I∑
i=1

λji∗J
τi
0

γ01,j = U(ξj) + β
∑
k∈acB

λjk
(
γ00 + γ′01diag(π)diag(1acB)[∆1

k + L0]
)

(C.3)

+β
I∑
i=1

λji∗J
τi
0 − γ00 + βγ′01diag(π)diag(1acB)L′1j

 ∑
l,k∈acB

πlλlk


Jτi0 =

∑
k∈acB

λi∗k
(
U(ξi∗) + β

[
γ00 + γ′01diag(π)diag(1acB)

(
∆1
k + Ld0i∗

)])
(C.4)

+
I∑
j=1

λi∗j∗
[
U(ξi∗) + βJ

τj
0

]

2γ10 = γ2
00 + 2

∑
j,k∈acB

πjλjkβ
[
γ10 + γ′11diag(π)diag(1acB)

(
∆1
k + L0

)]
(C.5)

+
∑
j,k∈acB

πjλjkβ
2
[
γ2

00 + 2γ00γ
′
01diag(π)diag(1acB)

(
∆1
k + L0

)]
−

∑
j,k∈acB

πjλjk (U(ξj) + βγ00)2

− 2β
∑
j,k∈acB

πjλjk [U(ξj) + βγ00] γ′01diag(π)diag(1acB)
(
∆1
k + L0

)
+
∑
j∈aCB

I∑
i=1

πjλji∗
[
2βJτi

θ−1
d

+ β2 (Jτi0 )2 − (U(ξj) + βJτi0 )2
]
.
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2γ11,j = 2γ00γ01,j + γ2
00 − 2γ10 +

I∑
i=1

λji∗
[
2βJτi

θ−1
d

+ β2 (Jτi0 )2 − (U(ξj) + βJτi0 )2
]
(C.6)

+ 2
∑
k∈acB

λjkβ
[
γ10 + γ′11diag(π)diag(1acB)

(
∆1
k + L0

)]
+

∑
k∈acB

λjkβ
2
[
γ2

00 + 2γ00γ
′
01diag(π)diag(1acB)

(
∆1
k + L0

)]
−

∑
k∈acB

λjk (U(ξj) + βγ00)2

− 2β
∑
k∈acB

λjk [U(ξj) + βγ00] γ′01diag(π)diag(1acB)
(
∆1
k + L0

)
+ 2βγ′11diag(π)diag(1acB)L′1j

∑
l,k∈acB

πlλlk

− 2βγ′01diag(π)diag(1acB)L′1j
∑
l,k∈acB

U(ξl)πlλlk

2Jτi
θ−1
d

= (Jτi0 )2 + 2
∑
k∈acB

λi∗kβ
[
γ10 + γ′11diag(π)diag(1acB)

(
∆1
k + Ld0i

)]
(C.7)

+
∑
k∈acB

λi∗kβ
2
[
γ2

00 + 2γ00γ
′
01diag(π)diag(1acB)

(
∆1
k + Ld0i

)]
−

∑
k∈acB

λi∗k (U(ξi∗) + βγ00)2

− β
∑
k∈acB

λi∗k [U(ξi∗) + βγ00] γ′01diag(π)diag(1acB)
(
∆1
k + Ld0i

)
+

I∑
j=1

λi∗j∗
[
2βJ

τj

θ−1
d

+ β2
(
J
τj
0

)2 −
(
U(ξi∗) + βJ

τj
0

)2
]
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γε0 = −γ00 +
∑
j∈acB

I∑
i=1

πjλji∗ (U(ξj) + βJτi0 + βJτiε ) (C.8)

+
∑
j,k∈acB

πjλjk [U(ξj) + β (γ00 + γε0)]

+ β
∑
j,k∈acB

πjλjk (γ01 + γε1)′ diag(π)diag(1acB)
(
∆1
k + L0

)
γε1,j = −γ01,j − γ00 − γε0 + β (γ01 + γε1)′ diag(π)diag(1acB)L′1j

∑
l,k∈acB

πlλlk (C.9)

+
∑
k∈acB

λjk [U(ξj) + β (γ00 + γε0)]

+ β
∑
k∈acB

λjk (γ01 + γε1)′ diag(π)diag(1acB)
(
∆1
k + L0

)
+

I∑
i=1

λji∗ (U(ξj) + βJτi0 + βJτiε )

Jτiε = Jτi0 +
I∑
j=1

λi∗j∗
(
U(ξj∗) + βJ

τj
0 + βJτjε

)
(C.10)

+
∑
k∈acB

λi∗k [U(ξi∗) + β (γ00 + γε0)]

+ β
∑
k∈acB

λi∗k (γ01 + γε1)′ diag(π)diag(1acB)
(
∆1
k + Ld0i

)
,

where ∆1
k is a constant vector given by:

∆1
kj = −1

2
− 1

2
(ξj − ξk)′Σ−1

u (ξj − ξk).

