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Abstract 

 

This paper empirically investigates the tranching and tranche pricing of European 

securitization transactions of corporate loans and bonds. Tranching allows the originator to 

issue bonds with strong quality differences and thereby attract heterogeneous investors. We 

find that the number of differently rated tranches in a transaction is inversely related to the 

quality of the underlying asset pool. Credit spreads on rated tranches in a transaction are 

inversely related to the number of tranches. For all rated tranches in a transaction, the average 

price for transferring a unit of expected default loss is inversely related to the default 

probability of the underlying asset pool. For a tranche, this price increases with the rating of 

the tranche; it is higher for the lowest rated tranche and very high for Aaa-tranches in true 

sale-transactions. It varies little across butterfly spreads obtained from rated tranches except 

for the most senior spread.  
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1 Introduction 
The financial crisis starting in 2007 is intimately related to the securitization of mortgage 

backed securities. The crisis triggered a general discussion on the future of securitization 

including the role of originators and rating agencies. Currently, banks and regulators attempt 

to revive securitization because it is considered an important instrument for trade and 

allocation of default risks. The purpose of this paper is to analyse the tranching and pricing of 

bond tranches issued in a sample of European CDO (collateralized debt obligation)-

transactions. Investors and originators can evaluate the costs and benefits of securitization 

only if they understand tranching and pricing. These properties are also important 

determinants of the social costs and benefits of securitizations. Mispricing of tranches, for 

example, might lead to misallocation of risks and necessitate regulation. Hence it is important 

to know more about the determinants of tranching and pricing. We analyse tranching and 

pricing because both are interdependent. In a perfect market tranching would be irrelevant. 

Market imperfections drive tranching and pricing.  

CDO-transactions can be split in CLO- and CBO-transactions. In a collateralized loan 

obligation (CLO)-transaction a bank usually securitizes part of its corporate loans. In a 

collateralized bond (CBO)-transaction, a bank or an investment company buys corporate 

bonds, pools them and securitizes the asset pool. The transaction is either a true sale or a 

synthetic transaction. In a true sale transaction the originator sells the asset pool without 

recourse to a special purpose vehicle which funds itself through issuing an equity tranche and 

rated tranches. The allocation of default losses to the issued tranches is governed by strict 

subordination. The equity tranche is usually not rated and called the First Loss Position (FLP). 

All default losses of the underlying asset pool are allocated exclusively to the FLP until it is 

exhausted. Losses exceeding the FLP are allocated exclusively to the tranche with the lowest 

rating until it is exhausted, then exclusively to the tranche with the second lowest rating and 

so on. Therefore, the rated tranches exhibit strong quality differences. Strict subordination can 

be characterized also by the attachment and detachment point of tranches. These points are 

defined by special portfolio loss rates, i.e. ratios of default losses over the par value of the 

underlying asset pool. The attachment point of a tranche defines the portfolio loss rate such 

that the tranche incurs (no) losses whenever the portfolio loss rate is above (below) the 

attachment point. The detachment point of a tranche equals its attachment point plus its size, 

with the size of a tranche being its par value divided by the par value of the asset pool. 

Whenever the portfolio loss rate exceeds the detachment point of a tranche, then this tranche 

is fully exhausted by default losses. The detachment point of a tranche also defines the 

 - 2 -



attachment point of the tranche with the adjacent better rating. In a true sale-transaction the 

sizes of the First Loss Position and the rated tranches add up to about 1. The investors buying 

the rated tranches take the Second Loss Position.  

In synthetic transactions loss allocation is somewhat different. The originator transfers the 

default risk of the underlying asset pool to a special purpose vehicle through a credit default 

swap. The special purpose vehicle also issues differently rated tranches, but usually only for a 

small portion of the par value of the asset pool. The size of the FLP is a threshold of the 

portfolio loss rate such that the credit default swap only covers losses beyond the FLP. The 

credit default swap covers losses only up to its par value. This par value defines a Second 

Loss Position taken by the investors who buy the rated tranches from the special purpose 

vehicle. Losses which exceed the sum of the FLP and the par value of the credit default swap 

are born by the originator unless she insures against these losses. These non-securitized losses 

on the super-senior claims define a Third Loss Position. Such a position does not exist in true 

sale transactions. The originator cannot use the proceeds from issuing tranches in a synthetic 

transaction for funding. Fig. 1 illustrates the relation between the tranche losses and the asset 

pool loss rate for a synthetic transaction, assuming a BB-, a A- and a Aaa-tranche. 

