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Abstract

This paper documents that the cross-sectional distribution of idiosyncratic volatility of US
stocks has been increasingly skewed over the period 1963�2008. The contribution of the top
decile to the aggregate idiosyncratic volatility increased, while the contribution of the bottom
decile decreased. We postulate that the increased trading activity of Long/Short-Equity funds
subject to loss limits exacerbates idiosyncratic volatility of the top decile, but attenuates that
of the bottom decile. Both time-series and cross-sectional evidence provide support for this
explanation. These �ndings highlight the roll of hedge funds and other institutional investors
in explaining the dynamics of extreme realizations in the cross-section of stock returns.
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1. Introduction

Idiosyncratic risk is important for several theoretical and practical reasons. It is a source of addi-

tional risk of an undiversi�ed portfolio (Merton (1987)) and understanding its nature contributes

to �nding the appropriate level of diversi�cation. In addition, Ang, Hodrick, Xing, and Zhang

(2006, hereafter AHXZ) show that idiosyncratic risk predicts future stock returns. However, more

importantly for our purposes, idiosyncratic risk is a relevant risk measure for �nancial institutions

performing arbitrage under loss limits. For example, Ponti¤ (2006) shows that arbitrage to elim-

inate mispricing is costly due to idiosyncratic risk. In this paper, we provide evidence that the

trading activity of these �nancial institutions also systematically feeds back to the probability of

extreme realizations of idiosyncratic risk.

In any given point of time, stocks display a cross-sectional distribution of their realized idiosyn-

cratic volatility. The seminal paper of Campbell, Lettau, Malkiel, and Xu (2001, hereafter CLMX)

focuses on the mean of this distribution and document a deterministic upward time trend in idio-

syncratic risk of US equities over the period 1962�1997. A subsequent literature (e.g., Gaspar and

Massa (2006), Brandt, Brav, Graham, and Kumar (2008), and Irvine and Ponti¤ (2009)) analyze

the determinants of the trend and its robustness for extended time periods. In contrast, we focus on

extreme realizations in the cross-sectional distribution of idiosyncratic risk over time. Our paper

contributes to the literature in the following ways. First, we document that the cross-sectional

distribution of idiosyncratic volatility of US stocks has been increasingly skewed over time. In par-

ticular, the share of the top decile of idiosyncratic volatility in the entire cross-section has increased

from 10% to 19% between 1963 and 2008, while that of the bottom decile decreased from 13%

to 3% during the same period.1 Second, we propose an explanation for this observation, arguing

that the increased trading activity of Long/Short-Equity funds during the last decades could have

exacerbated idiosyncratic risk of the top-decile stocks but attenuated that of the bottom-decile

stocks. We present both time-series and cross-sectional evidence in support of our explanation.

Our �rst empirical �nding is that the cross-sectional distribution of idiosyncratic volatility of US

stocks has been increasingly skewed over time. For our empirical tests, we follow AHXZ to estimate

1Our measure is value-weighted and analogous to standard measures of concentration. Just as the upper 1% of the
wealth distribution in the US can own more than 40% of �nancial assets, the bottom decile of idosyncratic volatility
in a given period can represent a larger than 10% share of the entire cross-section, because stocks in that decile tend
to have a large market capitalization.



idiosyncratic risk of a stock for each month. Speci�cally, idiosyncratic volatility is measured as the

standard deviation of residuals from a Fama and French (1993) three-factor regression of daily

excess returns. We order the stocks into deciles based on their estimated idiosyncratic risk in a

given month, notwithstanding the composition of these deciles may change from month to month.

We then measure the contribution of the top and bottom deciles to the aggregate idiosyncratic

volatility during the same month. We show that the contribution of the top decile is increasing

over time while the contribution of the bottom decile is decreasing over time. We show that this

pattern holds regardless of the size and the liquidity of �rms and is robust to industries. We also

do not �nd signi�cant cohort e¤ects of positive or negative idiosyncratic shocks. To show that our

results are not driven by the increasing number of stocks over time, we con�rm this pattern in a

random sample of stocks redrawn each month, as well as in a sample containing only the �rms in

the S&P500 index in each particular month.

Our main hypothesis is that the increasing role of �nancial institutions attempting to exploit

the relative mispricing of individual assets� �mainly hedge funds and proprietary trading desks

of investment banks� �is responsible for the observed empirical pattern. For example, consider

a Long/Short-Equity fund specializing in the relative mispricing of stocks. In �normal� times,

this activity reduces idiosyncratic return volatility as the fund would buy (sell) a stock when its

price is low (high) relative to its exposure to systematic factors. However, most institutional

traders are subject to loss limits in some form or another.2 Consequently, following extremely

large idiosyncratic shocks to assets held or shorted, these institutions are forced to sell or buy,

causing large losses. Furthermore, as demonstrated by a number of recent works, such �re sales

tend to exacerbate mispricing.3 Thus, while the activity of these funds typically decreases the

equilibrium size of idiosyncratic shocks, it can also amplify the size of particularly large shocks. In

the Appendix, we formalize this idea by modifying the seminal model of Shleifer and Vishny (1997)

on limits of arbitrage.

We perform both cross-sectional and time-series analyses to provide evidence connecting the

2These loss limits might be generated explicitly, for example, in the form of internal or external value-at-risk (VAR)
constraints, or implicitly, by the expected or realized fund-�ow response to poor performance. See also the related
theoretical (e.g., Shleifer and Vishny (1997), Xiong (2001), Danielsson, Shin, and Zigrand (2004), Brunnermeier and
Pedersen (2009), and Kondor (2009)) and empirical (e.g., Coval and Sta¤ord (2007)) literature.

3See Gromb and Vayanos (2002), Lorenzoni (2008), Diamond and Rajan (2010), and Brunnermeier and Sannikov
(2010). On the empirical side, Brunnermeier and Nagel (2004) show that hedge funds decreased their holdings
signi�canlty before the internet bubble collapsed. Ben-David, Franzoni, and Moussawi (2010) �nd that hedge funds
were more likely to sell high-volatility stocks and liquid stocks in �re sales during the �nancial crisis of 2007-2008.
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observed time trends to our hypothesis. In our �rm-level panel approach, we study how the changes

of idiosyncratic volatility of a given stock is related to the share of hedge-fund ownership of the

stock. We extract hedge-fund ownership data from the quarterly 13F �lings with the Securities and

Exchange Commission (SEC). We �nd that if a stock with high hedge-fund ownership is in the top

decile of idiosyncratic volatility in a given period, its volatility tends to increase in the next period.

In contrast, if a stock with high hedge-fund ownership is in the bottom decile, its idiosyncratic

volatility tends to decrease in the next period. These results are consistent with our proposed

mechanism. Also, this hedge-fund-trading e¤ect is stronger for less liquid stocks, consistent with

the idea that the price e¤ect of the trading activity of hedge funds should be stronger for these

stocks. Following Irvine and Ponti¤ (2009) who study the upward trend in cash-�ow volatility in

the context of CLMX, we also show that an increase in cash-�ow volatility increases idiosyncratic

risk regardless of the decile to which the �rm belongs.

Next, we ask whether the e¤ects we identi�ed at the �rm-level have the potential to explain the

documented aggregate trends in idiosyncratic volatility. In particular, we study whether proxies

of the trading activity of various �nancial institutions explain the diverging trends of the top and

bottom deciles of idiosyncratic return volatility after controling for the underlying fundamental

idiosyncratic risk. For this, we run time-series regressions of the shares of extreme deciles in

the aggregate idiosyncratic volatility on a deterministic time trend, the cash-�ow volatility, the

assets under management (AUM) of Long/Short-Equity funds, and various controls. We also

control for the changing cost of �nancing short positions proxied by the TED spread. We �nd

that the downward trend in the bottom decile is signi�cantly connected to the increase in AUM

of Long/Short-Equity funds. We also �nd evidence that the upward trend in the top decile is

signi�cantly related to fundamental factors, such as cash-�ow risk and �rm leverage. However,

after controlling for the TED spread, we �nd that the interaction between AUM of Long/Short

Equity and the TED spread also plays a signi�cant role in explaining this upward trend in the top

decile. We repeat our analysis for the subsamples sorted by �rm illiquidity and �nd a stronger e¤ect

of the AUM of Long/Short-Equity fund for less liquid stocks. For stocks in the least liquid quintile,

AUM of Long/Short-Equity has a signi�cantly positive e¤ect on the top decile but a signi�cantly

negative e¤ect on the bottom decile. All these results are consistent with our hypothesis.

This paper is mostly related to the examination of the time trend of aggregate idiosyncratic

return volatility started by CLMX and followed by a long series of works, such as Brandt, Brav,
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Graham, and Kumar (2008), Irvine and Ponti¤ (2009), and Bekaert, Hodrick, and Zhang (2010).

Many studies search for the causes of the upward time trend in the aggregate idiosyncratic volatility.

Some papers relate the trend to the fundamentals of �rms�business environment. For example,

Irvine and Ponti¤ (2009) attribute the upward trend to the increased level of fundamental cash-�ow

volatility, which in turn is caused by more intense competition in the US economy. Gaspar and

Massa (2006) establish a link between idiosyncratic volatility and �rms�competitive environment,

such as market power and the concentration level of the industry. Other papers relate the time trend

to the changes in trading activities of market participants. For example, Xu and Malkiel (2003)

show that idiosyncratic volatilities of individual �rms are positively associated with institutional

ownership (see also Kamara, Lou, and Sadka (2008)). Brandt, Brav, Graham, and Kumar (2008)

document that the time trend in idiosyncratic volatility since 1990 is mostly associated with trading

activities of retail investors. Yet, there are much evidence that the upward trend is reversed when

the sample period is extended over 2000 (see e.g., Bekaert, Hodrick, and Zhang (2005) and Brandt,

Brav, Graham, and Kumar (2009)).

In contrast to the aforementioned literature, we are concerned with the dynamics of extreme

realizations in the cross-section as opposed to the time trend of aggregate idiosyncratic volatility.

In particular, we are interested in the trend of the top and bottom decile of the cross-section.

While the existence of the time trend documented in CLMX has been questioned in the extended

sample and some papers document that the trend is largely due to small illiquid stocks, neither of

these caveats apply to our work. First, in examining the trend of the extreme deciles, we eliminate

the potential trend in the aggregate idiosyncratic volatility by dividing the decile volatility by the

cross-sectional mean. In addition, our results are based on a sample period up to 2008 and the main

�nding is robust to a universe of large stocks. Another stream of research on idiosyncratic volatility

emerges from AHXZ who examine the relation between idiosyncratic volatility and expected return

in the cross-section. Our research is similar in that we examine the cross-sectional distribution of

idiosyncratic volatilities, but it is di¤erent in that we are interested in the time trend of the cross-

sectional distribution rather than the risk-return tradeo¤. Nevertheless, we use our framework to

relate to the �ndings of AHXZ, and provide some additional cross-sectional evidence about the

interaction of hedge funds and the observed inverse relation between idiosycratic volatility and

expected stock returns.

Our analysis also adds to the literature that provides systematic evidence on whether arbitragers
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amplify or reduce economic shocks. Hong, Kubik, and Fishman (2011) identify ampli�cation by

documenting overreaction to earnings shocks for stocks with a large short-interest. Gamboa-Cavazos

and Savor (2005) �nd that short sellers close their positions after losses and add to their positions

after gains. Similarly, Lamont and Stein (2004) �nd a negative correlation between market returns

and the aggregate short-interest ratio. Unlike these papers, we �nd evidence that whether shocks

are ampli�ed or reduced depends on the size of the shocks. The paper is also related to the

literature connecting �rm-ownership structure and stock-price volatility (see, e.g., Sias (1996 and

2004), Bushee and Noe (2000), Koch, Ruenzi, and Starks (2009), and Greenwood and Thesmar

(2010)). Our main novelty compared to this literature is that we show that the direction of the

relation is conditional on whether the stock experienced a particularly high volatility in the previous

period.

The structure of the paper is as follows. In the next section, we describe our sample and

estimation methods. In Section 3, after con�rming the �nding of previous literature, we present

the time trend in the extreme deciles of idiosyncratic volatility and conduct several robustness tests.

Section 4 tests our main hypothesis to explain the observed time trend.4 In Section 5, we relate

our main results with the idiosyncratic volatility puzzle of AHXZ. Section 6 concludes.

2. Data and methodology

In this section, we explain the estimation method of the subject variables of our empirical tests.

We follow AHXZ and Irvine and Ponti¤ (2009) in estimating idiosyncratic return volatility and

idiosyncratic cash-�ow volatility for an individual �rm, respectively.5 We then develop a measure

that describes the extreme realizations of these variables in the cross-sectional distribution.
4We present the hypothesis informally in the main text and build a formal model to support the hypothesis in

Appendix A.
5Some studies question the method by which idiosyncratic volatility is estimated in the literature. For example,

Garcia, Mantilla-Garcia, and Martellini (2011) use the cross-sectional variance (CSV) of stock returns to estimate
the aggregate idiosyncratic risk and �nd that the CSV predicts well the aggregate return. Fu (2009) argues that
idiosyncratic volatility estimated using an E-GARCH model performs better in explaining the risk-return tradeo¤.
Although those papers provide sound evidence, our focus is not on the method of estimating idiosyncratic volatility.
Also, Fu (2009) and Huang, Liu, Rhee, and Zhang (2010) point out that contemporaneous idiosyncratic risk measured
from standard deviation has a positive relation with expected return, further validating the use of the measure
proposed in AHXZ.
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A. Idiosyncratic return volatility and its cross-sectional distribution

Following AHXZ, we estimate idiosyncratic volatility relative to the Fama-French three-factor

model. We examine both monthly and quarterly idiosyncratic volatility using daily return data.6

Speci�cally, for period t and stock i, we estimate the following regression model

ri;s = �i + �i;MKTMKTs + �i;SMBSMBs + �i;HMLHMLs + "i;s; (1)

where ri;s is the return (excess of the risk-free rate) of stock i on day s during the period t. The

idiosyncratic volatility of stock i during period t is de�ned as the average of the squared residuals

of the regression over the number of trading days in period t, Di;t:

IVi;t =
1

Di;t

X
s2t
"2i;s: (2)

Note that our estimation method of idiosyncratic volatility is somewhat di¤erent than that applied

in CLMX, who estimate idiosyncratic volatility as the di¤erence between a stock�s daily return and

its industry or market average. Our speci�cation relaxes the assumption of a unit beta for every

stock, while also allowing for other sources of systematic risk. Nevertheless, we show in the next

section that our estimate displays quite similar time trends to those shown in the literature.