Consider now the distortion to the conditional joint distribution of next period’s signals
and state. Recall that, in terms of the value function, this is given by:

φt(z
∗, y∗) =

exp
(
−βJ(π∗;θ−1

d )

θ

)
E
[

exp
(
−βJ(π∗;θ−1

d )

θd

)∣∣∣Ft] .
Taking a first order approximation around the point θ−1

d = θ−1
s = 0, we obtain:

φt (zt+1, yt+1) ≈ 1− θ−1
d β (J0(πt+1)− E [J0(πt+1)| Ft])

−
(
θ−1
s − θ−1

d

)
β (Jε(πt+1)− E [Jε(πt+1)| Ft]) .
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Substituting for J0 and Jε, we obtain:

φ(z∗, y∗|z = ξj) = 1 + θ−1
d

(
ϕ01,j + ϕ′π1,jdiag(π)π̂ + ϕ′y1,j log f(y∗)

)
+ (θ−1

s − θ−1
d )
(
ϕ0ε,j + ϕ′πε,jdiag(π)π̂ + ϕ′yε,j log f(y∗)

)
,

where:

ϕ01,jk =



β
(∑I

i=1 λji∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB)L0

)
+β
∑

l∈acB
λjl
[
γ00 + γ′01diag(π)diag(1acB)(∆1

k + L0)
]

j, k ∈ acB
β
(∑I

i=1 λji∗J
τi
0 − J

τk
0

)
+

+β
∑

l∈acB
λjl
[
γ00 + γ′01diag(π)diag(1acB)(∆1

k + L0)
]
j ∈ acB, k ∈ aB

β
(∑I

i=1 λj∗i∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB)Ld0j

)
+β
∑

l∈acB
λj∗l

[
γ00 + γ′01diag(π)diag(1acB)Ld0j

]
j ∈ aB, k ∈ acB

β
(∑I

i=1 λj∗i∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB)Ld0j

)
+β
∑

l∈acB
λj∗l

[
γ00 + γ′01diag(π)diag(1acB)Ld0j

]
j, k ∈ aB

(C.11)

ϕπ1,jk =


βγ′01diag(π)diag(1acB)L1

(∑
l∈acB

λjl − 1
)

j, k ∈ acB
βL′1diag(π)diag(1acB)γ01

∑
k∈acB

λjk j ∈ acB, k ∈ aB
0 j ∈ aB

(C.12)

ϕy1,jk =


−βγ′01diag(π)diag(1acB) j, k ∈ acB
−βdiag(π)diag(1acB)γ01 j ∈ aB, k ∈ acB

0 k ∈ aB
(C.13)

ϕ0ε,jk =



β
(∑I

i=1 λji∗J
τi
ε − γε0 − γ′ε1diag(π)diag(1acB)L0

)
+β
∑

l∈acB
λjl
[
γε0 + γ′ε1diag(π)diag(1acB)(∆1

k + L0)
]

j, k ∈ acB
β
(∑I

i=1 λji∗J
τi
ε − Jτkε

)
+

+β
∑

l∈acB
λjl
[
γε0 + γ′ε1diag(π)diag(1acB)(∆1

k + L0)
]
j ∈ acB, k ∈ aB

β
(∑I

i=1 λj∗i∗J
τi
ε − γε0 − γ′ε1diag(π)diag(1acB)Ld0j

)
+β
∑

l∈acB
λj∗l

[
γε0 + γ′ε1diag(π)diag(1acB)Ld0j

]
j ∈ aB, k ∈ acB

β
(∑I

i=1 λj∗i∗J
τi
ε − γε0 − γ′ε1diag(π)diag(1acB)Ld0j

)
+β
∑

l∈acB
λj∗l

[
γε0 + γ′ε1diag(π)diag(1acB)Ld0j

]
j, k ∈ aB

(C.14)
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ϕπε,jk =


βγ′ε1diag(π)diag(1acB)L1

(∑
l∈acB

λjl − 1
)

j, k ∈ acB
βL′1diag(π)diag(1acB)γε1

∑
k∈acB

λjk j ∈ acB, k ∈ aB
0 j ∈ aB

(C.15)

ϕyε,jk =


−βγ′ε1diag(π)diag(1acB) j, k ∈ acB
−βdiag(π)diag(1acB)γε1 j ∈ aB, k ∈ acB

0 k ∈ aB
(C.16)

Turn now to the distortion to the current period’s conditional probability vector. Recall
that this is given by:

ψt(z) =
exp

(
−U(z)+Rt(βJ(p∗);θd)

θs

)
E
[

exp
(
−U(z)+Rt(βJ(p∗);θd)

θs

)∣∣∣Gt] .
Approximating once again around the point θ−1

d = θ−1
s = 0, we obtain:

ψt(zt) ≈ 1−
(
θ−1
d − θ

−1
s

)
β (E [Jε(πt+1)| Ft]− E [Jε(πt+1)| Gt])

− θ−1
s (U(zt) + βE [J0(πt+1)| Ft]− E [U(zt) + βJ0(πt+1)| Gt]) .

Recall that, in terms of log-deviations from the steady state, pl ≈ πl (1 + π̂l − π′π̂). We
can represent:

ψ(ξj) = 1 + θ−1
s

(
ζj,01 + ζ ′j,11diag(π)π̂

)
+
(
θ−1
d − θ

−1
s

) (
ζj,0ε + ζ ′j,1εdiag(π)π̂

)
,

where:

ζj,01 =
∑
l∈acB

πl

U(ξl) + β
∑
k∈acB

λlk
[
γ00 + γ′01diag(π)diag(1acB)(∆1

k + L0)
] (C.17)

+ β
∑
l∈acB

πl

I∑
i=1

λli∗J
τk
0 − U(ξl)

− β
∑
k∈acB

λlk
[
γ00 + γ′01diag(π)diag(1acB)(∆1

k + L0)
]
− β

I∑
i=1

λli∗J
τk
0

ζj,11,k = −ζk,00 + βγ′01diag(π)diag(1acB)L′1k

 ∑
l,m∈acB

πlλlm −
∑
l∈acB

λkl

 (C.18)
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ζj,0ε = β
∑
l,k∈acB

πlλlk
[
γε0 + γ′ε1diag(π)diag(1acB)(∆1

k + L0)
]