 

                                                -  Fig. 1 - 

To our best knowledge, this paper is the first to look at the interdependencies between 

tranching, pricing and asset pool quality. In an imperfect market, tranching and pricing may 

matter because of regulatory costs, management and transaction costs, costs related to 

asymmetric information, illiquidity premiums. As the size of the FLP has been investigated in 

another paper (Franke, Herrmann and Weber 2011), this paper analyses the tranching and 

pricing of rated tranches. In our sample of CDO-transactions corporate loans and bonds are 

securitized, as opposed to mortgage-backed securities transactions. The rating agencies have 

been criticised for overly optimistic ratings of mortgage-backed securities, but not for their 

ratings of CDO-transactions. The ratings of corporate loans and bonds have been quite stable 

until 2008. This also holds for the securitization of these instruments (Newman et al (2008)). 

Therefore insights from CDO-transactions launched before the crisis still appear valuable for 

understanding securitizations.  

The main findings of this paper can be summarized as follows. First, the number of 

differently rated tranches varies between 1 and 6. It tends to be higher for an asset pool of 

lower quality, i.e. a portfolio with a higher expected default loss or less diversification. For a 

lower asset pool quality a more differentiated tranching apparently pays for the originator. 
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Also, a larger asset pool appears to raise the number of differently rated tranches, indicating 

economies of scale effects. The tranche ratings are concentrated in the high rating classes. 

About 14 percent of the tranches are sub-investment grade. For lower quality-asset pools we 

often observe more tranches with lower ratings. Yet, within a transaction, tranches tend to be 

clustered more in the range of high than of low ratings.  

In 88 percent of the transactions there exists a Aaa-tranche. In true sale-transactions, we 

observe very thick Aaa-tranches while in synthetic transactions the Aaa-tranche is usually 

very thin. Thickness or size of a tranche is defined by the par value of the tranche, divided by 

the par value of the underlying asset pool. In true sale-transactions the originator maximizes 

the size of the Aaa-tranche since the credit spread on this tranche is lower than that on any 

other tranche. In synthetic transactions the originator chooses a thin Aaa-tranche. This tranche 

may be an important quality signal for investors and regulators. But it is likely to be of little 

use in transferring default risk. Given high credit spreads of Aaa-tranches relative to corporate 

bonds and the restriction in synthetic transactions that the originator cannot use the proceeds 

from issuing tranches for her funding, presumably it does not pay to issue a volume of the 

Aaa-tranche higher than that needed for signalling purposes. 

Second, given the asset pool and the FLP, the originator tranches so as to minimize the 

weighted average credit spread paid on the rated tranches plus her transaction costs, besides of 

other costs such as the costs of required equity capital. Since weighted average credit spreads 

cannot be reasonably compared across transactions, we analyse annual risk premiums. The 

annual risk premium of the rated tranches in a transaction is defined as the weighted average 

credit spread minus the expected annual default loss borne by the rated tranches, i.e. the 

difference between the expected annual loss under the risk-neutral and the true probability 

measure. To derive it, we approximate the probability distribution of the default loss of the 

asset pool by a lognormal distribution. This is clearly an approximation which could lead to 

biased results. We find for true sale-transactions that the annual risk premium of all rated 

tranches increases with the weighted average default probability of the underlying asset pool. 

This is not surprising since a higher weighted average default probability tends to raise the 

volume of transferred default losses which in turn should raise the risk premium. The risk 

premium declines in the number of rated tranches. More tranches apparently allow the 

originator to better tailor the tranches to differentiated investor needs so as to extract more 

investor rents. Also, a higher number of tranches provides more information to investors and, 

thus, may mitigate information asymmetry and thereby reduce credit spreads.  

 - 4 -



Third, consider the mean stochastic discount factors in securitization transactions. The mean 

stochastic discount factor of all rated tranches in a transaction is the weighted average of the 

stochastic discount factors, implicit in the tranche credit spreads. The weights are given by the 

default losses borne by the rated tranches, multiplied by the respective probability densities. 

The higher the mean stochastic discount factor, the higher is the average price for transferring 

default risk.  Our findings indicate that this price declines in the weighted average default 

probability of the underlying asset pool and increases in the size of the FLP. A higher 

weighted average default probability tends to concentrate default losses in “cheap” macro 

states, i.e. in states with low stochastic discount factors. This property should also hold for all 

rated tranches together. Consistent with this, a higher share of expected default losses borne 

by the FLP raises the average price because it tends to take away default losses in the “cheap” 

macro states. A higher number of tranches lowers the average price, consistent with extracting 

more investor rents. The observed negative impact of asset pool diversification on the average 

price is consistent with an information asymmetry effect. More diversification tends to reduce 

information asymmetry which might reduce credit spreads. 