We use daily return data from CRSP and daily risk-free rate and Fama-French factors from

Kenneth French�s website.7 Only common stocks (share code 10 and 11) of �rms traded on NYSE,

AMEX, and Nasdaq are included in the sample. To alleviate the e¤ects of bid/ask spread on the

volatility estimation, we limit the sample to stocks with a prior calendar year-end price of $2 or

higher. Following Amihud (2002), we require that stocks have more than 100 nonmissing trading

days during the previous calendar year. Following AHXZ, we also require that stocks have more

than 15 trading days for each monthly idiosyncratic volatility estimated, and 25 trading days for

quarterly estimation. The sample period is from July 1963 to December 2008. Hereafter, we refer

to this sample as the CRSP sample.

Having obtained the idiosyncratic volatilities of individual stocks, we estimate their cross-

sectional moments for each given period, using market capitalizations as weights. Speci�cally,

6We use monthly series of idiosyncratic volatility for the graphical analysis and for the time-trend regressions in
Tables 1 and 2 as well as the Fama and MacBeth (1973) cross-sectional regressions in Table 6. We use quarterly
series for the other regression analyses (Tables 3, 4, and 5), because the explanatory variables in those regressions
are available at the quarterly frequency. The quarterly series display similar time trends as the monthly series.

7We thank Ken French for providing the factors on his website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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we use the following value-weighted measures for the cross-sectional mean, variance, skewness, and

kurtosis of idiosyncratic volatility:

Mt =
X
i

wi;tIVi;t (3)

Vt =
X
i

wi;t(IVi;t �Mt)
2 (4)

St =
1

Nt

X
w

3
2
i;t

�IVi;t �Mtp
Vt=Nt

�3
(5)

Kt =
1

Nt

X
w2i;t

�IVi;t �Mtp
Vt=Nt

�4
� 3; (6)

where wi;t is the weight for stock i based on its market capitalization at the end of period t� 1 and

Nt is the number of �rms in the cross-section at period t.

To further examine the shape of the cross-sectional distribution of idiosyncratic volatility in a

given period, we also calculate the relative contribution of each decile to the cross-sectional mean.

First, at period t, we rank stocks into deciles based on their idiosyncratic volatility. Then, using

prior-period-end market capitalization as weights, we calculate the share of the kth decile in the

aggregate idiosyncratic volatility during period t as follows:8

dk;t =
X
i2k
wi;tIVi;t=Mt: (7)

Therefore, the shares of the deciles sum to unity. Using this measure, we evaluate the contribution

of each decile to the aggregate idiosyncratic volatility in a point in time.

B. Idiosyncratic cash-�ow volatility

Our main control variable for the fundamental process driving idiosyncratic risk is the idiosyncratic

cash-�ow volatility. To estimate idiosyncratic cash-�ow volatility, we generally follow the method

proposed by Irvine and Ponti¤ (2009), with some additional modi�cations. Unlike idiosyncratic

return volatility, we estimate idiosyncratic cash-�ow volatility only at the quarterly frequency due

to data availability.9 Quarterly idiosyncratic cash-�ow volatility is estimated as follow. In a given
8The results reported in this paper are robust to using equal weights in estimating the cross-sectional moments of

idiosyncratic volatility, as well as the share of the kth decile, dk;t. These terms display similar time trends as their
value-weighted counterparts. In the next section, we formally test the divergence of trends between d10 and d1. Using
equal weights, this divergence is statistically signi�cant and of similar magnitude as that using value weights. In this
paper, we follow most works in the literature and only report the value-weighted results for brevity.

9 Irvine and Ponti¤ (2009) construct monthly series of an idiosyncratic cash-�ow volatility index by averaging �rms
of di¤erent reporting months over a three-month rolling period. This approach is inappropriate for the purpose of

7



quarter t, the cash-�ow innovation (dE) for each �rm is de�ned as dEi;t = (Ei;t � Ei;t�4)=Bi;t�1,

where Ei;t is the �rm�s cash-�ow measure and Bi;t�1 is the book value of the �rm�s equity at t� 1.

We use earnings per share before extraordinary items (Compustat Item EPSPXQ) as the proxy for

cash �ows. For book equity, we follow Vuolteenaho (2002). Speci�cally, we use Compustat Item

CEQQ and add short- and long-term deferred taxed items (Items TXDITCQ and TXPQ) if they

are available.

Using the cash-�ow innovation, we estimate the pooled cross-sectional time-series regression at

the Fama-French 48 industry level (Fama and French (1997)):10

dEi;t = �+ �1dEi;t�1 + �2dEi;t�2 + �3dEi;t�3 + �4dEi;t�4 + �i;t: (8)

The residuals from the above regressions are the individual �rms�cash-�ow shocks. As Irvine and

Ponti¤ point out, at any point in time, the residuals of individual �rms may not sum to zero.

Therefore, from these individual shocks, we �rst calculate the marketwide idiosyncratic cash-�ow

shock by averaging across all the individual cash-�ow shocks

�m;t =
1

Nt

X
�i;t: (9)

The squared di¤erence between a �rm�s cash-�ow shock and the marketwide cash-�ow shock is the

�rm�s idiosyncratic cash-�ow volatility during period t

IV CFi;t = (�i;t � �m;t)2: (10)

Idiosyncratic cash-�ow volatilities are divided into deciles based on the �rms�idiosyncratic return

volatility rank. The share of the kth return volatility decile in the entire cross-section of idiosyncratic

cash-�ow volatility is calculated using market weights as follows

dCFk;t =
X
i2k
wi;tIV

CF
i;t =

X
j

wj;tIV
CF
j;t : (11)

this study because we are interested in estimating the volatilities of individual stocks. Therefore, we construct only
quarterly series of idiosyncratic cash-�ow volatilities. Since we work with calendar quarters, the �rms whose �scal
quarter-ends occur during a calendar quarter are pooled together with the �rms whose reporting period is precisely
the end of that calendar quarter.
10 Irvine and Ponti¤ (2009) do not scale the cash-�ow innovation by book equity. Instead, they use the unscaled

innovation �Ei;t = Ei;t � Ei;t�4 as the regression variables in Equation (8). The regression residuals are then
scaled by previous end-of-quarter stock prices, which is analogous to our regression residual, �i;t, from equation (8).
However, we �nd that pooling �rms without scaling their earnings causes inaccurate estimates of the residuals. Since
our purpose is to examine the entire cross-section of idiosyncratic volatility rather than its mean value, we wish to
obtain individually sensible estimates for the idiosyncratic cash-�ow volatilities, and therefore we scale by book equity
before running the regression.
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Quarterly EPS and book equity data are obtained from the intersection of Compustat and

the CRSP sample.11 The sample �rms are required to have at least four consecutive quarters

of available EPS data. We also require that book equity at the end of the previous quarter is

nonmissing and positive. We winsorize the bottom and top 0.5% of cash-�ow innovation (dE)

to avoid potential accounting errors and to alleviate the impact of outlier in the regression. The

sample period for the pooled regression in (8) is from January 1972 to December 2008 due to the

availability of book-equity data.

3. Extreme realizations in idiosyncratic return volatility

A. Diverging time trends

CLMX document the increasing trend of idiosyncratic volatility during the period 1962�1997, while

other papers in the literature show that the trend reverses by 2007 (see, e.g., Brandt, Brav, Graham,

and Kumar (2009) and Bekaert, Hodrick, and Zhang (2010)). We start our analysis by con�rming

prior �ndings while extending the sample period to 2008. Figure 1 plots the 12-month moving

average of the cross-sectional mean of idiosyncratic volatility (annualized). The top panel displays

the time trend up to 1997, con�rming the result of CLMX. The graph exhibits the increasing

trend of aggregate idiosyncratic volatility, tripling over the sample period. The bottom panel also

con�rms the result of Brandt, Brav, Graham, and Kumar (2009) and others that the level of the

aggregate idiosyncratic volatility falls below its pre-1990 level by 2007. However, a large spike is

apparent at the end of the sample period, re�ecting the increase in volatility during the �nancial

crisis of 2008.

Instead of focusing on the trend in the cross-sectional mean, our purpose is to examine the shape

of the cross-sectional distribution. Figure 2 plots the time series of other statistical properties of

the cross-sectional distribution. Panels A, B, and C show the 12-month moving averages of the

cross-sectional variance, skewness, and kurtosis, respectively. Unlike the cross-sectional mean, the

time trends of the higher moments are much more visible, especially the upward slopes in skewness

and kurtosis. The increasing skewness indicates that �rms with high volatility, compared to the

11Since we lose observations from the CRSP sample when we take the intersection of Compustat and the CRSP
sample, the stocks in dCFk;t do not exactly correspond to the stocks in dk;t. To consider the loss of observations
in the Compustat and the CRSP sample intersection, we re-rank stocks in the intersection sample based on their
idiosyncratic return volatilities. Then we calculate dCFk;t for return decile k of the intersection sample.
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cross-sectional mean, have become more volatile over time, while the increasing kurtosis suggests

both the proportion of relatively high-volatility �rms and the proportion of relatively low-volatility

�rms, compared to the mean, have increased.

To further examine the shape of the cross-sectional distribution, we divide �rms into decile

groups based on their idiosyncratic volatility level. Then, as in Equation (7), we compute the

share of each decile in the total cross-section, dk;t, to evaluate the contribution of the decile to

the aggregate idiosyncratic volatility. Figure 3 shows the time trend of our measure of each decile

share. Panel A plots all deciles, while Panel B focuses on the trends of Deciles 1 and 10. The

noticeable feature of Panel A is that the share of Decile 1 has almost disappeared over time, while

that of Decile 10 has more than doubled. In December 1964, the 12-month moving average of d1 is

12.5%, while it is 2.8% in December 2008. Conversely, d10 is 10.3% in December 1964 and 18.6%

in December 2008. The middle deciles (d3 to d8) do not display much change over time. Thus, we

focus on the extreme deciles in Panel B. We normalize each of the time series by its beginning-of-

the-sample value, and plot the normalized time series to compare the trends in the extreme deciles.

The panel shows the diverging time trend in the extreme deciles more clearly. The slopes in both

deciles appear prominent with opposite signs. Stocks with high idiosyncratic volatility compared

to the average idiosyncratic volatility become more volatile compared the mean. Likewise, stocks

with low volatility become less volatile.

The natural question that is raised from observing Figure 3 is whether the time trends are

stochastic. We formally test whether the trend in dk is stochastic by running a Phillips-Perron unit-

root test with only a constant term and with a constant term and a time-trend term. Speci�cally,

Phillips-Perron unit-root tests are based on the following autoregressive models:

dk;t = �+ 
dk;t�1 + ut (12)

dk;t = �+ �t+ 
dk;t�1 + ut: (13)

The last two columns of Table 1 report the p-values of the Phillips-Perron tests. For the test that

uses a constant term alone (Equation (12)), we reject a unit root for d10 at the 5% level, and

d1, d8, and d9 at the 10% level, while for other deciles, we cannot reject a unit root. However,

for the di¤erence d10 � d1, we signi�cantly reject a unit-root process. For the test that includes

a time-trend term (Equation (13)), we reject unit root for all deciles, including the di¤erence

d10� d1, at conventional levels. Thus, we conclude that the time series can be described as at least
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trend-stationary processes.

Following the rejections of stochastic time trends, we test for deterministic time trends. Specif-

ically, we run the following regression model with autocorrelated errors

dk;t = �+ �t+ �t

�t =
mX
j=1

�j�t�j + "t: (14)

We correct for the autocorrelation in the error terms for up to six lags (m = 6). We use maximum

likelihood to estimate the model. The result of the regression is shown in Table 1. For Deciles 1

and 2, the time trend is signi�cantly negative, while the trend is signi�cantly positive for Deciles

5 through 10. In addition, the time-trend coe¢ cients increase monotonically across deciles, from

-2.14 (�10�4) to 1.30 (�10�4). Also, the trend coe¢ cient of Decile 10 is noticeably higher than

those in other positive-trend deciles. For example, the trend of Decile 10 is about six times larger

than that of Decile 5. Also, as shown in the last row of the table, the diverging trend of the extreme

deciles is strongly apparent. The coe¢ cient of the time trend of d10 � d1 is 3.57 (�10�4) with a

t-statistic of 7.35.

The results of the time-trend regressions of the idiosyncratic volatility deciles con�rm the ex-

istence of deterministic trends, with a downward slope in the low deciles and an upward slope in

the high deciles. It also shows that the time trends are monotonic in the rankings of idiosyncratic

volatility. The time trend is most negative for Decile 1 and most positive for Decile 10. This implies

that the contribution of the low deciles to the aggregate idiosyncratic volatility has become smaller

while the contribution of high deciles has become larger. Notice that the observed time trend of

dk is independent of the level of the aggregate idiosyncratic volatility because in estimating dk, we

divide the decile idiosyncratic volatility by the cross-sectional mean. Doing so e¤ectively discards

the trend in the aggregate idiosyncratic volatility from our dk measure. Therefore, the trends in

the aggregate idiosyncratic volatility reported in CLMX and other studies do not a¤ect our results.

Since the trend in each decile is monotonic in volatility rankings, from now on we focus only on

the extreme deciles, d1 and d10, and the di¤erence between these two extreme deciles, d10 � d1.

B. Robustness of the trend

So far the paper studies the entire cross-section of �rms, regardless of industry a¢ liation and other

characteristics. To highlight the robustness of our results we perform the following robustness tests:
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(a) we test whether the trends exist in various industries and across di¤erent �rm characteristics;

(b) we test �rms�a¢ liations to the extreme deciles in event time. If �rms�a¢ liations are persistent,

it is likely that certain characteristics of the �rms in the extreme deciles are associated with the

observed time trends; (c) over the sample period, many relatively small �rms have been listed. To

alleviate concerns that the trends are due to the increasing number of small �rms, we control for

the number of �rms and their size in performing our trend analyses; and (d) we test whether the

trends are driven by the either the positive or negative idiosyncratic shocks. All the results support

the view that our main �ndings are not explained by a speci�c group of �rms.

First, we examine whether the established time trends remain after controlling for some �rm

characteristics. We sort stocks into quintiles by a given control variable, and then examine the

time trends of d1 and d10 within each quintile. We use illiquidity and size as control variables. We

estimate the illiquidity of �rm i during year y using the Amihud (2002) measure

ILLIQi;y =
1

Di;y

X
s2y

jRi;sj
Pi;sV oli;s

; (15)

where Di;y is number of trading days in year y, Ri;s is the raw return on day s, and P and V ol are

stock price and trading volume, respectively. To form illiquidity quintiles, we sort �rms by their

illiquidity measured during the prior calendar year. Size is �rm�s market capitalization at the end

of the previous month. We plot the idiosyncratic volatility time trends among the illiquidity and

size quintiles in Figure 4. The trends are apparent in the di¤erent illiquidity and size quintiles.