+ β
∑
l∈acB

πl

I∑
i=1

λli∗J
τk
ε (C.19)

− β
∑
k∈acB

λlk
[
γε0 + γ′ε1diag(π)diag(1acB)(∆1

k + L0)
]
− β

I∑
i=1

λli∗J
τk
ε

ζj,1ε,k = −ζk,0ε + βγ′ε1diag(π)diag(1acB)L′1k

 ∑
l,m∈acB

πlλlm −
∑
l∈acB

λkl

 . (C.20)

C.2 Proof of Lemma 4.3

Notice first that, substituting the first order expansion to the value of equity of firm i into
the worst-case Euler equation and equating coefficients on the powers of θ−1, we obtain
the following system for Vi0 and Vi1:

Vi0(π) = −Ci +
∑
j∈acB

pj

δiAij + β
∑
k∈acB

λjk |2πΣu|−
1
2

∫
Vi0(π∗)df(y∗ − ξk) + β

∑
k 6=i

λjk∗V
τk
i0


V
τj
i0 = −Ci + δiAij∗ + β

∑
k∈acB

λj∗k |2πΣu|−
1
2

∫
Vi0(π∗)df(y∗ − ξk) +

∑
k 6=i

λj∗k∗V
τk
i0



Viθ−1
d

=
∑
j∈acB

pj
[
ζ01,j + ζ ′11,jdiag(π)π̂

] [
δiAij + β

∑
k 6=i

λjk∗V
τk
i0

]

+ β
∑
j,k∈acB

pj
[
ζ01,j + ζ ′11,jdiag(π)π̂

]
λjk |2πΣu|−

1
2

∫
Vi0(π∗)df(y∗ − ξk)

+ β
∑
j,k∈acB

pjλjk |2πΣu|−
1
2

∫
Viθ−1

d
(π∗)df(y∗ − ξk)

+ β
∑
j,k∈acB

pjλjk |2πΣu|−
1
2

∫
Vi0(π∗)

(
ϕ01,jk + ϕ′π1,jkdiag(π)π̂ + ϕy1,jk log f(y∗ − ξk)

)
df(y∗ − ξk)

+ β
∑
j∈acB

pj
∑
k 6=i

λjk∗
[
V τk
iθ−1
d

+ V τk
i0

(
ϕ01,jk∗ + ϕ′π1,jkdiag(π)π̂

)]
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V
τj

iθ−1
d

= β
∑
k∈acB

λj∗k |2πΣu|−
1
2

∫ [
Viθ−1

d
(π∗) + Vi0(π∗) (ϕ01,j∗k + ϕy1,j∗k log f(y∗ − ξk))

]
df(y∗ − ξk)

+ β
∑
k 6=i

λj∗k∗
[
V τk
iθ−1
d

+ V τk
i0 ϕ01,j∗k∗

]

Viε = β
∑
j∈acB

pj

∑
k∈acB

λjk |2πΣu|−
1
2

∫
Viε(π

∗)df(y∗ − ξk) +
∑
k 6=i

λjk∗V
τk
iε


V
τj
iε = β

∑
k∈acB

λj∗k |2πΣu|−
1
2

∫
Viε(π

∗)df(y∗ − ξk) + β
∑
k 6=i

λj∗k∗V
τk
iε ,

where Aij is the fundamental value of asset of firm i in state j. Substituting the approx-
imations (4.23)-(4.25) and equating coefficients, we obtain:

νi,00 = −Ci +
∑
j∈acB

πj

δiAij + β
∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
k 6=i

λjk∗V
τk
i0



νi,01,j = δiAij + β
∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
k 6=i

λjk∗V
τk
i0

− νi,00 + β
∑
k 6=i

λjk∗V
τk
i0 + βν ′i,01diag(π)diag(1acB)L′1j

∑
l,k∈acB

πlλlk

V
τj
i0 = −Ci + δiAij∗ + β

∑
k 6=i

λj∗k∗V
τk
i0 + β

∑
k∈acB

λj∗k
[
νi,00 + ν ′i,01diag(π)diag(1acB)

(
∆1
k + Ld0j

)]

νi,ε0 = β
∑
j∈acB

πj

∑
k∈acB

λjk
[
νi,ε0 + ν ′i,ε1diag(π)diag(1acB)(L0 + ∆1

k)
]

+
∑
k 6=i

λjk∗V
τk
iε



νi,01,j = β
∑
k∈acB

λjk
[
νi,ε0 + ν ′i,ε1diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
k 6=i

λjk∗V
τk
iε

− νi,ε0 + β
∑
k 6=i

λjk∗V
τk
iε + βν ′i,ε1diag(π)diag(1acB)L′1j

∑
l,k∈acB

πlλlk
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V
τj
iε = β

∑
k 6=i

λj∗k∗V
τk
iε + β

∑
k∈acB

λj∗k
[
νi,ε0 + ν ′i,ε1diag(π)diag(1acB)

(
∆1
k + Ld0j

)]

νi,10 =
∑
j∈acB

πjζj0

δiAij + β
∑
k 6=i

λjk∗V
τk
i0 + β

∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
j,k∈acB

πjλjk
[
νi,10 + ν ′i,11diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
j,k∈acB

πjλjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]
ϕ01,jk

+ β
∑
j,k∈acB

πjλjk
[
νi,00ϕ

′
y1,jk∆

1
k + ν ′i,01diag(π)diag(1acB)∆2

kϕy1,jk

]
+ β

∑
j∈acB

πj
∑
k 6=i

λjk∗
[
V τk
i0 ϕ01,jk∗ + V τk

iθ−1
d

]
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νi,11,j = ζj0

δiAij + β
∑
k 6=i

λjk∗V
τk
i0 + β

∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
k∈acB

λjk
[
νi,10 + ν ′i,11diag(π)diag(1acB)(L0 + ∆1

k)
]