Fourth, the analysis of individual tranches mostly confirms the findings for the risk premiums 

of all rated tranches. While the risk premium of a tranche increases with the weighted average 

default probability of the underlying asset pool, the mean stochastic discount factor declines. 

A higher number of subordinated tranches tends to lower the risk premium of a tranche. This 

finding is not surprising since more subordinated tranches indicate a higher attachment point 

of the tranche, reducing its expected default loss. Interestingly, the explanatory power of the 

number of subordinated tranches is stronger than that of the attachment point. The negative 

impact of the number of subordinated tranches is also consistent with an information 

asymmetry effect since more tranches mitigate this asymmetry.  

Fifth, in general, the mean stochastic discount factor of a tranche increases with its attachment 

point, also with its rating. A higher attachment point tends to concentrate losses in the 

“expensive” macro-states. Against the rule, the mean stochastic discount factor is higher for 

the lowest rated tranche than for the mezzanine tranches. This suggests a complexity premium 

of the lowest rated tranche, perhaps for more expensive risk management of this tranche. 

Much more dramatic, however, is the very high mean stochastic discount factor of Aaa-

tranches in true sale-transactions. Aaa-tranches tend to incur default losses only in states in 

which the aggregate default losses are very high indicating high stochastic discount factors. 

Since Aaa-tranches should be very information-insensitive, the high mean stochastic discount 

factor cannot be explained by information sensitivity. To check the pricing kernel effects 
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more carefully, we also analyse butterfly spreads, similar to state-contingent claims. 

Surprisingly, we do not find a significant relation between the mean stochastic discount factor 

of a butterfly spread and its attachment point, with the exception of the top-butterfly spreads 

including Aaa-tranches in true sale-transactions. Hence the observation that the mean 

stochastic discount factor of a tranche increases with its attachment point should not be taken 

as evidence of a monotonically increasing pricing kernel.  

These findings are new, to our best knowledge, and improve our understanding of tranching 

and pricing in securitization transactions. The evidence is based on a set of European 

securitization transactions which may not be representative for other parts of the globe.  

 

The paper is organized as follows. The next section provides a literature review. Section 3 

derives hypotheses about tranching and pricing. These hypotheses are tested and discussed in 

section 4. Section 5 concludes.  

 

2 Literature Review  
Various theoretical papers analyse the optimal design of financial contracts. Several papers 

advocate the benefits of tranching in the presence of information asymmetry between the 

seller and the buyer of a claim. Tranching allows to differentiate the degree of information-

sensitivity of the issued securities. Boot and Thakor (1993) argue that a risky cash flow should 

be split into a senior and a subordinated security. The senior security is information-

insensitive and can be sold to uninformed investors while the subordinated security is 

information-sensitive and should be sold to informed investors. This allows the seller of the 

cash flow to raise the sales revenue. Riddiough (1997) extends this reasoning by showing that 

loan bundling allows for portfolio diversification which mitigates information asymmetries. 

DeMarzo (2005) considers a bank which may securitize a portfolio of debt claims by issuing a 

collateralized debt obligation. The bank can sell claims separately and, thereby, signal 

information about the quality of the different loans. Pooling the claims precludes this, but 

leads to a well-diversified portfolio mitigating information asymmetries. This allows the 

originator to issue low-risk, information-insensitive tranches. DeMarzo argues that for large 

portfolios the diversification benefit of pooling outweighs the information destruction cost.  

Malamud, Rui and Whinston (2009) analyse optimal tranching in a world with heterogeneous 

investor preferences. Investors buy different portfolios of tranches, the improved allocation of 

default risks lowers the average credit spread to be paid on tranches. Brennan, Hein and Poon 

(2009) assume that investors (erroneously) charge the same credit spread for a standard 
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corporate bond and a securitization tranche, given the same rating. They show that tranching 

then lowers the credit spreads to be paid, regardless of whether ratings are based on default 

probabilities or on expected default losses.  

Many papers discuss how to model the distribution of the portfolio default loss rate in 

securitizations. Duffie and Garleanu (2001) suggest a default risk model using obligor default 

intensities. They discuss Moody´s diversity score and illustrate the sensitivity of the portfolio 

loss rate distribution to various parameters including the weighted average default probability, 

the default correlation and the diversity score. Krahnen and Wilde (2008) simulate the 

portfolio loss rate distribution and the tranche loss rate distributions for CDO-transactions. 