Next, we directly test whether �rms� a¢ liations to an idiosyncratic volatility decile change

in event time. If a¢ liations signi�cantly change, then it is the extreme realizations to random

�rms rather than to the same �rms that drives the uncovered trends, that is, �rms in extreme

idiosyncratic volatility deciles in a particular month are likely to have di¤erent characteristics from

�rms in the extreme deciles during the following month. The following event-study analysis is

performed. Extreme decile portfolios of idiosyncratic volatility (Deciles 1 and 10) are constructed

each month. These portfolios are held for 60 months post-formation, and are also traced back for

24 months pre-formation. We calculate two statistics for these portfolios: (1) we estimate the share

of the portfolios�idiosyncratic volatility in the aggregate idiosyncratic volatility. This is analogous

to d1 and d10, but we are holding constant the individual stocks in the portfolios for the event-time

period; (2) we calculate the average decile a¢ liation of the stocks in each portfolio in event time.

By de�nition, at the formation month of the portfolios (t = 0), the average decile a¢ liation is 1
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for stocks in Decile 1, and 10 for stocks in Decile 10. We are interested in the persistence of the

average decile a¢ liation post- and pre-portfolio formation. For the sample period from July 1963

through December 2008, we construct 455 extreme decile portfolios.

Figure 5 plots the results of the event study. Panel A reports the time-series averages of

portfolios�share in the aggregate idiosyncratic volatility in event time. By construction, the average

shares of the extreme portfolios at t = 0 are equivalent to the time-series averages of d1 and d10.

The average share of Decile 10 at t = 0 is above 10% and that of Decile 1 is below 10%, which is also

con�rmed from Figure 3. Shortly before and after portfolio formation, the shares of the extreme

deciles display a signi�cant reversal, after which the series gradually converge to a long-term mean

value. Speci�cally, the share of Decile 10 shows a sudden increase at time 0, quickly reverting back

to its pre-formation level and gradually decreasing over time, while the share of Decile 1 exhibits

the opposite pattern. Thus, stocks in the extreme deciles at the formation period exhibit di¤erent

statistical properties of idiosyncratic volatility outside of the decile formation period.

In Panel B, we examine the evolution of the average decile a¢ liation of the stocks in the extreme

portfolios in event time. At t = 0, the average decile is either 1 or 10. As in Panel A, we observe a

sudden positive spike or a drop during the portfolio formation. This indicates that stocks in Decile

1 and Decile 10 in a given month are quite di¤erent from stocks in those decile during the following

months and the previous months. The temporary changes imply that an a¢ liation to an extreme

decile is relatively short-lived. Nevertheless, there is evidence of persistence in the volatility of

individual stocks. On average, stocks in Decile 10 remain in relatively high deciles (about Decile 7)

before and after formation, while stocks in Decile 1 remain in relatively low deciles (about Decile

3).

Next, we study the idiosyncratic volatility patterns across di¤erent industries. Stocks are clas-

si�ed into 48 industries following Fama and French (1997). We exclude eight industries with less

than 20 �rms on average during the sample period. We sort �rms in each industry into idiosyncratic

volatility deciles and run the regression (14) with d1, d10, and d10�d1 as the left-hand-side variables.

Table 2 reports the regression results. Industries are descendingly ordered in the table according to

the t-statistics corresponding to the time-trend coe¢ cients of d10� d1. Overall, 26 industries show

a positive coe¢ cient in d10� d1, implying that the diverging time trends in the extreme deciles are

prevalent among most industries. There are 14 industries that show a negative (i.e., converging)

time trend. Among industries with a positive time trend, 13 industries are statistically signi�cant
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at the 5% level, while three industries are statistically signi�cant among negative-trend industries.

Electronic equipment, Automobiles, Telecommunications, Trading, and Computers are examples of

industries that display a particularly strong diverging trend, while Pharmaceutical, Precious metal,

and Aircraft show a strong converging trend.

The explanatory power of the diverging trends is mostly due to the trend in d1. Out of 13

industries with a signi�cant diverging trend, 11 industries exhibit a signi�cant negative trend in

d1, while only seven industries have a signi�cant positive trend in d10. In general, the regression

R2 is higher when d1 is used as a dependent variable. As we see in the next section, the downward

trend in d1 is related to hedge-fund trading activity while the upward trend in d10 is associated

with both hedge-fund activity and the increase in cash-�ow volatility. Irvine and Ponti¤ (2009)

argue that the increase in cash-�ow volatility is attributed to the increasingly intense economy-wide

competition. Our result seems to be consistent with this idea, because, for example, the industries

Telecommunication, Trading (Finance), Computers, and Real Estate display positive trends in

d10, both in terms of statistical signi�cance and economic magnitude. Firms in these industries

are more likely to face more competition than �rms in other industries. Overall, Table 2 shows

that the time trends in the cross-sectional distribution of idiosyncratic volatility vary considerably

among industries. However, the diverging time trend is observed in the majority of the industries,

and the magnitude of the time trend for the industries with a diverging trend is much higher than

that of converging-trend industries.

Over the sample period, the number of �rms has more than tripled. The sample size at the

beginning of 1964 is 1,562, while there are 4,966 �rms at the end of 2008. The sample reaches its

highest size during the late 1990s, with more than 6,800 �rms, but it gradually decreases after the

internet bubble in early 2000s and the �nancial crisis in 2008. Also, many relatively small �rms are

listed over the sample period. To evaluate whether these changes in the sample a¤ect our results,

we study the trends in idiosyncratic volatility in two subsamples. The �rst subsample consists of

1,000 �rms randomly selected every month during the sample period. This method controls the

number of �rms in this subsample. The second subsample consists of S&P500� this controls for

both the number of �rms and their market capitalization. Figure 6 shows that the time trends in

idiosyncratic volatility exist in both subsamples. The time trend is even stronger in the subsample

of S&P500 �rms. Since S&P500 index is typically composed of 500 large �rms, the implication is

that the time trends in idiosyncratic volatility are not driven by newly listed, smaller �rms.
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Finally, we study whether the time trends stem from either the positive or negative idiosyncratic

shocks. By construction, the daily idiosyncratic shocks during the estimation period sum to zero

per �rm. If a small number of large negative (positive) shocks are extremely large compared to

the average negative (positive) shocks, then the diverging time trend may be mostly due to the

diverging trend in the realization of negative (positive) shocks. To investigate this issue, we divide

daily idiosyncratic shocks into positive and negative groups. To obtain enough observations of

positive or negative shocks for a stock in a given month, we run the regression (1) per �rm per

year instead of per �rm per month. Then, we average the squared positive and negative shocks

separately over each month to obtain the monthly averages of positive and negative idiosyncratic

shocks. Figure 7 plots the time trends of the positive and negative shocks of their corresponding

top and bottom deciles. The �gure con�rms that the trends are robust to shocks of both signs.

Thus, we conclude that both large positive and large negative shocks have increased over the sample

period, while small positive and small negative shocks have decreased over the same period, relative

to their respective averages.

4. Fundamentals or trading activity?

In the previous section, we examine the cross-section of idiosyncratic return volatility and estab-

lish the diverging time trends in the extreme deciles. In this section, we study some potential

determinants of these time trends. The literature suggests that the time trend in the aggregate

idiosyncratic volatility can be attributed to two di¤erent sources: the volatility of �rm fundamen-

tals, such as cash �ows, and trading activities of market participants. For example, Xu and Malkiel

(2003) show that the idiosyncratic volatility of individual stocks is positively related with both

institutional ownership and expected earnings growth. Brandt, Brav, Graham, and Kumar (2009)

document that the increasing trend during pre-1990 period and the reversal by 2007 are associated

with the trading patterns of retail investors. Irvine and Ponti¤ (2009) show that the time trend

in idiosyncratic return volatility is mirrored by a similar trend in idiosyncratic cash-�ow volatil-

ity. Thus, in this section, we test whether the time trends in the extreme deciles of idiosyncratic

volatility are due to changes in �rm fundamentals or changes in trading activity.

Our main hypothesis is that the increasing role of arbitrageurs in equity markets is behind the

observed empirical pattern. For example, consider a Long/Short-Equity fund specializing in the
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relative mispricing of stocks. In �normal�times, this activity reduces idiosyncratic return volatility

as the fund would buy (sell) a stock when its price is low (high) relative to its exposure to systematic

factors. However, most institutional traders are subject to loss limits in the form of explicit value-

at-risk (VAR) constraints, or implicitly by the expected or realized fund-�ow response to poor

performance.12 Consequently, following extremely large idiosyncratic shocks to assets held, these

institutions are forced to sell. These �re sales further amplify the previous idiosyncratic shocks. We

expect that the ampli�cation of large shocks is stronger if the particular stock is less liquid because

one unit of the asset sold has larger price e¤ects, or if the loss limits are more stringent because

the �nancing conditions of long-short positions are less stable. Furthermore, as the role of these

�nancial institutions in the equity market increases, both the reduction of small shocks and the

ampli�cation of large shocks should become stronger. Thus, this mechanism provides a potential

explanation for our stylized facts presented in the previous section. In Appendix A, we illustrate

the proposed mechanism by building a formal model following Shleifer and Vishny (1997).

To examine the the possibility that our results are explained by the changes in fundamentals,

we investigate the connection between the observed trends in the extreme deciles and the corre-

sponding changes in cash-�ow volatility, leverage, and illiquidity of the �rms in the idiosyncratic

volatility deciles. To evaluate the possibility that our results are indeed explained by the changes

in the trading process, we investigate the trading activities of several di¤erent types of institutions:

Long/Short-Equity hedge funds, non-Long/Short-Equity hedge funds, and institutional investors

excluding hedge funds.

We begin the analysis by running panel-regressions. Consistent with our hypothesis, the re-

gression results suggest that while fundamental factors positively a¤ect idiosyncratic volatility,

hedge-fund ownership reduces the idiosyncratic volatility of low-volatility stocks yet increases that

of high-volatility stocks. Then, we proceed to time-series regressions of the shares of extreme deciles

in the aggregate volatility on the cash-�ow volatility of the deciles, the AUMs of Long/Short-Equity

hedge funds, and various controls. We conclude that proxies for the trading activity of �nancial in-

stitutions speculating on mispriced assets indeed play an important role in explaining the observed

trends in the top and bottom decile of the cross-section of idiosyncratic risk. We then continue to

investigate whether the e¤ect of each determinant of the time trend is stronger for the group of

12See the related theoretical (e.g., Shleifer and Vishny (1997), Xiong (2001), Danielsson, Shin, and Zigrand (2004),
Brunnermeier and Pedersen (2009), and Kondor (2009)) and empirical (e.g., Coval and Sta¤ord (2007)) literature.
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highly illiquid stocks, by examining the trends of the extreme deciles of idiosyncratic volatility in

the illiquidity quintiles.

A. Panel regression results

In this part, we perform individual-�rm-level analyses to obtain a direct link between dynamics

of idiosyncratic volatility and the activity of �nancial institutions. Speci�cally, we are interested

in �nding the mechanism through which the trading activity of Long/Short-Equity fund and the

cash-�ow volatility a¤ect the idiosyncratic volatility of individual �rms and whether it depends on

the liquidity level of the stocks.

For this analysis, we compute the hedge-fund ownership per stock using a matched sample

of hedge fund names from Lipper/TASS and �nancial institution names as reported on the 13F

�lings available through Thomson Financial. We exclude major U.S. and foreign investment banks

and their asset management subsidiaries, because their hedge-fund assets constitute only a small

portion of their asset holdings reported in 13F. The matched sample totals 1,252 funds. Note, that

in contrast to the time-series analysis below that separates Long/Short-Equity and non-Long/Short-

Equity funds, here we compute for each �rm its total share ownership across all available hedge

funds, regardless of investment style. The reason is sample size: we are only able to match several

hundred Long/Short-Equity funds. The implied assumption, which we believe to be reasonable, is

that the trading activity of non-Long/Short-Equity funds in the equity portion of their portfolios

is similar to that of Long/Short-Equity funds.

We run the following panel regression

�IVi;t = �+
X

j2f1;10;Otherg
�j0Dji;tX1i;t +

X
q2f1;5g

X
j2f1;10;Otherg

�q;jQqi;tD
j
i;tHFi;t + 


0X2i;t + "t; (16)

where �IVi;t is the change in idiosyncratic volatility of �rm i at time t, X1 includes the model

variables, the changes in cash-�ow volatility (at time t) and the level of hedge-fund ownership

(at the end of period t � 1), HF , X2 includes the control variables, non-hedge-fund institutional

ownership (at the end of period t � 1), �rm leverage (at the end of period t � 1), illiquidity (at

time t), ILLIQ, and size (at the end of period t � 1), and the dummy variables Dji;t equal one

for �rms that belong to Decile j (for j = 1, 10, or other) and zero otherwise, and the dummy

variables Qqi;t equal one if a stock belongs to illiquidity Quintile q (q = 1 for liquid �rms and q = 5

for illiquid �rms) and zero otherwise. We use �rst di¤erences of idiosyncratic return volatility and
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idiosyncratic cash-�ow volatility to eliminate the potential time trends. We also interact non-hedge-

fund institutional ownership with the decile dummies, Dji;t. To allow for linear e¤ects of illiquidity,

we also consider the following model

�IVi;t = �+
X

j2f1;10;Otherg
�j0Dji;tX1i;t +

X
j2f1;10;Otherg

�jDji;tHFi;tILLIQi;t + 

0X2i;t + "t: (17)

Each of the models in Equations (16) and (17) is run with and without year �xed e¤ects. We

are interested in the coe¢ cient estimates of the interaction terms and the liquidity e¤ects, that is,

the �s and �s. Table 3 reports the results. Models (1) and (2) are basic regression models that

exclude any illiquidity e¤ect. Models (3) and (4) estimate Equation (16), while Models (5) and (6)

estimate Equation (17).

As a �rst step it is useful to check that regression results are consistent with the intuition that

cash-�ow shocks increase the idiosyncratic return volatility. The results con�rm this intuition; cash-

�ow volatility is positive (and for most models signi�cant) for all the idiosyncratic volatility deciles

and for all regression speci�cations. For Decile 10, cash-�ow volatility is signi�cant at conventional

levels, and signi�cant for other deciles at least at the 10% level. Thus, Table 3 shows that at the

individual-stock level, cash-�ow volatility a¤ects idiosyncratic volatility signi�cantly for all deciles.

Second, consistently with our main hypothesis, hedge-fund ownership induces di¤erent e¤ects

on stocks with high and low idiosyncratic volatility. Although the results for hedge-fund ownership

for the stocks in the middle deciles of idiosyncratic volatility are mixed, hedge-fund ownership

displays a negative and signi�cant coe¢ cient for stocks in Decile 1, but a positive and signi�cant

coe¢ cient for stocks in Decile 10. Moreover, compared to the stocks in the middle deciles, the

e¤ect of hedge-fund trading on the idiosyncratic volatility of stocks in the extreme deciles is much

stronger in terms of economic magnitude. This result suggests that Long/Short-Equity hedge-fund

trading activities reduce the volatility of low-volatility stock and increase volatility of high-volatility

stocks.