+ β
∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]
ϕ01,jk − νi,10

+ β
∑
k∈acB

λjk
[
νi,00ϕ

′
y1,jk∆

1
k + ν ′i,01diag(π)diag(1acB)∆2

kϕy1,jk

]
+ β

∑
k 6=i

λjk∗
[
V τk
i0 ϕ01,jk∗ + V τk

iθ−1
d

]

+
∑
l∈acB

ζl1,j

δiAil + β
∑
k 6=i

λlk∗V
τk
i0 + β

∑
k∈acB

λlk
(
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
)

+ βν ′i,01diag(π)diag(1acB)L′1j
∑
l,k∈acB

πlζl0λlk + βν ′i,11diag(π)diag(1acB)L′1j
∑
l,k∈acB

πlζl0λlk

+ βν ′i,01diag(π)diag(1acB)L′1j
∑
l,k∈acB

πlλlk
[
ϕ01,lk + ϕ′y1,lk∆

1
k

]
+ β

∑
l∈acB

∑
k 6=i

πlλlk∗V
τk
i0 ϕπ1,lk∗,j

+ β
∑
l,k∈acB

πlλlk
[
νi,00 + ν ′i,01diag(π)diag(1acB)(L0 + ∆1

k)
]
ϕπ1,lk,j

V
τj

iθ−1
d

= β
∑
k∈acB

λj∗k
[
νi,00 + ν ′i,01diag(π)diag(1acB)(Ld0j + ∆1

k)
]
ϕ01,j∗k

+ β
∑
k∈acB

λj∗k
[
νi,00ϕ

′
y1,j∗k∆

1
k + ν ′i,01diag(π)diag(1acB)∆2

kϕy1,j∗k

]
+ β

∑
k∈acB

λj∗k
[
νi,10 + ν ′i,11diag(π)diag(1acB)(Ld0j + ∆1

k)
]

+ β
∑
k 6=i

λj∗k∗
(
V τk
i0 φ1(ξk∗|ξj∗) + V τk

iθ−1
d

)
where ∆2

k is a constant matrix given by:

∆2
k,jl ≡ |2πΣu|−

1
2

∫ (
1

2
(y∗ − ξj − u)′Σ−1

u (y∗ − ξj − u)

)(
1

2
(y∗ − ξj − u)′Σ−1

u (y∗ − ξj − u)

)
df(y∗ − ξk)

=
1

4

[
(ξk − ξj)′Σ−1

u (ξk − ξj)
] [

(ξk − ξl)′Σ−1
u (ξk − ξl)

]
+

1

4
(ξk − ξj)′Σ−1

u (ξk − ξj)

+
1

4
(ξk − ξl)′Σ−1

u (ξk − ξl) + (ξk − ξl)′Σ−1
u (ξk − ξj) +

5

4
.

D Risk aversion benchmark

In this section, I investigate the performance of a power utility model in explaining the
time series evolution of credit spreads and equity prices. Instead of solving the portfolio
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allocation problem of the representative risk-averse agent, I take the stochastic discount
factor as given. In particular, let St,t+s be the stochastic discount factor between dates
t and t + s. In an economy where the representative agent evaluates consumption paths
using a power utility function:

u(Kt) =
K1−γ
t

1− γ
,

where Kt ≡ K(zt) =
∑I

i=1 δiAi(zt) is the level of consumption at date t and γ > 0 is the
degree of risk aversion, the stochastic discount factor is given by:

St,t+s = βs
K−γt+s
K−γt

. (D.1)

Consider first the CDS spread on a swap with maturity T = t+6n on the consol bond
of firm i. In the economy with the risk-averse representative agent, this is given by:

ci(t, T ) =
2XiE

[
βτi−tK−γτi 1τi<T

∣∣Gt]∑n
s=1 β

6sE
[
K−γt+6s1τi≥t+6s

∣∣Gt] .
Notice that:

E
[
βτi−tK−γτi 1τi<T

∣∣Gt] =
T−t∑
s=1

βsE
[
1τi=t+sK

−γ
t+s

∣∣Gt]
E
[
K−γt+6s1τi≥t+6s

∣∣Gt] = E
[
K−γt+6s

∣∣Gt]− 6s∑
k=1

E
[
K−γt+6s1τi=t+k

∣∣Gt] .
Let q

(n)
ij = P (zt+n = ξj, zt+n−1 6= ξj, . . . , zt+1 6= ξj| zt = ξi) be the probability that t + n

is the first hitting time of ξj conditional on being in state i at date t. Then:

E
[
K−γt+s1τi=t+s

∣∣Gt] =
N∑
j=1

pjtq
(s)
ji∗K(aBi)

−γ

E
[
K−γt+s

∣∣Gt] =
∑
j∈acB

pjt

N∑
k=1

{Λs}jkK(ξk)
−γ

E
[
K−γt+s11τi=t+s2

∣∣Gt] =
∑
j∈acB

pjtqji∗
N∑
k=1

{
Λs1−s2

}
jk
K(ξk)

−γ.

Table VIII presents the 5 year CDS spreads on the financial institutions for different levels
of risk aversion at four of interest – before the start of the crisis, July 2007, at the start
of the crisis in August 2007, after the bailout of Bear Stearns in March 2008 and after
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the liquidation of Lehman Brothers in September 2008 – together with the observations
of the 5 year CDS spreads at these dates. Notice first that while the model-implied credit
spreads do increase during the crisis, the magnitude of the model-implied spreads remains
much smaller than that of the observed CDS spreads. The only exception is JP Morgan,
the model-implied spreads for which exceed the observed ones during the crisis. Notice
also, that the dependence on the degree of risk aversion is not monotone. In particular,
although the spreads increase initially as the degree of risk aversion increases, further
increases in risk aversion decrease the model-implied CDS spreads.

(Table VIII about here.)

Consider now the date t price of a claim to the equity of firm i. Using the stochastic
discount factor of the risk-averse agent, the equity price satisfies the Euler equation:

Vit = E [δiAit − Ci + St,t+11τi>t+1Vi,t+1| Gt] . (D.2)

Similarly to the case with model misspecification, I look for a first order approximation
to the equity price in terms of log deviations from the steady state:

Vir(πt) = νir,0 + ν ′ir,1diag(π)π̂t +O2(π̂t).

Substituting into the Euler equation and equation coefficients, we obtain:

νir,0 =
∑
j∈acB

πj

δiAij − Ci + β
∑
k∈acB

K(ξk)
−γ

K(ξj)−γ
λjk
[
νir,0 + ν ′ir,1diag(π)diag(1acB

(
L0 + ∆1

k

)]
+β

∑
j∈acB

πj
∑
k 6=i

λjk∗
K(ξk∗)−γ

K(ξj)−γ

νir,1j = δiAij − Ci + β
∑
k∈acB

K(ξk)
−γ

K(ξj)−γ
λjk
[
νir,0 + ν ′ir,1diag(π)diag(1acB

(
L0 + ∆1

k

)]
+β
∑
k 6=i

λjk∗
K(ξk∗)−γ

K(ξj)−γ
− νir,0 + βν ′ir,1diag(π)diag(1acB)L′1j

∑
l,k∈acB

πlλlk
K(ξk)

−γ

K(ξl)−γ
.

Similarly, at the time of default of firm j, the equity price of firm i solves:

V
τj
ir = δiAij∗ − Ci + β

∑
k∈acB

K(ξk)
−γ

K(ξj∗)−γ
λj∗k

[
νir,0 + ν ′ir,1diag(π)diag(1acB)

(
L0 + L1diag(π)π̂ + ∆1

k

)]
+β
∑
k 6=i

λj∗k∗
K(ξk∗)−γ

K(ξj∗)−γ
V τk
ir .
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ζf

BAC BSC Citi GS JPM MER MS WB WFC
7.40 7.98 9.66 5.54 10.00 9.21 9.11 9.37 9.13
9.83 6.92 9.58 5.29 9.99 9.10 9.00 9.28 9.02
9.75 7.93 6.91 5.19 9.92 9.08 8.98 9.27 8.99
9.74 7.91 9.55 0.13 9.91 9.04 8.97 9.25 8.95
9.86 7.99 9.71 5.57 8.00 9.01 8.91 9.17 8.86
9.98 8.07 9.90 5.99 10.11 8.02 8.87 9.16 8.85
9.89 7.99 9.73 5.66 10.03 9.12 6.82 9.14 8.85
9.73 7.91 9.54 5.19 9.91 8.98 8.88 7.49 8.84
9.75 7.92 9.59 5.21 9.95 9.01 8.90 9.19 7.05
9.73 7.88 9.52 5.05 9.90 8.99 8.87 9.14 8.84
9.74 7.94 9.58 5.28 9.91 9.04 8.91 9.16 8.88
9.86 8.01 9.73 5.66 10.02 9.12 8.99 9.27 8.98
9.69 7.89 9.49 5.10 9.90 8.98 8.85 9.10 8.80
9.71 7.89 9.54 5.16 9.88 9.02 8.87 9.13 8.85
9.71 7.91 9.55 5.14 9.90 9.01 8.87 9.13 8.83
9.78 7.94 9.60 5.37 9.95 9.03 8.93 9.18 8.89
9.75 7.92 9.57 5.30 9.93 9.03 8.92 9.18 8.87
9.83 7.97 9.67 5.47 10.00 9.09 8.98 9.23 8.96