Finally, the e¤ects of hedge-fund ownership are stronger for highly illiquid �rms. In Model (3)

and (4), the interaction term of hedge-fund ownership with D1 and Q5 is signi�cantly negative,

while the interaction term of hedge-fund ownership with D10 and Q5 is signi�cantly positive. In

contrast, in Quintile 1, the hedge-fund ownership e¤ect is weaker compared to stocks with an average

level of illiquidity. For example, the interaction term of hedge-fund ownership with D10 and Q1 is

signi�cantly negative. Yet, the total e¤ect is still positive for the stocks in idiosyncratic-volatility
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Decile 10 and illiquidity Quintile 1. For example, in Model (3), the total e¤ect of hedge-fund

ownership is 1.934 (= 3.015�1.081). Model (5) and (6) also con�rm this �nding. The interaction

term of hedge-fund ownership with D1 and illiquidity is signi�cantly negative, while the interaction

term of hedge-fund ownership with D10 and illiquidity is signi�cantly positive.

Additionally, non-hedge-fund institutional ownership generally exhibits a positive e¤ect on idio-

syncratic volatility. The coe¢ cients for the middle deciles and Decile 10 are positive and signi�cant

throughout the di¤erent speci�cations, yet the coe¢ cient for Decile 1 is insigni�cant. This �nding

is consistent with the �ndings in the literature that institutional ownership is positively related to

idiosyncratic volatility (see, e.g., Xu and Malkiel (2003)).

To summarize, the panel regressions give evidence that Long/Short-Equity funds trade in a

manner that reduces the volatility of low-idiosyncratic-volatility stocks, and increases the volatility

of high-idiosyncratic-volatility stocks. This e¤ect is stronger for more illiquid stocks.

B. Time-series regressions: Determinants of the time trend

In this section we investigate whether the e¤ects we identi�ed at the �rm-level have the potential

to explain the documented aggregate trends in idiosyncratic volatility. To investigate the potential

determinants of the diverging time trends in the extreme deciles of idiosyncratic volatility, we run

the following time-series regression

dk;t = �+ �t+ �1d
CF
k;t + �2LSEt�1 + 


0Xt�1 + �1TEDt�1 + �2TEDt�1 � LSEt�1 + "t; (18)

where dk;t is the share of decile k in the aggregate idiosyncratic volatility during period t (we study

d1, d10, and d10 � d1), dCFk;t is the share of idiosyncratic cash-�ow volatility of the corresponding

decile, LSEt is the natural logarithm of the total AUM of Long/Short-Equity funds at the end of

period t, TEDt is the di¤erence between the three month T-bill interest rate and the three-month

LIBOR at the end of period t, and X is the vector of control variables. Fund AUMs are obtained

from Lipper/TASS database, and are used as proxies for the trading activities of hedge funds. We

think of TED as a proxy for the �nancing costs of long-short positions. The control variables

include illiquidity and �rm leverage. Illiquidity is estimated quarterly following Amihud (2002)

and �rm leverage is measured as total liability over market equity. (Similar results are obtained

while using book equity instead of market equity.)

We also control for the trading activity of di¤erent types of institutions: non-Long/Short-
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Equity funds, and other institutional investors. As only a small fraction of total institutional

ownership is due to hedge funds, we use total institutional ownership as proxy for the trading

activity of institution other than hedge funds. Institutional ownership is measured as the percentage

of capital owned by institutions for each decile of idiosyncratic return volatility at the end of

previous quarter. Speci�cally, we calculate the market capitalization owned by institutions for each

individual �rm, and then add up all the market capitalizations owned by institutions for the �rms

in each decile. The decile total value is further divided by the total market capitalization of the

decile. Institutional ownership data are obtained from the CDA/Spectrum database provided by

Thompson Reuters. Due to the availability of hedge fund data, the sample period for the regression

is January 1994 through December 2008. Variables for trading activities and �rm leverage are the

values at the end of previous quarter, while the idiosyncratic cash-�ow volatility and illiquidity are

contemporaneously measured with dk.

We keep the time trend as one of independent variables throughout di¤erent speci�cations.

By adding the time trend, both dependent and independent variables are e¤ectively detrended.

Therefore, Equation (18) is equivalent to the regression model where the residuals from a regression

of dk on a time trend are regressed on the set of residuals obtained from regressions of each

independent variable on a time trend. We run the regression using the full sample, as well as

separately using the stocks in each illiquidity quintile. The reported t-statistics are Newey-West

adjusted.

i. Full sample

Table 4 reports the regression results for the full sample. Panel A reports the time trend of each of

the dependent and independent variables. Note that the diverging trends in d1 and d10 reported in

Section 2 for the period 1964�2008 also hold for the more recent period 1994�2008. The t-statistics

of the time trends for d1 and d10 are -1.92 and 3.42, respectively. The cash-�ow volatility and

illiquidity for Decile 1 display a signi�cantly negative trend, while the trends in those variables

for Decile 10 are insigni�cant. Hedge-fund AUM display strong positive trends, and institutional

ownership appears with a signi�cant positive trend for both the top and bottom deciles.

Panel B reports the time-series regression results for nine di¤erent models. The �rst model

includes a time trend and the cash-�ow volatility. The coe¢ cient of cash-�ow volatility, �1, is

signi�cant for all three dependent variables. However, the inclusion of cash-�ow volatility does
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not weaken the signi�cance of the time trends. The second model considers a time trend and the

AUM of Long/Short-Equity fund, LSE, as independent variables. The signs of the coe¢ cients of

LSE are consistent with our hypothesis. Its coe¢ cient for d1 is signi�cantly negative, while it is

positive, albeit insigni�cant, for d10. Also, the inclusion LSE �ips the signs of time trends for both

d1 and d10. The trend of d1 becomes signi�cantly positive, while that of d10 changes to negative,

though not statistically signi�cant. Thus, to the extent that LSE represents the trading activity of

hedge funds in equities, the evidence suggests that Long/Short-Equity funds trade in a manner that

reduces the volatility of stocks with low-idiosyncratic volatility and increases the volatility of stocks

with high-idiosyncratic volatility. Also, based on the sign of the coe¢ cients of the time trend, we

conclude that without the trading activity of Long/Short-Equity funds, the observed trends of the

extreme deciles would have been converging rather than diverging.

The third model includes both cash-�ow volatility and LSE. Note, we �nd that di¤erent

variables are important in explaining the patterns of d1 and d10. For d1, only LSE is important,

while only cash-�ow volatility is important for d10. Although the diverging trend in d10 � d1 is

attributed to both cash-�ow volatility and LSE, the two variables contribute to the diverging

trend in opposite ways. The increasing trend in d10 is mirrored by the trend of cash-�ow volatility,

while the decreasing trend in d1 is associated with the trading activity of Long/Short-Equity funds.

By Model (4), (5), and (6), we illustrate that the e¤ects of these two variables are robust to

di¤erent model speci�cations. Nevertheless, a comparison of Model (4) and (6) highlights that

the variables that proxy for institutional trading are still important for understanding the time

trend of d10, because the inclusion of variables unrelated to the trading process is not su¢ cient for

eliminating the signi�cance of this time trend. However, the inclusion of the variables that proxy

for institutional trading, although displaying insigni�cant coe¢ cients, eliminate the time trend in

d10.

In Model (7), (8), and (9), we control for the �nancing costs of a long-short position by includ-

ing the TED spread. We also include the interaction term between TED spread and the AUM of

Long/Short-Equity funds. Model (7) includes the new variables along with our explanatory vari-

ables, but not the controls. Model (8) include TED spread with and without the interaction term,

in addition to LSE and the controls related with the trading activity, while Model (9) also includes

cash-�ow volatility and �rms leverage. Interestingly, all three models show that the interaction

term has a signi�cant and positive coe¢ cient in the d10 regression, but it is not signi�cant for d1.
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This is consistent with our proposed mechanism. We argue that as the trading activity of hedge

funds increase, large idiosyncratic shocks are ampli�ed further especially when the cost of �nancing

of long-short positions is higher. High �nancing cost makes the loss limit of �nancial institutions

more stringent and causes more frequent �re-sales. According to this argument d1 is less likely to

be a¤ected by the interaction term, since for stocks experiencing small shocks, �nancing costs of

the short-position has much less e¤ect on the trading activity of arbitrageurs.13

We conclude that our time-series results on the full sample provide evidence that the trend in

the bottom decile is mostly related to the activity of �nancial institutions, while the trend in the

top decile is both associated with the changes in the distribution of the underlying cash �ows and

the increasing activity of �nancial institutions.

ii. Illiquidity quintiles

Our main hypothesis is that the e¤ects of the increasing trading activity of hedge funds are ampli�ed

with the illiquidity of the stock. Therefore, we divide the sample into illiquidity quintiles and run

the regression (18) within each illiquidity quintile. Table 5 reports the results for Quintile 1 (most

liquid stocks) and Quintile 5 (least liquid stocks) for the sample period 1994�2008. Quintiles

are formed based on stocks�illiquidity measured during the previous calendar year. Within each

illiquidity quintile, we further form deciles of idiosyncratic volatility and calculate our measure of

the relative share of each decile, dk, in the cross-section of �rms that belong to that quintile.

The �rst model in each panel reports the results of time-trend regressions within illiquidity

quintiles. The time trend for d1 is signi�cantly negative in Quintile 5, with a t-statistic of -6.67,

while the trend is not signi�cant for Quintile 1. In contrast, the time trend of d10 is signi�cantly

positive for both quintiles, with t-statistics of 2.94 and 3.99 for Quintiles 1 and 5, respectively. The

second model in each panel reports the results of a regression model that includes idiosyncratic

cash-�ow volatility and LSE as explanatory variables. The inclusion of these variables eliminates

the diverging time trends for both quintiles of illiquidity. The coe¢ cients of cash-�ow volatility

13We also checked whether our results are driven by the 2008 �nancial crisis by running regression (18) on the

shorter sample period of January 1994-December 2007. (Results are not reported.) We �nd that our results are not

driven by the �nancial crisis. In particular, running the speci�cation equivalent to Model (7) gives virtually the same

results as Model (7) on the full sample. The speci�cation of Model (9) results in coe¢ cients with the same sign and

magnitude but their signi�cance level drop considerably.
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are positive for both d1 and d10 in both quintiles of illiquidity (albeit some are not statistically

signi�cant). As for the coe¢ cients of LSE, they appear signi�cantly negative for d1 in both

illiquidity quintiles, while for d10 the coe¢ cient of LSE is insigni�cant in Quintile 1 and signi�cantly

positive in Quintile 5 (at the 10% level). These results suggest that Long/Short-Equity funds behave

as liquidity providers for relative small idiosyncratic shocks regardless of a �rm�s liquidity, while

they behave as liquidity demanders for illiquid stocks with high-idiosyncratic volatility.

The third model of each panel includes all the control variables except TED spread. The results

are generally consistent with those of the second model. Nevertheless, the e¤ect of LSE on d10

appears more signi�cant in illiquidity Quintile 5, further emphasizing that Long/Short-Equity funds

trading activity both ampli�es large shocks and reduces small shocks for less liquid stocks.

Models (4) and (5) in each panel include the TED spread and the interaction term of the

interaction term between TED spread and the AUM of Long/Short-Equity funds in addition to

speci�cation (2) and (3) respectively. Interestingly, comparing Model (7) in Table 4 with Model

(4) in Table 5, we see our full sample results mirrored in the sample of the most liquid stocks.

Similarly, the coe¢ cients of the additional variables are similar to their full sample equivalent in

Model (5), even if their signi�cance lever is weaker. This is in contrast with the results for the most

illiquid stocks where coe¢ cients change signs compared to their full sample equivalent. The reason

might be that Long/Short-Equity funds typically tend to avoid shorting very illiquid stocks. Thus,

the e¤ect of increasing �nancing cost of short positions e¤ect only the idiosyncratic return shocks

of the most liquid stocks.

Consistent with our hypothesis, we �nd some evidence that the e¤ects of Long/Short-Equity

funds�trading activity are stronger for less liquid stocks. This e¤ect may stem from two di¤erent

sources. The trading e¤ects may be larger because of the larger price impact of trading illiquid

assets, or because Long/Short-Equity funds focus on the mispricing of less liquid stocks. Both

explanations are consistent with our empirical results. These �ndings contribute to the debate on

whether hedge funds act as liquidity providers or liquidity demanders (see, e.g., Getmansky, Lo, and

Makarov (2004), Boyson, Stahel, and Stulz (2010), Sadka (2010), and Jylha, Rinne, and Suominen

(2011)). Our evidence suggest that the answer depends both on the size of the idiosyncratic shock

and the illiquidity of the particular asset.
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5. Extreme realizations of idiosyncratic volatility and expected

returns

Since AHXZ documented that stocks with high-idiosyncratic volatility earn low future average

returns, researchers have paid considerable attention to this idiosyncratic-volatility puzzle. Given

that we present a new stylized fact on the cross-sectional distribution of idiosyncratic volatility,

a natural question is whether our �ndings have the potential to explain this puzzle. Speci�cally,

we are interested in whether hedge-fund trading and cash-�ow risk can explain the idiosyncratic-

volatility puzzle. We run the following Fama-MacBeth regressions that are similar to the panel

regressions in Table 3.

Ri;t+1 = �+�1IVi;t+
X

j2f1;10;otherg
�j2D

j
i;tX1i;t+

X
q2f1;5g

X
j2f1;10;Otherg

�q;jQqi;tD
j
i;tHFi;t+


0X2i;t+ "i;t;

(19)

where Ri;t+1 is the monthly excess return of stock i during month t+1, IVi;t is monthly idiosyncratic

volatility, X1i;t is a vector of the model variables, X2i;t is a vector of the control variables, the

dummy variables Dji;t equal one for �rms that belong to idiosyncratic volatility Decile j (for j=1,

10, or other) and zero otherwise, and the dummy variables Qqi;t equal one if a stock belongs to

illiquidity Quintile q (q = 1 for liquid �rms and q = 5 for illiquid �rms) and zero otherwise.

The model variables include idiosyncratic cash-�ow volatility, CFi;t, measured during the previous

calendar quarter and hedge-fund ownership, HFi;t, measured at the end of the previous calendar

quarter. The control variables include non-hedge-fund institutional ownership (at the end of the

previous quarter), �rm leverage (at the end of the previous quarter), illiquidity (measured during

previous quarter), ILLIQi;t, and size (market capitalization as of end of month t). Similar to Table

3, we also consider the following regression model that includes the e¤ect of stock illiquidity

Ri;t+1 = �+ �1IVi;t +
X

j2f1;10;otherg
�j2D

j
i;tX1i;t +

X
j2f1;10;otherg

�jDji;tHFi;tILLIQi;t + 

0X2i;t + "i;t:

(20)

We consider six di¤erent speci�cations. Model (1) restates the puzzle. Model (2) highlights

that the general e¤ect is concentrated among stocks in the top decile of idiosyncratic volatility.

Models (3) and (4) show that the coe¢ cient of IV is robust after controlling for various factors.
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Model (5) estimates Equation (19) and Model (6) estimates Equation (20).

Throughout Models (3)�(6), it is apparent that the coe¢ cient of IV is negative and signi�cant

in each of these speci�cations. This shows that none of the regression speci�ctions explain away

the puzzle. Still, there are some points to make. The results show some evidence that stocks with

high cash-�ow risk tend to earn low returns, especially when the stocks belong to the high-volatility

deciles. Nevertheless, stocks with high hedge-fund ownership tend to earn low returns when the

stocks belong to the low-volatility deciles. We leave the exploration of these results for future

research.

6. Conclusion

Periods with extreme idiosyncratic shocks embody an important risk for �nancial institutions per-

forming arbitrage under loss limits. In this paper, we hypothesize that the aggregate trading

activity of these institutions also feeds back to the probability of extreme idiosyncratic shocks. In

particular, we argue that the trading activity of Long/Short-Equity funds reduce the volatility of

low-idiosyncratic-volatility stocks but amplify that of high-idiosyncratic-volatility stocks.

Our empirical results are consistent with this hypothesis. First, from our sample period 1963�

2008, we discover that the cross-sectional distribution of idiosyncratic volatility of US stocks has

been increasingly skewed. The share of top decile of idiosyncratic volatility in the aggregate idiosyn-

cratic volatility has doubled over the period, while the share of bottom decile has almost vanished.

These trends are observed regardless of �rms�industry, liquidity, and size, as well as the sign of

price change. Second, from �rm-level panel regressions for a shorter sample period, 1994�2008, we

provide evidence for a strong relation between Long/Short-Equity funds�ownership of a stock and

the changes of idiosyncratic volatility of that stock. Hedge-fund ownership is strongly associated

with a decrease in idiosyncratic volatility if the stock belongs to the bottom decile, while it is

related to an increase in volatility if the stock belongs to the top decile. Third, using time-series

regressions, we show that the trading activity of Long/Short-Equity funds plays an important role

in explaining both the increasing share of the top decile and the decreasing share of the bottom

decile. All these results are consistent with our proposed mechanism that increasing capital of

Long/Short-Equity funds exacerbates idiosyncratic volatility of the top decile but attenuates that

of the bottom decile.
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We also conduct preliminary tests on whether our results can be related to the idiosyncratic-

volatility puzzle, that is high-idiosyncratic volatility �rms earn low future returns. While our tests

do not provide strong evidence that the puzzle is related to the observed time trends in the extreme

deciles of idiosyncratic volatility, future research on this topic seems promising.
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Appendix A: A Model on the limits of arbitrage, capital share of

hedge funds, and the cross-section of idiosyncratic volatility

We use a slightly modi�ed version of Shleifer and Vishny (1997) model on the limits of arbitrage.

Consider a market with a large number of assets. The cash �ow of each asset has a systematic

component and a mean reverting idiosyncratic shock. There are two types of agents participating

in the market. Long-term traders hold assets for the cash �ows, so their demand for each asset

is positively related to the cash �ow of the asset and negatively related to its price. Managers

of Long/Short-Equity funds aim to bene�t from the mean reversion in idiosyncratic risk. Thus,

focusing on a small number of assets, they decompose the systematic and the idiosyncratic part in

cash �ows and estimate the dynamics of the idiosyncratic risk. Then, they hold a long-short position

of the particular assets and a well-diversi�ed portfolio to achieve a zero exposure on the systematic

component. Similar to Shleifer and Vishny (1997), we assume that the size of managers position

is limited by their capital and the level of their capital is positively related to past trading pro�ts.

Our main objective is to derive the equilibrium relation between the dynamics of the idiosyncratic

component of returns and the cash �ows and the capital of managers. In particular, the model

illustrates that idiosyncratic shocks to returns are increasing in the underlying cash-�ow shocks,

while larger amounts of capital under management of Long/Short-Equity funds further increase

large idiosyncratic shocks but decrease small idiosyncratic shocks.

In particular, consider a group of managers who analyze the cash-�ow characteristics of stock i:

Suppose they �nd that the cash-�ow dynamics of this asset in the next three periods is described

by

�t+u(i) � ~Su(i); (21)

where �t+u(i) is the systematic component and ~Su(i) is the idiosyncratic component. The index u(i)

denotes that idiosyncratic shock to asset i can be in one of three phases, u = 1; 2; 3. In Phase 1,

~S1 = S. In Phase 2, ~S2 = 0 or ~S2 = � ~S1 with probability q and (1� q) ; respectively. We assume

� > 1; thus the shock either intensi�es in absolute terms or disappears. In Phase 3, ~S3 = 0: (We

denote a random variable by tilde and its realization by the same character without tilde.) We

assume that cash �ows are paid at the end of the respective period, but known by the beginning
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of each period. The demand of long-term traders for the asset is

�t+u(i) � ~Su(i)

~pu(i)
: (22)

Each manager�s portfolio consists of a position in the particular asset to gain from the short-term

convergence of the price of a particular asset and a hedging position invested in a well-diversi�ed

portfolio in such a way that managers do not take on systematic risk. Suppose that the value of

the representative manager position in asset i is Du(i): Then the market clearing conditions in each

phase is given by
�t+u(i) � ~Su(i)

~pu(i)
+
Du(i)

~pu(i)
= 1. (23)

The other part of managers�long-short portfolio is a short position in a well-diversi�ed portfolio,

which exactly o¤sets the systematic component of returns. Given that this part implies a relatively

small position in a large number of assets, we assume that this hedging part does not a¤ect the

prices of the components of this portfolio. Thus, both the cash �ow and the price of each unit of

this portfolio is

�t+u(i) (24)

and the manager holds the same number of units of this portfolio as asset i.

Managers are risk neutral, and the value of their position in the asset cannot exceed Fu in phase

u , that is, Du � Fu: The value F1 can be thought of as a position limit, which is proportional to

the funds�capital in phase 1. Similar to Shleifer and Vishny (1997), while F1 is exogenous, F2 is

endogenous. The second phase position limit depends on past pro�ts as

F2

�
~S2

�
= max(0; a�1 (D1; ~p1; ~p2) + F1); (25)

where �1 (D1; ~p1; ~p2) is the net pro�t or loss to the manager by the second phase, given her position

D1 and the prices ~p1 and ~p2. We assume that S > F1, that is, managers do not have su¢ cient

capital to fully eliminate the idiosyncratic shock in Phase 1.

Proposition 1. There is an a� and q� such that if a > a� and q > q� then the equilibrium is

characterized as follows.

1. In the �rst phase, managers invest fully, D1 = F1:

2. In the second and third phases, managers liquidate their position and do not hold any assets.
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3. Prices are given as follows

p1 = (�t+1 � S) + F1 (26)

p2

�
~S2 = �S

�
= (�t+2 � �S) (27)

p2

�
~S2 = 0

�
= �t+2 (28)

p3 = �t+3: (29)

Proof. It is easy to see that in Phase 2 managers will not hold any position, so the price of the

asset is given by

�t+3 = p3:

Managers also do not hold assets by the end of Phase 2, if ~S2 = 0: In this case, the price of the

asset in Phase 2 is also

�t+2;

and

�1 (D1; p1; �t) =
D1
p1
(�t+2 + �t+1 � S � p1)�

D1
p1
�t+2

= D1
�t+1 � S � p1

p1
;

where the two terms are the pro�ts from the long and short position, respectively. If ~S2 = �S and

a manager chooses to hold a position D2 in Phase 2, then her trading pro�t is given by

D1
p1
(p2 + �t+1 � S � p1)�

D1
p1
(�t+2)+

+
D2
p2
(�t+2 � �S + �t+3 � p2)�

D2
p2
(�t+2 + �t+3 � �t+2)

= D1
p2 � �t+2 + �t+1 � S � p1

p1
+D2

�t+2 � p2 � S�
p2

;

where p2 = ~p2 (�S) : Thus, arbitrageurs solve the problem

max
D1;D2

q

�
D1
�t+1 � S � p1

p1

�
+ (1� q)

�
D1
p2 � �t+2 + �t+1 � S � p1

p1
+D2

�t+2 � p2 � S�
p2

�
(30)

s.t. D1 � F1

D2 � F2 (�S) = aD1
�t+1 � S � p1

p1
+ F1

We solve for the equilibrium backwards. It is easy to see that if ~S2 = �S, managers take a maximal
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position which implies

p2 = (�t+2 � �S) + F2:

Also, from problem (30), there must be a q� that if q > q� managers take a maximal position in

the �rst period as well. In this case,

(�t+1 � S) + F1 = p1;

and

F2

�
� ~S1

�
= max(0; a�1 (D1; ~p1; ~p2) + F1) = max(0; F1

�
1� a F1

�t+1 � S + F1

�
):

Let us make two assumptions on the parameters which signi�cantly simplify the derivation of our

results. First, suppose that q > q�. Second, suppose that a is su¢ ciently large so that

F2

�
� ~S1

�
= 0:

That is, if the absolute level of the idiosyncratic shock increases in the second phase, the losses of

managers invested fully in the �rst phase wipe out all their capital for the second phase. Thus,

p2 = �t+2 � �S:

The parameter restriction q ensures that the worsening of the shock has a su¢ ciently low chance

that managers fully invest in Phase 1. The restriction on a ensures that a worsening shock in Phase

2 fully wipes out the capital of managers taking maximal position in Phase 1. Thus, managers

do not hold any assets regardless of the shock in the second phase, because either the trading

opportunity disappears or their capital is wiped out.

Let us turn to the analysis of the cross-sectional distribution of idiosyncratic volatility. Consider

the expression

((pu+1 � pu)� (�t+u+1 � �t+u))2 (31)

as the model variant of our measure of idiosyncratic volatility. This is the return in a given period

minus the part of the return which is due to the systematic component. In line with the concept of

idiosyncratic risk, we assume that even if each asset goes through the same three phases, they are

not all in the same phase at any particular time-point. In particular, consider a large number of

assets. Then each point in time a group consisting one third of all the assets is in Phase 1, a group
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of the same size is in Phase 2, and the last group is in Phase 3. Then, using Equations (26)-(29),

our model implies the following cross-sectional distribution of idiosyncratic volatility at any given

point in time.

fraction of stocks realized IV which assets belong to the fraction?

q 13 0 Phase 3 assets with S2 = 0

1
3 + q

1
3 (S � F1)2 Phase 2 assets with S2 = 0 and all Phase 1 assets

(1� q) 13 ((�� 1)S + F1)2 Phase 2 assets with S2 = �S

(1� q) 13 (�S)2 Phase 3 assets with S2 = �S

Under our parameter conditions, the realized shocks increase from the top to the bottom row

of this table as

0 < (S � F1)2 < ((�� 1)S + F1)2 < (�S)2 :

To translate our model to our empirical speci�cation, we think of the fraction of stocks in the �rst

and second rows of the table as the group representing the bottom quintile of the cross-sectional

distribution, while the fraction of stocks in the third and fourth row as the top quintile of the

cross-sectional distribution. Then, the following proposition states the model equivalent of our

tested hypotheses.

Proposition 2. If a > a� and q > q�, the following statements hold

1. The absolute size of the idiosyncratic return shock increases in each quintile in the size of the

cash-�ow shock. That is,

@ (S � F1)2

@S
;
@ ((�� 1)S + F1)2

@S
;
@ (�S)2

@S
> 0:

2. The average of the absolute size of idiosyncratic return shock is increasing in �rst period

capital, F1, in the top quintile and decreasing in the bottom quintile. That is,

@ (S � F1)2

@F1
< 0;

@ ((�� 1)S + F1)2

@F1
+
@ (�S)2

@F1
> 0

Proof. Observe that

@ (S � F1)2

@S
= 2S > 0:

@ ((�� 1)S + F1)2

@S
= 2 (�� 1) (((�� 1)S + F1)) > 0

@ (�S)2

@S
= 2S�2 > 0;
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and

@ (S � F1)2

@F1
< 0;

@ ((�� 1)S + F1)2

@F1
+
@ (�S)2

@F1
=

@ ((�� 1)S + F1)2

@F1
= 2 ((�� 1)S + F1) > 0:

Figure A1 illustrates our results. We plot the realized idiosycnratic volatility of a particular

stock under di¤erent scenarios in each phase u. When managers have capital F1 in Phase 1, the

realization follows the dotted line and the dashed line if S2 = 0 and S2 = �S, respectively. It is

apparent that the large shocks are realized when S2 = �S; while the small shocks correspond to the

case when S2 = 0: Thus, as we pointed out, we think of the �rst group of shocks as the top-quintile

shocks and label them by T on the �gure, while the second group of shocks correspond to the

bottom-quintile shocks and are labeled by B: It is apparent that if F1 is larger, the solid line on

Figure A1 is pushed downwards. That is, shocks in the bottom quintile decrease and shcoks in the

top quintile increase (or do not change). The intuition is that larger capital increases managers�

total position against the temporary shock. However, when the underlying shock intensi�es, the

size of the liquidated positions also increases due to the loss limits. This increases realized return

volatility in the top quintile. Nevertheless, each shock is positively related to S, the fundamental

cash-�ow shock.

32



References
Amihud, Yakov, 2002, Illiquidity and stock returns: Cross-section and time-series e¤ects, Journal

of Financial Markets 5, 31�56.

Ang, Andrew, Robert J. Hodrick, Yuhang Xing and Xiaoyan Zhang, 2006, The cross-section of
volatility and expected returns, Journal of Finance 61, 259�299.

Bekaert, Geert, Robert J. Hodrick, and Xiaoyan Zhang, 2010, Aggregate idiosyncratic volatility,
Working paper.

Ben-David, Itzhak, Francesco Franzoni, and Rabih Moussawi, 2010, Hedge fund stock trading in
the �nancial crisis of 2007�2008, working paper.

Boyson, Nicole M., Christof J. Stahel, and Rene M. Stulz, 2010, Hedge fund contagion and liquidity
shocks, Journal of Finance 65, 1789�1816.

Brandt, Michael W., Alon Brav, John G. Graham, and Alok Kumar, 2010, The idiosyncratic
volatility puzzle: Time trend or speculative episode? Review of Financial Studies 23, 863�
899.

Brunnermeier, Markus K., and Stefan Nagel, 2004, Hedge funds and the technology bubble, Journal
of Finance 59, 2013�2040.

Brunnermeier, Markus K., and Lasse H. Pedersen, 2009, Market liquidity and funding liquidity,
Review of Financial Studies 22, 2201�2238.

Brunnermeier, Markus K., and Yuliy Sannikov, 2010, A macroeconomic model with a �nancial
sector, working paper, Princeton University.

Bushee, Brian J., and Christopher F. Noe, 2000, Corporate disclosure practices, institutional in-
vestors, and stock return volatility, Journal of Accounting Research 38, 171�202.