ζc

4.06 4.82

ρ

BAC BSC Citi GS JPM MER MS WB WFC
0.20 0.00 0.09 0.01 0.27 0.09 0.09 0.06 0.01

Ωc

99.32 0.68
0.54 99.46

Ωf

54.90 2.74 2.63 2.56 2.71 2.68 2.60 2.58 2.66 2.70 2.53 2.63 2.73 2.64 2.63 2.63 2.70 2.75
2.58 55.04 2.61 2.68 2.69 2.73 2.66 2.66 2.65 2.66 2.59 2.57 2.62 2.64 2.69 2.59 2.74 2.61
2.63 2.65 55.12 2.65 2.60 2.59 2.72 2.66 2.71 2.68 2.67 2.65 2.59 2.69 2.57 2.57 2.63 2.62
2.63 2.65 2.61 55.08 2.63 2.75 2.53 2.63 2.68 2.62 2.65 2.65 2.63 2.69 2.67 2.62 2.69 2.62
2.62 2.64 2.57 2.73 54.93 2.60 2.73 2.63 2.70 2.62 2.66 2.59 2.59 2.73 2.66 2.62 2.70 2.68
2.68 2.64 2.67 2.62 2.63 54.99 2.80 2.59 2.59 2.64 2.59 2.65 2.55 2.77 2.68 2.57 2.70 2.62
2.79 2.66 2.64 2.67 2.67 2.61 54.87 2.68 2.70 2.58 2.67 2.67 2.63 2.69 2.66 2.59 2.63 2.60
2.65 2.54 2.76 2.65 2.75 2.76 2.47 54.97 2.69 2.63 2.72 2.65 2.54 2.61 2.72 2.61 2.65 2.62
2.70 2.67 2.60 2.64 2.84 2.67 2.65 2.66 54.98 2.59 2.52 2.58 2.73 2.64 2.67 2.73 2.56 2.57
2.73 2.58 2.65 2.70 2.64 2.63 2.74 2.62 2.67 54.76 2.69 2.56 2.69 2.62 2.74 2.67 2.58 2.73
2.70 2.58 2.71 2.64 2.58 2.65 2.68 2.62 2.51 2.78 55.04 2.71 2.61 2.57 2.62 2.68 2.66 2.65
2.63 2.65 2.58 2.68 2.62 2.57 2.61 2.62 2.57 2.66 2.75 55.23 2.62 2.56 2.66 2.69 2.74 2.57
2.64 2.66 2.64 2.57 2.57 2.75 2.69 2.66 2.64 2.67 2.60 2.57 55.08 2.53 2.64 2.76 2.64 2.69
2.58 2.59 2.63 2.60 2.64 2.69 2.65 2.61 2.65 2.63 2.61 2.58 2.68 54.96 2.60 2.73 2.79 2.81
2.61 2.66 2.67 2.66 2.60 2.59 2.67 2.65 2.75 2.67 2.75 2.66 2.60 2.60 54.82 2.71 2.68 2.63
2.74 2.67 2.53 2.65 2.65 2.61 2.66 2.73 2.72 2.61 2.62 2.72 2.62 2.76 2.70 54.82 2.51 2.65
2.67 2.65 2.61 2.58 2.70 2.66 2.68 2.71 2.68 2.61 2.65 2.60 2.70 2.59 2.74 2.70 54.87 2.58
2.59 2.64 2.66 2.63 2.52 2.64 2.67 2.69 2.65 2.64 2.66 2.76 2.62 2.72 2.61 2.70 2.71 54.88

Σu

BAC BSC Citi GS JPM MER MS WB WFC CS10
BAC 31.92 3.85 8.56 -0.05 7.85 3.71 5.99 6.69 5.76 0
BSC 3.85 25.47 3.85 0.01 4.02 2.34 3.14 3.63 2.81 0
Citi 8.56 3.85 32.76 -0.04 7.49 3.80 6.21 6.67 6.23 0
GS -0.05 0.01 -0.04 14.45 -0.03 0.01 -0.06 -0.02 -0.03 0

JPM 7.85 4.02 7.49 -0.03 35.26 4.10 5.10 7.12 5.23 0
MER 3.71 2.34 3.80 0.01 4.10 25.42 2.96 3.63 3.08 0
MS 5.99 3.14 6.21 -0.06 5.10 2.96 27.16 4.76 4.32 0
WB 6.69 3.63 6.67 -0.02 7.12 3.63 4.76 29.20 4.88 0

WFC 5.76 2.81 6.23 -0.03 5.23 3.08 4.32 4.88 27.54 0
CS10 0 0 0 0 0 0 0 0 0 72.93

Table III: Reference model parameters estimated using the MCMC procedure of Appendix
A. The transition probability matrices Ωf and Ωc as well as the covariance matrix Σu are
reported in percentage terms. The parameters are estimated using 10000 draws from the
Gibbs sampler, with a 1000 draw burn-in period.
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Pre-crisis Pre- Bear Stearns Pre- Lehman Brothers

θ−1
d

0.23 0.21 0.29
(0.017) (0.028) (0.018)

θ−1
s

0.64 0.65 0.69
(0.021) (0.029) (0.019)

MSE 2.63 4.04 8.51

Table IV: Estimates of investors’ degree of aversion to ambiguity about the underlying
dynamics, θ−1

d , and degree of aversion to the filter distribution, θ−1
s . Half-width of the

95% confidence intervals are reported in parentheses. Mean Squared Error (MSE) is the
average squared error between the observed CDS rates and the model-implied CDS rates
for all institutions, maturities, and observations. Draws are made using the Metropolis-
Hastings procedure of Section 5.2.

BAC BSC Citi GS JPM MER MS WB WFC

Jul 31 07
36.2 161.7 37.2 81.2 55 74.7 75.2 39.5 35.9
29.6 51.3 34.9 71.2 54.7 73.8 73.2 39.3 38.7

Aug 31 07
39.7 135.7 45.5 68.8 45.4 71.7 68.8 39.4 35
22.1 128.7 41.4 36.5 43.2 72.2 64.7 32.3 32.2

Mar 31 08
86.8 122.7 138.2 115 87.5 195.8 153.9 142.8 80.8
65.1 157.0 128.62 133.9 85.3 109.7 93.4 83.2 90.9

Sep 30 08
170 143.3 301.7 452.5 143.8 410.8 1022 385.8 170

102.7 144.5 486.4 482.8 152.6 380.03 317.3 386.5 138.1

Oct 31 08
133.1 120.2 197.6 313.3 119.9 216.2 413.3 121 97.2
133.3 161.3 178.8 380.7 146.6 203.5 416.26 131.3 93.1

Table V: Observed 5 year CDS rates and model-implied 5 year CDS rates at five different
dates. The reference model parameters are estimated using the Gibbs sampling procedure
of Appendix A; the degree of aversion to ambiguity about the underlying dynamics, θ−1

d ,
and the degree of aversion to ambiguity about the filter distribution, θ−1

s , are estimated
using the Metropolis-Hastings algorithm of Section 5.2.
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Panel A: Misspecified Model