Campbell, John Y., Martin Lettau, Burton G. Malkiel, and Yexiao Xu, 2001, Have individual stocks
become more volatile? An empirical exploration of idiosyncratic risk, Journal of Finance 56,
1�43.

Coval, Joshua, and Erik Sta¤ord, 2007, Asset �re sales (and purchases) in equity markets, Journal
of Financial Economics 86, 479�512.

Danielsson, Jon, Hyun S. Shin, and Jean-Pierre Zigrand, 2004, The impact of risk regulation on
price dynamics, Journal of Banking and Finance 28, 1069�1087.

Diamond, Doug and Raghuram Rajan, 2010, Fear of �re sales, illiquidity seeking, and credit freezes,
NBER, University of Chicago Booth School.

Fama, Eugene, and James MacBeth, 1973, Risk, return and equilibrium: Empirical tests, Journal
of Political Economy 81, 607�636.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics 33, 3�56.

Fama, Eugene F., and Kenneth R. French, 1997, Industry costs of equity, Journal of Financial
Economics 43, 159�193.

Fu, Fangjian, 2009, Idiosyncratic risk and the cross-section of expected stock returns, Journal of
Financial Economics 91, 24�37.

Gamboa-Cavazos, Mario, and Pavel G. Savor, 2005, Holding on to your shorts: When do short
sellers retreat? working paper.

Garcia, René, Daniel Mantilla-García, and Lionel Martellini, 2011, Idiosyncratic risk and the cross-
section of stock returns, working paper.

Gaspar, Jose-Miguel, and Massimo Massa, 2006, Idiosyncratic volatility and product market com-
petition, Journal of Business 79, 3125�3152.

33



Getmansky, Mila, Andrew W. Lo, and Igor Makarov, 2004 , An econometric model of serial corre-
lation and illiquidity in hedge fund returns, Journal of Financial Economics 74, 529�610.

Greenwood, Robin, and David Thesmar, 2010, Stock price fragility, working paper.

Gromb, Denis, and Dimitri Vayanos, 2002, Equilibrium and welfare in markets with constrained
arbitrageurs, Journal of Financial Economics 66, 361�407.

Hong, Harrison G., Je¤rey D. Kubik, and Tal Fishman, 2011, Do arbitrageurs amplify economic
shocks? working paper.

Huang, Wei, Qianqiu Liu, S. Ghon Rhee, and Liang Zhang, 2010, Return reversals, idiosyncratic
risk, and expected returns, Review of Financial Studies 23, 147�168.

Irvine, Paul J., and Je¤rey Ponti¤, 2009, Idiosyncratic return volatility, cash �ows, and product
market competition, Review of Financial Studies 22, 1149�1177.

Jylha, Petri, Kalle Rinne, and Matti J. Suominen, 2011, Do hedge funds supply or demand imme-
diacy? working paper.

Kamara, Avraham, Xiaoxia Lou, and Ronnie Sadka, 2008, The divergence of liquidity commonality
in the cross-section of stocks, Journal of Financial Economics 89, 444�466.

Koch, Andy, Stefan Ruenzi and Laura Starks, 2009, Commonality in liquidity: A demand side
explanation, working paper.

Kondor, Péter, 2009, Risk in dynamic arbitrage: Price e¤ects of convergence trading, Journal of
Finance 64, 638�658.

Lamont, Owen, Jeremy Stein, 2004, Aggregate short interest and market valuations, Amercian
Economic Review 94, 29�32.

Lorenzoni, Guido, 2008, Ine¢ cient credit booms, Review of Economic Studies 75, 809�833.

Merton, Robert C., 1987, A simple model of capital market equilibrium with incomplete informa-
tion, Journal of Finance 42, 483�510.

Sadka, Ronnie, 2010, Liquidity risk and the cross-section of hedge-fund returns, Journal of Financial
Economics 98, 54�71.

Shleifer, Andrei, and Robert Vishny, 1997, The limits of arbitrage, Journal of Finance 52, 35�55.

Sias, Richard W., 1996, Volatility and the institutional investor, Financial Analysts Journal 52,
13�20.

Sias, Richard W., 2004, Institutional herding, Review of Financial Studies 17, 165�206.

Vuolteenaho, Tuomo, 2002, What drives �rm-level stock returns? Journal of Finance 57, 233�264.

Xiong, Wei, 2001, Convergence trading with wealth e¤ects, Journal of Financial Economics 62,
247�292.

Xu, Yexiao, and Burton G. Malkiel, 2003, Investigating the behavior of idiosyncratic volatility,
Journal of Business 76, 613�644.

34



Decile Intercept Time Trend R
2

Phillips-Perron (Prob: Tau)

Estimate T-value Estimate × 10
4

T-value No Trend Trend

1 0.132 11.02 -2.136 -5.67 0.866 0.091 0.001

2 0.128 14.18 -1.111 -3.89 0.650 0.173 0.001

3 0.116 20.17 -0.299 -1.64 0.315 0.185 0.001

4 0.112 29.85 -0.043 -0.36 0.136 0.124 0.001

5 0.100 30.99 0.212 2.06 0.129 0.234 0.001

6 0.091 32.80 0.304 3.42 0.167 0.184 0.001

7 0.081 24.55 0.499 4.71 0.276 0.173 0.001

8 0.072 13.27 0.679 3.95 0.446 0.092 0.001

9 0.069 10.23 0.874 4.09 0.457 0.058 0.001

10 0.092 10.19 1.301 4.52 0.388 0.011 0.001

10-1 -0.043 -2.80 3.570 7.35 0.711 0.001 0.001

Table 1: Time-Trend Regressions of Idiosyncratic Volatility Deciles

The table reports the results of time-series regressions of the proportion of each decile of idiosyncratic volatility to the total idiosyncratic volatility on a

time trend. Idiosyncratic volatilities are estimated following Ang, Hodrick, Xing, and Zhang (2006). Specifically, for each stock-month, daily returns

are regressed on Fama-French three factors. Residuals from the regressions are squared and averaged over the month to measure idiosyncratic

volatility. The relative proportion of each idiosyncratic volatility decile in a given month is calculated as the ratio of the value-weighted sum of the

idiosyncratic volatilities of the stocks in the decile to the value-weighted sum of stocks in the entire cross-section. Autocorrelation in the error terms of

the regressions are corrected up to six lags using maximum likelihood. Probabilities of Phillips-Perron unit-root tests are reported in the last two

columns. Daily returns of common stocks (share code in 10 and 11) are obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for

the period 1963-2008. Stocks with less than $2 at the end of the previous year or less than 100 trading days during the previous year are excluded. 



Industry \ Dependent Variable d10 - d1 d1 d10 Avg. No of
Est × 104 T-value R2 Est × 104 T-value R2 Est × 104 T-value R2 Firms

1. Electronic Equipment 4.450 9.62 0.351 -3.600 -10.82 0.484 0.837 3.42 0.043 165
2. Automobiles and Trucks 5.340 8.95 0.344 -5.040 -9.82 0.456 0.302 0.87 0.082 60
3. Telecommunications 5.960 6.96 0.321 -4.580 -9.02 0.265 1.370 3.82 0.139 79
4. Trading (Finance) 4.590 5.56 0.432 -0.970 -3.87 0.545 3.430 6.78 0.317 559
5. Computers 5.230 4.48 0.386 -4.300 -4.88 0.384 1.020 3.26 0.113 89
6. Chemicals 1.810 3.55 0.125 -1.490 -4.28 0.244 0.362 1.29 0.026 74
7. Shipping Containers 2.220 2.95 0.143 -2.210 -4.36 0.138 0.055 0.13 0.075 23
8. Consumer Goods 1.550 2.88 0.075 -1.440 -3.36 0.097 0.141 0.61 0.017 79
9. Textiles 1.620 2.82 0.090 -0.570 -3.68 0.141 1.060 2.18 0.060 34
10. Insurance 1.870 2.52 0.137 -0.032 -0.11 0.266 1.200 1.98 0.097 75
11. Machinery 1.160 2.27 0.134 -0.630 -2.23 0.320 0.562 1.91 0.045 125
12. Steel Works, Etc 1.340 2.11 0.168 -0.670 -4.29 0.141 0.687 1.80 0.068 67
13. Real Estate 1.650 2.06 0.152 -0.054 -0.58 0.093 1.660 2.40 0.147 38
14. Healthcare 1.630 1.89 0.116 -0.029 -0.09 0.100 1.600 2.17 0.091 66
15. Nonmetallic Mining 0.724 1.71 0.089 -0.960 -5.09 0.247 -0.220 -0.55 0.075 26
16. Business Supplies 0.799 1.59 0.075 0.664 2.12 0.166 1.460 5.45 0.077 39
17. Transportation 0.572 1.26 0.080 0.178 0.84 0.237 0.722 1.94 0.080 88
18. Banking 0.777 1.20 0.191 0.293 0.72 0.371 1.050 2.08 0.167 202
19. Utilities 1.330 1.00 0.417 -0.310 -2.41 0.385 0.998 1.09 0.351 150
20. Measuring and Control Equip 0.701 1.00 0.076 0.271 0.56 0.096 1.040 3.57 0.032 57
21. Recreational Products 0.556 0.66 0.132 -1.380 -5.14 0.108 -0.710 -1.10 0.146 36
22. Entertainment 0.489 0.53 0.105 0.752 1.31 0.155 1.170 2.56 0.063 36
23. Retail 0.338 0.46 0.201 -0.270 -0.52 0.252 0.068 0.21 0.095 180
24. Others 0.795 0.36 0.163 -1.330 -1.44 0.179 -0.360 -0.35 0.057 43
25. Apparel 0.168 0.35 0.048 -0.300 -1.53 0.087 -0.100 -0.31 0.031 52
26. Construction 0.098 0.11 0.173 0.264 1.17 0.272 0.473 0.66 0.147 41
27. Electrical Equipment -0.140 -0.25 0.079 0.188 0.34 0.209 0.052 0.14 0.044 74
28. Personal Services -0.270 -0.35 0.055 -0.110 -0.55 0.088 -0.370 -0.61 0.038 31
29. Construction Materials -0.150 -0.40 0.037 -0.220 -1.01 0.220 -0.390 -1.07 0.032 108
30. Priting and Publishing -0.270 -0.48 0.067 0.524 3.34 0.113 0.251 0.50 0.055 37
31. Restaurants, Hotel, Motel -0.950 -1.01 0.210 0.432 1.20 0.182 -0.440 -0.62 0.176 68
32. Rubber and Plastic Products -1.050 -1.40 0.092 0.103 0.52 0.128 -0.940 -1.39 0.070 26
33. Wholesales -0.490 -1.48 0.029 0.510 3.07 0.170 0.004 0.01 0.018 116
34. Petroleum and Natural Gas -0.750 -1.56 0.112 0.422 1.64 0.086 -0.310 -1.10 0.090 144
35. Food Products -0.760 -1.61 0.065 0.734 2.97 0.229 -0.079 -0.28 0.008 60
36. Business Services -0.950 -1.61 0.114 1.220 7.89 0.298 0.252 0.54 0.088 280
37. Medical Equipment -1.260 -1.66 0.118 2.380 3.37 0.220 1.100 3.03 0.120 71
38. Pharmaceutical Products -4.040 -3.06 0.395 4.380 6.14 0.655 0.700 1.29 0.147 108
39. Precious Metals -2.010 -4.27 0.139 0.769 3.60 0.114 -1.230 -3.19 0.103 21
40. Aircraft -1.590 -4.47 0.064 0.060 0.19 0.139 -1.550 -5.43 0.074 22

Table 2: Time-Trend Regressions of the Extreme Deciles in Individual Industries
The table reports the results of time-series regressions of the shares of the extreme deciles in the total idiosyncratic volatility of an individual industry on a time trend. Dependent variables are the share of Decile 1,
Decile 10, and Decile 10 minus Decile 1 of the idiosyncratic volatility in each industry. The value of each decile of an industry in a given month is calculated as the ratio of the value-weighted sum of the
idiosyncratic volatilities of the stocks in the decile to the value-weighted sum of the idiosyncratic volatilities of stocks in the entire cross-section of the industry. Industry classification is according to Fama and
French (1997). Industries with less than 20 firms per month on average are excluded. Autocorrelation in the error terms of the regressions are corrected up to six lags using maximum likelihood. The table is sorted
by the T-values of the time trend of Decile 10 minus Decile 1. Daily returns of common stocks (share code in 10 and 11) are obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for the period
1963-2008. Stocks with less than $2 at the end of the previous year or less than 100 trading days during the previous year are excluded. 



Variable\Model (1) (2) (3) (4) (5) (6)

Dother∙ΔCF 0.006 0.004 0.006 0.004 0.006 0.004

[1.92] [1.96] [1.90] [1.95] [1.93] [1.97]

D1∙ΔCF 0.007 0.005 0.007 0.005 0.007 0.005

[2.03] [1.77] [2.10] [1.89] [2.07] [1.89]

D10∙ΔCF 0.009 0.008 0.009 0.008 0.009 0.007

[4.04] [4.18] [4.57] [4.94] [4.93] [4.90]

Dother∙HF 0.248 0.142 0.264 0.160 -0.004 0.288

[2.31] [3.18] [2.52] [3.54] [-0.01] [0.78]

D1∙HF -4.404 -4.614 -4.171 -4.410 -8.773 -8.332

[-11.30] [-18.07] [-9.73] [-15.61] [-12.65] [-12.64]

D10∙HF 3.389 3.288 3.015 2.897 11.170 11.538

[16.62] [15.08] [10.57] [9.52] [18.62] [19.14]

D1∙Q1∙HF 0.026 0.038

[0.15] [0.20]

D1∙Q5∙HF -1.853 -1.691

[-7.54] [-9.18]

D10∙Q1∙HF -1.081 -1.090

[-5.38] [-5.43]

D10∙Q5∙HF 2.338 2.418

[7.28] [7.47]

Dother∙HF∙ILLIQ -0.015 0.007

[-0.75] [0.35]

D1∙HF∙ILLIQ -0.240 -0.205

[-5.34] [-5.30]

D10∙HF∙ILLIQ 0.465 0.492

[9.30] [9.81]

Dother∙I/O 0.230 0.177 0.222 0.162 0.219 0.168

[3.76] [5.87] [3.56] [5.72] [3.41] [5.50]

D1∙I/O -0.153 -0.161 -0.167 -0.175 -0.176 -0.183

[-1.36] [-1.37] [-1.33] [-1.33] [-1.32] [-1.32]

D10∙I/O 1.564 1.517 1.779 1.729 1.949 1.911

[9.63] [10.05] [8.78] [9.01] [8.56] [8.71]

Leverage 0.001 0.001 0.001 0.001 0.001 0.001

[0.98] [1.23] [0.96] [1.11] [0.89] [1.04]

ILLIQ 0.064 0.057 0.067 0.066 0.062 0.051

[3.58] [4.19] [3.64] [4.06] [3.43] [4.10]

Size 0.074 0.064 0.074 0.061 0.072 0.061

[3.04] [3.40] [2.80] [3.22] [2.94] [3.26]

Year Fixed Effect N Y N Y N Y

Q1 & Q5 Dummies N N Y Y N N

R
2

0.362 0.397 0.364 0.401 0.364 0.399

Table 3: Panel Regression of Idiosyncratic Volatility

The table reports the results of panel regressions of changes in idiosyncratic volatilities of individual stocks. Three different specifications are considered based on the 

illiquidity effect on the idiosyncratic volatility. Models (1) and (2) are basic regression models that exclude any illiquidity effect. Model (3) and (4) estimate the following 

regression: 

 

ΔIVi,t = α + ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}β
j'Dj

i,tX1i,t+ ∑𝑞∈{1,5}∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}δ
𝑞,jQq

i,tD
j
i,tHFi,t + γ'X2i,t + εi,t 

  

where X1i,t is a vector of the model variables, X2i,t is a vector of the control variables, the dummy variables Dj
i,t equal one for firms that belong to Decile j (for j=1, 10, or 

other) and zero otherwise, and the dummy variables Qq
i,t equal one if a stock belongs to illiquidity Quintile q (q=1 for liquid firms and q=5 for illiquid firms) and zero 

otherwise. The model variables include the changes in idiosyncratic cash-flow volatility, ΔCFi,t, and the level of hedge-fund ownership, HFi,t-1. The control variables include 

non-hedge-fund institutional ownership (at the end of period t-1), firm leverage (at the end of period t-1), illiquidity (at time t), ILLIQi,t, and size (at the end of period t-1). 

Model (5) and (6) estimate the following regression: 

 

ΔIVi,t = α + ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}β
j'Dj

i,tX1i,t+ ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}δ
𝑗Dj

i,tHFi,tILLIQi,t + γ'X2i,t + εi,t. 

 

Idiosyncratic cash-flow volatility is estimated following Irvine and Pontiff (2010). Hedge-fund ownership is percentage holdings of institutions which are identified as 

hedge funds. A list of hedge fund names is obtained from Lipper/TASS. Institutional holding data is from 13F available through CDA/Spectrum database of Thompson 

Financials. Illiquidity is estimated quarterly following Amihud (2002). Size is the natural logarithm of market capitalization at the end of previous quarter. Standard errors 

are clustered within each year and T-statistics are reported in the brackets. The sample period is from January 1994 to December 2008.  



Panel A: Time Trends in Variables

Variables Return Cash-Flow AUM of Firm Illiquidity AUM excl Institutional TED

Volatility Volatility L/S Equity Leverage L/S Equity Ownership Spread

Decile 1 -0.810 -1.690 1.919 -0.250 3.631

[-1.92] [-2.01] [1.03] [-2.89] [10.99]

Decile 10 1.113 0.711 0.485 -0.990 6.325

[3.32] [1.41] [1.81] [-1.07] [9.63]

All 80.353 74.360 572.466

[35.27] [45.02] [0.85]

Panel B: Time-Series Regression Result

Model Variables Linear Trend Cash-Flow AUM of Firm Illiquidity AUM excl Institutional TED LSE × TED R
2 
/

Volatility L/S Equity Leverage L/S Equity Ownership Spread Adj. R
2

(Est × 1000) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100)

1 d1 -0.620 11.362 0.335

[-1.51] [2.26] 0.311

d10 0.799 44.130 0.570

[4.45] [7.80] 0.555

d10-d1 1.404 21.551 0.490

[3.94] [2.49] 0.472

2 d1 5.396 -7.613 0.402

[3.76] [-3.98] 0.380

d10 -2.050 3.909 0.167

[-0.54] [0.85] 0.137

d10-d1 -7.440 11.522 0.388

[-2.01] [2.46] 0.366

3 d1 4.731 6.100 -6.715 0.427

[3.66] [1.25] [-3.71] 0.396

d10 0.090 43.885 0.909 0.566

[0.04] [6.82] [0.36] 0.543

d10-d1 -4.260 20.168 7.174 0.513

[-1.64] [1.88] [2.22] 0.487

4 d1 -0.780 9.335 6.546 0.408

[-1.48] [1.60] [1.28] 0.377

d10 0.466 35.679 81.284 0.627

[2.74] [9.09] [5.60] 0.607

d10-d1 1.600 18.611 8.767 0.526

[4.45] [2.09] [2.40] 0.501

5 d1 3.445 -6.054 -76.017 -0.953 26.786 0.578

[2.12] [-4.38] [-1.23] [-0.58] [3.81] 0.538

d10 -1.830 4.015 16.908 -0.363 1.483 0.225

[-0.41] [0.96] [2.15] [-0.08] [0.17] 0.151

d10-d1 -5.330 11.632 7.138 -2.704 -3.322 0.401

[-1.22] [2.38] [1.04] [-0.76] [-0.37] 0.345

6 d1 3.165 2.489 -4.890 2.525 -66.819 -1.823 26.452 0.589

[1.70] [0.62] [-2.23] [0.60] [-1.06] [-0.85] [3.50] 0.532

d10 -0.820 35.714 -0.049 81.532 2.120 1.956 -1.221 0.626

[-0.29] [9.18] [-0.02] [3.99] [0.27] [0.73] [-0.30] 0.574

d10-d1 -3.330 19.661 5.538 4.828 5.238 0.664 0.281 0.529

[-0.99] [1.78] [1.39] [1.12] [0.66] [0.21] [0.05] 0.464

7 d1 4.938 3.554 -7.434 -0.097 0.005 0.516

[4.25] [1.05] [-4.75] [-0.41] [0.50] 0.470

d10 -0.700 39.922 0.160 -0.728 0.028 0.617

[-0.35] [4.76] [0.07] [-2.78] [2.83] 0.581

d10-d1 -5.500 17.446 6.605 -0.959 0.036 0.596

[-2.08] [1.83] [2.29] [-3.17] [3.17] 0.558

8 d1 3.064 -6.148 -44.321 0.120 25.276 0.153 -0.005 0.652

[2.23] [-4.86] [-0.61] [0.08] [3.14] [0.67] [-0.59] 0.605

d10 -1.430 2.722 12.314 -1.947 1.270 -0.964 0.036 0.334

[-0.32] [0.77] [1.35] [-0.50] [0.16] [-2.53] [2.53] 0.242

d10-d1 -4.550 10.560 7.635 -4.882 -0.563 -0.940 0.034 0.527

[-1.05] [2.72] [0.83] [-1.38] [-0.07] [-2.76] [2.67] 0.462

9 d1 2.205 -0.157 -3.256 10.776 4.794 -2.424 23.309 0.008 0.001 0.733

[1.82] [-0.06] [-2.17] [2.90] [0.09] [-1.30] [3.35] [0.04] [0.13] 0.684

d10 -0.310 29.099 -0.772 109.873 0.268 0.749 -2.229 -0.552 0.020 0.682

[-0.12] [5.20] [-0.31] [6.46] [0.04] [0.35] [-0.53] [-2.43] [2.36] 0.623

d10-d1 -2.050 13.502 2.287 15.413 5.883 1.284 2.771 -0.722 0.026 0.652

[-0.54] [1.56] [0.58] [2.04] [0.78] [0.49] [0.39] [-2.10] [1.95] 0.589

Table 4: Time-Series Regressions of the Extreme Deciles of the Idiosyncratic Volatility

Panel A reports the time trend of each regression variable and Panel B reports the results of time-series regressions of the shares of the extreme deciles of the idiosyncratic volatility on a time trend, cash-flow 

volatility, AUM of Long/Short-Equity hedge funds, and various controls, including firm leverage, illiquidity, TED spread, AUM of non-Long/Short-Equity hedge funds,  institutional ownership, and the interaction 

between Long/Short-equity hedge funds and TED spread. Cash-flow volatility is estimated following Irvine and Pontiff (2009). Specifically, for each firm-quarter, cash-flow innovation (dE) is calculated as dEi,t = 

(Ei,t - Ei,t-4)/Bi,t-1. Using the cash-flow innovations, we estimate the pooled cross-sectional time-series regression at each industry level: dEi,t = α + β1 dEi,t-1 + β2 dEi,t-2 +β3 dEi,t-3 + β4 dEi,t-4 + εi,t . For each quarter, the 

squared difference between the residual of a firm and the cross-sectional average of the residuals in the quarter is the idiosyncratic cash-flow volatility of the firm. Then each idiosyncratic cash-flow volatility is 

divided into deciles based on the firm's idiosyncratic return volatility. And the shares of the extreme deciles of the idiosyncratic cash-flow volatility are calculated  as the ratio of the value-weighted sum of the 

idiosyncratic cash-flow volatilities of the stocks in the decile to the value-weighted sum of stocks in the entire cross-section. AUM is natural logarithm of assets under management of hedge funds at the end of 

previous quarter. Leverage for an individual firm is measured as its total liabilities divided by its market equity. Then leverage of each decile in a given quarter is calculated as the ratio of value-weighted sum of the 

leverage of the firms in the decile to the value-weighted sum of the leverage of stocks in the entire cross-section. Illiquidity of each decile in a given quarter is calculated as the ratio of value-weighted sum of 

Amihud measure of illiquidity of the stocks in the decile to the value-weighted sum of Amihud measure of stocks in the entire cross-section. The TED spread is calculated as the difference between the three-month 

T-bill interest rate and three-month LIBOR at the end of previous quarter. Institutional ownership is the percentage owned by institutions for each decile at the end of previous quarter. T-statistics are calculated with 

Newey-West standard error using 4 lags and reported in brackets. The sample period is from January 1994 to December 2008.  



Table 5: Time-Series Regressions of the Extreme Deciles of the  Idiosyncratic Volatility in Illiquidity-Quintile Subsamples

Illiquidity Model Variables Linear Trend Cash-Flow AUM of Firm Illiquidity AUM excl Institutional TED LSE × TED R
2 
/

Quintile Volatility L/S Equity Leverage L/S Equity Ownership Spread Adj. R
2

(Est × 1000) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100) (Est × 100)

1 1 d1 0.162 0.040

[0.84] 0.023

d10 1.288 0.148

[2.94] 0.134

d10-d1 1.126 0.111

[2.92] 0.096

2 d1 3.007 9.546 -3.449 0.425

[4.47] [4.70] [-4.04] 0.394

d10 0.432 9.203 0.683 0.193

[0.12] [1.50] [0.16] 0.149

d10-d1 -2.560 9.963 4.080 0.195

[-0.70] [1.71] [0.93] 0.151

3 d1 1.239 9.747 -2.825 0.791 14.353 1.890 -1.115 0.493

[1.37] [2.99] [-3.05] [0.30] [1.62] [2.00] [-0.30] 0.423

d10 -3.150 6.954 -0.281 84.976 -9.565 5.405 -11.532 0.390

[-0.66] [1.23] [-0.08] [5.47] [-0.64] [1.20] [-1.20] 0.306

d10-d1 -1.910 7.491 -1.805 16.137 -0.228 5.995 -9.641 0.286

[-0.38] [1.35] [-0.45] [2.41] [-0.01] [1.38] [-1.21] 0.188

4 d1 3.006 8.380 -3.507 -0.008 0.000 0.439

[4.29] [4.45] [-4.12] [-0.08] [0.13] 0.386

d10 -0.410 8.721 -1.032 -1.133 0.043 0.281

[-0.13] [1.56] [-0.28] [-3.70] [3.80] 0.213

d10-d1 -3.400 9.498 2.408 -1.126 0.043 0.279

[-1.01] [1.85] [0.62] [-3.96] [4.06] 0.211

5 d1 0.894 7.605 -2.391 4.247 17.949 1.393 1.339 -0.030 0.002 0.566

[1.34] [3.58] [-2.84] [1.57] [2.20] [1.50] [0.46] [-0.34] [0.47] 0.486

d10 -2.860 4.873 -0.324 134.994 1.895 3.522 -6.931 -0.380 0.012 0.513

[-0.61] [0.95] [-0.10] [9.77] [0.16] [0.83] [-0.75] [-1.43] [1.24] 0.424

d10-d1 -1.720 6.517 -3.101 21.106 8.287 5.704 -4.766 -0.691 0.025 0.363

[-0.33] [1.27] [-0.65] [1.23] [0.57] [1.32] [-0.55] [-1.67] [1.53] 0.246

5 1 d1 -0.460 0.638

[-6.67] 0.632

d10 1.844 0.265

[3.99] 0.252

d10-d1 2.307 0.338

[4.60] 0.326

2 d1 0.862 3.830 -1.630 0.746

[2.23] [1.75] [-3.39] 0.732

d10 -4.260 4.929 7.534 0.312

[-1.19] [0.62] [1.71] 0.274

d10-d1 -5.110 9.466 9.078 0.408

[-1.37] [1.27] [1.96] 0.376

3 d1 0.190 2.559 -1.097 0.386 13.877 0.469 1.293 0.791

[0.32] [1.86] [-1.97] [0.16] [2.48] [0.87] [0.63] 0.762

d10 4.410 3.405 7.937 6.752 -28.017 -11.967 -17.823 0.432

[0.97] [0.44] [2.25] [0.07] [-1.40] [-2.29] [-1.01] 0.355

d10-d1 3.288 7.076 10.941 2.193 -24.964 -13.224 -9.087 0.505

[0.72] [0.98] [2.78] [0.14] [-1.44] [-2.24] [-0.66] 0.437

4 d1 0.910 3.102 -1.673 0.024 -0.001 0.784

[2.76] [1.36] [-3.85] [0.53] [-0.44] 0.764

d10 -3.480 2.201 8.908 0.897 -0.035 0.368

[-1.13] [0.29] [2.15] [1.93] [-1.97] 0.309

d10-d1 -4.380 8.100 10.483 0.885 -0.034 0.455

[-1.34] [1.14] [2.39] [1.83] [-1.87] 0.404

5 d1 0.051 1.891 -1.193 -0.733 15.225 0.689 1.142 -0.011 0.001 0.839

[0.11] [1.45] [-2.65] [-0.36] [3.00] [1.32] [0.57] [-0.26] [0.38] 0.809

d10 4.559 0.605 8.229 69.495 -27.378 -10.911 -17.518 0.532 -0.021 0.464

[1.15] [0.09] [2.28] [0.69] [-1.38] [-2.23] [-1.06] [1.40] [-1.47] 0.366

d10-d1 3.679 5.383 11.280 6.078 -20.579 -12.670 -7.504 0.475 -0.019 0.525

[0.84] [0.80] [2.96] [0.38] [-1.18] [-2.29] [-0.60] [1.21] [-1.26] 0.438

The table presents the results of time-series regressions in illiquidity-quintile subsamples. In each illiquidity-quintile subsample, the shares of the extreme deciles of the idiosyncratic volatility are regressed on a 

time trend, cash-flow volatility, AUMs of Long/Short-Equity hedge funds, and various controls, including firm leverage, illiquidity, TED Spread,  AUM of non-Long/Short-Equity hedge funds, institutional 

ownership, and the interaction between Long/Short-equity hedge funds and TED spread. Each illiquidity-quintile subsample is constructed based on the Amihud (2002) measure of illiquidity during previous 

calendar year. Then within an illiquidity-quintile subsample, stocks are divided into deciles based on their idiosyncratic volatility. Finally, the shares of the extremes decile of the idiosyncratic volatility in a given 

quarter are calculated as the ratio of value-weighted sum of the idiosyncratic volatility of the stocks in the decile to the value-weighted sum of stocks in the entire cross-section of the illiquidity-quintile 

subsample. Similarly, each idiosyncratic cash-flow volatility is divided into deciles based on the firm's idiosyncratic return volatility decile in the illiquidity-quintile subsample. And the shares of the extreme 

deciles of the idiosyncratic cash-flow volatility within the illiquidity-quintile subsample are computed as the ratio of the value-weighted sum of the idiosyncratic cash-flow volatilities of the stocks in the decile to 

the value-weighted sum of stocks in the entire cross-section of the illiquidity-quintile subsample. AUM is natural logarithm of assets under management of hedge funds at the end of previous quarter. Leverage 

for an individual firm is measured as its total liabilities divided by its market equity. Then for each illiquidity-quintile subsample, leverage of each decile in a given quarter is computed as the ratio of value-

weighted sum of the leverage of the firms in the decile to the value-weighted sum of the leverage of stocks in the entire cross-section. For each illiquidity-quintile subsample, illiquidity of each decile in a given 

quarter is calculated as the ratio of value-weighted sum of Amihud measure of illiquidity of the stocks in the decile to the value-weighted sum of Amihud measure of stocks in the entire cross-section. The TED 

spread is calculated as the difference between the three-month T-bill interest rate and three-month LIBOR at the end of previous quarter. Institutional ownership is the percentage owned by institutions for each 

decile of an illiquidity-quintile subsample at the end of previous quarter. T-statistics are calculated with Newey-West standard errors using 4 lags and reported in the brackets. The sample period is from January 

1994 to December 2008.  