BAC BSC Citi GS JPM MER MS WB WFC

Jul 31 07
5.15 9.54 10.04 13.32 11.65 10.80 13.34 11.02 10.96

100.43 -18.79 -25.16 256.87 -9.95 -32.18 47.10 -26.28 -28.05

Aug 31 07
2.61 11.74 13.42 3.77 13.01 16.03 9.11 15.03 15.32

-49.44 23.04 33.73 -71.71 11.64 48.39 -31.73 36.44 39.81

Mar 31 08
4.81 0.00 16.22 5.12 11.64 13.42 9.08 12.83 13.01
5.11 -100.00 19.85 37.19 -9.44 -15.05 0.53 -13.45 -13.90

Sep 30 08
4.27

–
9.55 10.31 11.50 10.47 13.77 10.74 10.66

20.39 -42.75 155.77 -0.53 -23.03 59.41 -16.98 -18.83

Oct 31 08
5.00

–
13.86 4.55 10.44 11.81 8.25 11.34 11.49

17.20 45.09 -55.83 -9.24 12.77 -40.09 5.61 7.72

Panel B: Reference Model

BAC BSC Citi GS JPM MER MS WB WFC

Jul 31 07
16.47 16.47 16.47 16.47 16.47 16.47 16.47 16.47 16.47
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Aug 31 07
16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46
-0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Mar 31 08
11.23 0.00 11.26 11.23 11.21 11.19 11.21 11.22 11.21
-31.74 -100.00 -31.63 -31.79 -31.88 -31.98 -31.90 -31.81 -31.87

Sep 30 08
11.23

–
11.25 11.25 11.26 11.22 11.21 11.22 11.22

-28.05 -27.97 -27.99 -27.92 -28.12 -28.18 -28.13 -28.15

Oct 31 08
11.32

–
11.35 11.34 11.35 11.32 11.31 11.32 11.31

0.81 0.85 0.84 0.79 0.84 0.85 0.87 0.85

Table VI: Expected time to default and the percentage change in the expected time to
default relative to previous month for different financial institutions. Panel A: expected
time to default perceived by the misspecification-averse agent. Panel B: expected time to
default under the reference model. The reference model parameters are estimated using
the Gibbs sampling procedure of Appendix A; the degree of aversion to ambiguity about
the underlying dynamics, θ−1

d , and the degree of aversion to ambiguity about the filter
distribution, θ−1

s , are estimated using the Metropolis-Hastings algorithm of Section 5.2.
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July 31, 2007

Main θ−1
s = 0 θ−1

d = 0
BAC -5.53 -0.82 -14.20
BSC -71.79 -53.66 -5.90
Citi 31.10 -7.75 3.55
GS 1.19 0.59 1.88

JPM -3.42 15.32 3.09
MER -6.05 4.52 0.35
MS -1.41 -0.15 0.59
WB -2.12 0.98 -1.18

WFC 3.01 -3.67 0.95

August 31, 2007

Main θ−1
s = 0 θ−1

d = 0
BAC -17.38 -2.52 -44.33
BSC -61.64 -48.49 -5.16
Citi -77.8 20.15 -9.01
GS -29.22 -14.97 -46.95

JPM 5.51 -22.82 -4.85
MER -12.13 9.07 0.7
MS 14.53 1.45 -5.96
WB -31.98 15.23 -18.02

WFC -25.14 31.14 -8

March 31, 2008

Main θ−1
s = 0 θ−1

d = 0
BAC 1.22 -22.47 -25
BSC 53.14 31.05 27.95
Citi -6.98 -44.97 -6.93
GS 18.7 6.7 16.43

JPM -28.23 -53.49 -2.51
MER -45.49 -68.65 -43.97
MS -42.18 -67.52 -39.31
WB -45.67 -70.22 -41.74

WFC 6.84 -40.22 12.5

September 30, 2008

Main θ−1
s = 0 θ−1

d = 0
BAC 12.59 2.24 -39.59
BSC -0.28 15.35 0.84
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Citi 61.37 44.14 61.22
GS -66.27 -22.98 6.7

JPM 21.32 -6.95 6.12
MER -7.28 15.86 -7.49
MS -65.75 -63.05 -68.95
WB 1.56 18.53 0.18

WFC -18.53 -14.18 -18.76

October 31, 2008

Main θ−1
s = 0 θ−1

d = 0
BAC -0.69 -0.10 -1.77
BSC -108.75 -81.28 -8.93
Citi -92.31 23.02 -10.54
GS 0.37 0.18 0.59

JPM -4.69 21.02 4.25
MER -11.10 8.29 0.64
MS -1.53 -0.16 0.64
WB -49.26 22.82 -27.47

WFC -28.55 34.80 -9.03

Table VII: Percent deviation between the observed 5 year CDS rates and model-implied
5 year CDS rates for different ambiguity aversion specifications at five different dates.
“Main” refers to the setting in the main body of the paper, with the representative
agent averse to ambiguity about both the underlying dynamics and the filter distribution;
θ−1
s refers to the case when the representative agent is averse to ambiguity about the

underlying dynamics only; θ−1
d = 0 refers to the case when the representative agent is

averse to ambiguity about the filter distribution only. The reference model parameters
are estimated using the Gibbs sampling procedure of Appendix A; the degree of aversion
to ambiguity about the underlying dynamics, θ−1

d , and the degree of aversion to ambiguity
about the filter distribution, θ−1

s , are estimated using the Metropolis-Hastings algorithm
of Section 5.2.
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July 31 2007