Table 6: Cross-Sectional Regression of Monthly Return

Variable\Model (1) (2) (3) (4) (5) (6)

IV -1.446 -1.065 -1.153 -1.306 -1.223

[-2.98] [-2.00] [-2.43] [-2.79] [-2.59]

Q1 -0.001

[-0.50]

Q5 0.009

[4.73]

Dother∙IV -1.641

[-0.78]

D1∙IV -86.419

[-1.85]

D10∙IV -1.489

[-3.25]

Dother∙CF -0.006 -0.006 -0.006 -0.006

[-1.97] [-1.84] [-1.81] [-1.83]

D1∙CF -0.207 -0.407 -0.621 -0.634

[-0.88] [-0.87] [-0.93] [-0.87]

D10∙CF -0.023 -0.019 -0.018 -0.019

[-3.26] [-2.79] [-2.71] [-2.75]

Dother∙HF -0.008 -0.008 -0.008 -0.066

[-1.31] [-2.08] [-2.09] [-2.39]

D1∙HF -0.016 -0.015 -0.014 -0.189

[-1.68] [-1.91] [-1.72] [-3.64]

D10∙HF -0.008 -0.013 -0.024 -0.055

[-0.59] [-1.13] [-1.63] [-0.92]

D1∙Q1∙HF 0.011

[1.32]

D10∙Q1∙HF -0.088

[-0.91]

D1∙Q5∙HF -0.817

[-1.19]

D10∙Q5∙HF 0.005

[0.27]

Dother∙HF∙ILLIQ -0.003

[-2.14]

D1∙HF∙ILLIQ -0.010

[-3.56]

D10∙HF∙ILLIQ -0.002

[-0.55]

Dother∙I/O -0.006 -0.004 -0.006

[-1.70] [-1.36] [-1.75]

D1∙I/O -0.004 -0.005 -0.005

[-0.88] [-1.08] [-1.11]

D10∙I/O -0.008 -0.003 -0.008

[-0.91] [-0.42] [-0.90]

Leverage -0.003 -0.003 -0.003

[-0.65] [-0.69] [-0.68]

ILLIQ -0.003 -0.004 -0.002

[-2.94] [-3.91] [-2.62]

Size -0.005 -0.005 -0.005

[-3.64] [-3.70] [-3.66]

The table reports the results of Fama- MacBeth regressions of returns on idiosyncratic volatilities, cash-flow volatility, hedge-fund ownership, and other control variables. Three 

different specifications are considered based on the interaction between illiquidity and hedge-fund ownership. Models (1) – (4) are basic regression models that exclude any 

interaction term between illiquidity and hedge-fund ownership. Model (5) estimate the following regression: 

 

Ri,t+1 = α + β1IVi,t + ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}β
j'2D

j
i,tX1i,t+ ∑𝑞∈{1,5}∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}δ

𝑞,jQq
i,tD

j
i,tHFi,t + γ'X2i,t + εi,t 

  

where Ri,t+1 is monthly excess return for month t+1, IVi,t is monthly idiosyncratic volatility, X1i,t is a vector of the model variables, X2i,t is a vector of the control variables, the 

dummy variables Dj
i,t equal one for firms that belong to Decile j (for j=1, 10, or other) and zero otherwise, and the dummy variables Qq

i,t equal one if a stock belongs to 

illiquidity Quintile q (q=1 for liquid firms and q=5 for illiquid firms) and zero otherwise. The model variables include the idiosyncratic cash-flow volatility, CFi,t, measured in 

previous calendar quarter and the hedge-fund ownership, HFi,t, at the end of previous calendar quarter. The control variables include non-hedge-fund institutional ownership (at 

the end of previous quarter), firm leverage (at the end of previous quarter), illiquidity (during previous quarter), ILLIQi,t, and size (at the end of month t). Model (6) estimate the 

following regression: 

 

Ri,t+1 = α + β1IVi,t + ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}β
j'2D

j
i,tX1i,t+ ∑𝑗∈{1,10,𝑜𝑡ℎ𝑒𝑟}δ

𝑗Dj
i,tHFi,tILLIQi,t + γ'X2i,t + εi,t. 

 

Idiosyncratic cash-flow volatility is estimated following Irvine and Pontiff (2010). Hedge-fund ownership is percentage holdings of institutions which are identified as hedge 

funds. A list of hedge fund names is obtained from Lipper/TASS. Institutional holding data is from 13F available through CDA Spectrum database of Thompson Financials. 

Illiquidity is estimated  following Amihud (2002). Size is the natural logarithm of market capitalization at the end of previous month. Standard errors are clustered within each 

year and T-statistics are reported in the brackets. The sample period is from January 1994 to December 2008.  
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Figure 1. Time trend of the cross-sectional mean of idiosyncratic volatilities. The figure plots the time series 
of 12-month backward moving average of the cross-sectional mean of annualized monthly aggregate 
idiosyncratic volatility. The top panel shows the time-series up to 1997, to compare with the result of Campbell, 
Lettau, Malkiel, and Xu (2001). The bottom panel extends the sample period to 2008. The idiosyncratic 
volatility is estimated following Ang, Hodrick, Xing, and Zhang  (2006). Specifically, for each stock-month, 
daily returns are regressed on Fama-French three factors. Residuals from the regressions are squared and 
averaged over the month to measure the idiosyncratic volatility. Daily returns of common stocks (share code in 
10 and 11) are obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for the period 
1963−2008. Stocks with less than $2 at the end of the previous year or less than 100 trading days during the 
previous year are excluded. 
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Figure 2. Time trends of the higher cross-sectional moments of idiosyncratic volatilities. The figure plots 
the time series of 12-month backward moving average of the cross-sectional moments of monthly idiosyncratic 
volatilities. Panel A, B, and C show value-weighted cross-sectional variance, skewness, and kurtosis of monthly 
idiosyncratic volatilities, respectively. The idiosyncratic volatility is estimated following Ang, Hodrick, Xing, 
and Zhang  (2006). Specifically, for each stock-month, daily returns are regressed on Fama-French three factors. 
Residuals from the regressions are squared and averaged over the month to measure the idiosyncratic volatility. 
Daily returns of common stocks (share code in 10 and 11) are obtained from CRSP for the shares traded in 
NYSE, AMEX, and Nasdaq for the period 1963−2008. Stocks with less than $2 at the end of the previous year 
or less than 100 trading days during the previous year are excluded. 
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Figure 3. Time trend of the share of each idiosyncratic volatility decile in the aggregate idiosyncratic 
volatility. Panel A shows the time series of the share of each decile of the idiosyncratic volatility in the 
aggregate idiosyncratic volatility of the cross-section. Panel B shows the shares of the 1st (low volatility) and the 
10th (high volatility) deciles. A 12-month backward moving average is used to obtain a smoothed time series in 
both panels. In Panel B, each time series is normalized through dividing by its beginning-of-the-sample value. 
The share of a decile in the aggregate idiosyncratic volatility is calculated as follows. For each stock-month, 
daily returns are regressed on Fama-French three factors. Residuals from the regressions are squared and 
averaged over the month to measure idiosyncratic volatility, following Ang, Hodrick, Xing, and Zhang (2006). 
Then stocks are ranked into deciles based on their idiosyncratic volatilities. Finally, the share of each decile in a 
given month is calculated as the ratio of value-weighted sum of idiosyncratic volatility of the stocks in the 
decile to the value-weighted sum of stocks in the entire cross-section. Daily returns of common stocks (share 
code in 10 and 11) are obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for the period 
1963−2008. Stocks with less than $2 at the end of the previous year or less than 100 trading days during the 
previous year are excluded. 
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Figure 4. Time trends of the extreme deciles of the idiosyncratic volatility in illiquidity and size quintiles. The figure 
plots the shares of the 1st (low volatility) and the 10th (high volatility) deciles of the idiosyncratic volatility in illiquidity and 
size quintiles. A 12-month backward moving average is used and each time series is normalized through dividing by its 
beginning-of-the-sample value. The first row shows illiquidity and size Quintile 1 and the last row shows Quintile 5. 
Illiquidity Quintile 1 (Quintile 5) is the group of most (least) liquid stocks and size Quintile 1 (Quintile 5) is the group of 
stocks with smallest (largest) market capitalization. Illiquidity and size quintiles are constructed based on the yearly 
measure of illiquidity of previous calendar year or market capitalization of previous month. For each stock-month, daily 
returns are regressed on Fama-French three factors. Residuals from the regressions are squared and averaged over the 
month to measure idiosyncratic volatility, following Ang, Hodrick, Xing, and Zhang (2006). Then within a quintile, stocks 
are divided into deciles based on their idiosyncratic volatilities. Finally, the shares of the extremes deciles of the 
idiosyncratic volatility in a given month are computed as the ratio of value-weighted sum of the idiosyncratic volatility of 
the stocks in the decile to the value-weighted sum of stocks in the entire cross-section of the quintile. Daily returns of 
common stocks (share code in 10 and 11) are obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for 
the period 1963−2008. Stocks with less than $2 at the end of the previous year or less than 100 trading days during the 
previous year are excluded. 
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Figure 5. Time trends of the extreme decile portfolios during event time. Panel A reports the time-series averages 
of the extreme decile portfolios' share in the aggregate idiosyncratic volatility in event time. Panel B plots the average 
decile affiliation of the stocks in the extreme portfolios in event time. Stocks are ranked into deciles based on their 
idiosyncratic volatilities, and Decile 1 and Decile 10 portfolios are constructed each month (t=0). The portfolios are 
held for 60 months post-formation and are also traced back for 24 months pre-formation. The share of each extreme 
decile portfolio in a given month during the event time is calculated as the ratio of value-weighted sum of idiosyncratic 
volatility of the stocks in the portfolio to the value-weighted sum of stocks in the entire cross-section. For the sample 
period from July 1963 to December 2008, 455 extreme decile portfolios are constructed and the averages of the 
portfolios are plotted. Daily returns of common stocks (share code in 10 and 11) are obtained from CRSP for the 
shares traded in NYSE, AMEX, and Nasdaq for the period 1963−2008. Stocks with less than $2 at the end of the 
previous year or less than 100 trading days during the previous year are excluded. 
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Figure 6. Time trends of the extreme deciles of idiosyncratic volatility in a sample of random firms and 
the S&P 500 index. The figure plots the shares of the 1st (low volatility) and the 10th (high volatility) deciles of 
the idiosyncratic volatility in the aggregate idiosyncratic volatility of subsamples. Panel A shows the time trends 
in the sample that consists of 1,000 firms randomly selected every month during the sample period. Panel B 
plots the time trends in the sample that consists of firms in S&P 500 index. A 12-month backward moving 
average is used and each time series is normalized through dividing by its beginning-of-the-sample value. For 
each stock-month, daily returns are regressed on Fama-French three factors. Residuals from the regressions are 
squared and averaged over the month to measure idiosyncratic volatility, following Ang, Hodrick, Xing, and 
Zhang (2006). The share of each decile in a given month is calculated as the ratio of the value-weighted sum of 
idiosyncratic volatilities of the stocks in the decile to the value-weighted sum of stocks in the entire cross-
section of the subsamples. The sample period is from July 1963 to December 2008. 
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Figure 7. Time trends of the extreme deciles of positive and negative idiosyncratic shocks. The top 
(bottom) panel plots the time-series of the shares of the extreme deciles of positive (negative) idiosyncratic 
shocks in the aggregate positive (negative) shocks. A 12-month backward moving average is used and each 
time series is normalized through dividing by its beginning-of-the-sample value. For each stock-year, daily 
returns are regressed on Fama-French three factors. Residuals from the regressions are divided into positive and 
negative groups. Within each group, residuals are squared and averaged over a month to estimate the positive 
(negative) idiosyncratic shocks for the month. Daily returns of common stocks (share code in 10 and 11) are 
obtained from CRSP for the shares traded in NYSE, AMEX, and Nasdaq for the period 1963−2008. Stocks with 
less than $2 at the end of the previous year or less than 100 trading days during the previous year are excluded. 



 
 
Figure A1. Dynamics of the idiosyncratic risk. The figure illustrates the evolution of idiosyncratic shock of a 
stock under various scenarios. F1 is the initial capital of Long/Short-Equity manager, and S is the cash-flow 
shock to the stock in Phase one. In Phase two, the shock either intensifies to S or disappears.. Dotted arrows 
and dashed arrows represent the dynamics of idiosyncratic shock when the shock disappears by Phase two and 
when it intensifies, respectively. Shocks denoted by B represent bottom-quintile shocks, while shocks denoted 
by T represent top-quintile shocks of the cross-section. As initial capital, F1, increases, the solid vertical line 
moves down increasing bottom-quintile idiosyncratic return shocks and increasing top-quintile idiosyncratic 
return shocks.  
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