Data γ = 0 0.5 1 2 3 4 5
BAC 36.2 1.3 1.4 1.6 1.7 1.7 1.5 1.2
BSC 161.7 1.6 1.6 1.6 1.6 1.4 1.0 0.7
Citi 37.2 1.4 1.5 1.5 1.6 1.5 1.2 0.9
GS 81.2 1.4 1.4 1.3 1.2 1.0 0.8 0.5

JPM 55 1.2 1.8 2.7 5.7 10.8 17.9 25.9
MER 74.7 1.4 1.5 1.6 1.7 1.6 1.4 1.0
MS 75.2 1.4 1.5 1.6 1.8 1.7 1.5 1.1
WB 39.5 1.4 1.5 1.6 1.7 1.7 1.5 1.1

WFC 35.9 1.4 1.5 1.6 1.7 1.7 1.4 1.1

August 31 2007

Data γ = 0 0.5 1 2 3 4 5
BAC 39.7 1.9 2.1 2.2 2.5 2.5 2.2 1.7
BSC 135.7 2.1 2.1 2.1 2.0 1.7 1.3 0.9
Citi 45.5 2.0 2.1 2.2 2.2 2.1 1.7 1.2
GS 68.8 2.0 2.0 1.9 1.8 1.5 1.1 0.7

JPM 45.4 1.8 2.6 3.9 8.2 15.6 25.9 37.5
MER 71.7 2.0 2.1 2.2 2.4 2.3 2.0 1.5
MS 68.8 2.0 2.1 2.3 2.5 2.5 2.2 1.6
WB 39.4 2.0 2.1 2.3 2.5 2.5 2.1 1.6

WFC 35 2.0 2.1 2.3 2.4 2.4 2.0 1.5

March 31 2008

Data γ = 0 0.5 1 2 3 4 5
BAC 86.8 19.0 19.4 19.6 19.2 17.3 13.9 9.9
BSC 122.7 861.4 795.8 729.6 591.7 445.4 301.7 181.3
Citi 138.2 19.5 19.3 18.9 17.4 14.7 11.1 7.4
GS 115 20.2 18.8 17.4 14.2 10.7 7.2 4.2

JPM 87.5 18.6 26.2 36.5 67.9 116.0 176.8 237.7
MER 195.8 20.4 20.6 20.6 19.6 17.2 13.4 9.3
MS 153.9 19.9 20.2 20.4 19.8 17.7 14.1 9.9
WB 142.8 19.8 20.1 20.2 19.5 17.3 13.7 9.5

WFC 80.8 19.7 19.9 20.0 19.1 16.8 13.2 9.2

September 30 2008

Data γ = 0 0.5 1 2 3 4 5
BAC 170 19.2 19.6 19.8 19.5 17.5 14.1 10.0
BSC 143.3 19.8 18.8 17.7 14.9 11.6 8.1 4.9
Citi 301.7 19.8 19.6 19.2 17.7 15.0 11.3 7.5
GS 452.5 19.7 18.4 17.0 13.9 10.5 7.0 4.1

JPM 143.8 17.5 24.6 34.3 63.9 109.2 166.4 223.8
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MER 410.8 19.7 19.9 19.8 18.9 16.6 13.0 9.0
MS 1022 20.0 20.3 20.5 19.9 17.8 14.2 9.9
WB 385.8 20.1 20.4 20.5 19.7 17.5 13.9 9.7

WFC 170 19.7 20.0 20.0 19.2 16.9 13.3 9.2

Table VIII: Observed five year CDS and implied CDS for different levels of the risk
aversion coefficient, γ, at four different dates. γ = 0 corresponds to the case of risk-
neutral investors, which is the reference model case in this paper. The reference model
parameters are estimated using the Gibbs sampling procedure of Appendix A.
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Figure 1: Evolution of the five year CDS spreads for financial institutions over the course
of the crisis. Data source: Datastream
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Figure 3: Misspecified probability tree for the three period economy in Section 3.
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Figure 4: Ambiguity premium as a function of ambiguity aversion in an Ellsberg-style
experiment with the prize-wealth ratio equal to 1 percent.
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Figure 5: Distorted probability of an up movement for various levels of ambiguity aversion.
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Figure 6: Distorted probability of the high state for various levels of ambiguity aversion.
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Figure 7: Distorted probability of default for various levels of ambiguity aversion.
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Figure 8: Contribution to entropy for various levels of ambiguity aversion.
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Figure 9: Filtered estimates of fundamental asset value evolution (left-hand scale) and
the observed book value evolution (right-hand scale) for different financial institutions.
Parameters are estimated using the Gibbs Sampling procedure of Appendix A with 10000
draws and 1000 draw burn-in. The different states are weighted using the reference model
conditional probabilities.
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Figure 10: Components of relative entropy between the reference and misspecified models
over time. Upper panel: entropy due to misspecification of the joint signals and states
dynamics; central panel: entropy due to misspecification of the current period conditional
probability; lower panel: total entropy. The right hand scale in each panel is the three
month moving average of the corresponding entropy measure. The degree of aversion to
ambiguity about the underlying dynamics, θ−1

d , and the degree of aversion to ambiguity
about the filter distribution, θ−1

s , are estimated using the Metropolis-Hastings algorithm
of Section 5.2.
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Figure 11: Value of equity under the misspecified model (left-hand scales) and the ob-
served value of equity (right-hand scale) of the different financial institutions over time.
The degree of aversion to ambiguity about the underlying dynamics, θ−1

d , and the de-
gree of aversion to ambiguity about the filter distribution, θ−1

s , are estimated using the
Metropolis-Hastings algorithm of Section 5.2.
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