The differences between the loss rate distributions of standard bonds and CDO-tranches are 

nicely illustrated1. Duffie et al (2009) argue that models underestimate the tail risks because 

they miss unobservable, non-stationary risk factors which raise default correlations. Also 

Berndt, Ritchken and Sun (2010) address default correlations in several ways. Tarashew 

(2010) shows that parameter uncertainty raises the tail risk. Albrecher, Ladoucette and 

Schoutens (2007) propose a generic one factor Lévy model for the portfolio loss rate 

distribution. Burtschell, Gregory and Laurent (2009) derive default intensities for CDOs 

using models with one latent factor and different copulas. Krekel (2008) proposes a Gaussian 

base correlation model with correlated recovery rates to improve the empirical model fit. 

Several empirical papers investigate single name-corporate bond spreads and find high 

expected excess returns, e.g. Driessen (2005) and Chen, Collin–Dufresne, Goldstein (2009). 

This is often referred to as the ‘credit spread puzzle’. Elton et al (2001) find that only a small 

fraction of credit spreads is explained by expected default losses, substantial fractions are 

explained by tax and liquidity effects. Other empirical papers study the tranching and pricing 

in securitizations. Amato and Remolona (2003) analyze the credit spread puzzle in 

collateralized bond obligations and find very high mean stochastic discount factors. They 

argue that, due to the strong skewness of the default loss distribution, idiosyncratic default 

risk cannot be fully diversified in typical bond portfolios, and therefore earns a significant 

premium.  

Childs, Ott and Riddiough (1996) investigate the pricing of Commercial Mortage-Backed 

securities (CMBS) and conclude that the correlation structure of the asset pool and the 

tranching are important determinants of the credit spreads of the tranches. Maris and Segal 

(2002) examine credit spreads in CMBS-transactions and document the impact of several 

macro-variables, similar to Duffee (1998). Titman, Tompaidis and Tsyplakov (2005) analyse 

determinants of credit spreads in MBS-transactions and find that spreads widen after poor 
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performance of real estate markets. Cuchra and Jenkinson (2005) conclude that the number of 

tranches in securitizations increases with sophistication of investors, with information 

asymmetry and with the volume of the transaction. Finally, Cuchra (2005) finds that ratings 

are important determinants of the tranche credit spreads. Longstaff and Rajan (2008) analyze 

the market prices of tranches on the CDX credit index. They find a three-modal loss rate 

distribution and attribute about two thirds of the CDX spread variations to firm specific risk, 

one fourth to market expectations about joint defaults of firms in an industry, the remaining 

small rest to systemic default risk.  

The paper which is closest to ours is Weber (2008). He uses credit spreads of tranches and 

information on the underlying portfolio quality to derive implied levels of relative risk 

aversion in synthetic CDO-transactions. He finds significantly higher levels of relative risk 

aversion for better rated tranches indicating high stochastic discount factors for defaults in 

states with high aggregate default losses. Deteriorating portfolio quality lowers relative risk 

aversion. Weber also finds that the lowest rated tranche of a transaction earns an additional 

risk premium and that lower portfolio diversification increases risk premiums for the two 

lowest rated tranches. He interprets this as evidence for additional costs due to information 

asymmetries. Finally, several recent papers address moral hazard issues in securitizations2, 

for example Purnanandam (2008), Loutskina and Strahan (2009), (2011) and Piskorski, Seru 

and Vig (2010). 

 

3 Derivation of Hypotheses 
This section derives hypotheses about tranching and pricing in securitization transactions. 

Given the underlying asset pool in a transaction, tranching is defined by the size of the non-

rated FLP, the number and the properties of the rated tranches, in particular their attachment 

and detachment points and their ratings. The originator decides about tranching and credit 

spreads of rated tranches, in cooperation with rating agencies and major investors. Rating 

agencies play an important role in this process. Their main tool for determining the 

attachment and detachment points of the tranches and their ratings are simulation models, 

supplemented by stress tests and the analysis of various transaction characteristics. We derive 

hypotheses about tranching and pricing by analysing, first, effects of market imperfections, 

and, second, pricing kernel effects.  
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3.1 Market imperfections and tranching  

Tranching and pricing are driven by market imperfections. They include transaction and 

management costs, incompleteness of capital markets, costs of regulatory equity capital, 

illiquidity and liquidity risks of securities, taxes and information asymmetries. Investors buy 

rated tranches to optimize their expected net income and their risk. Net income is defined as 

the gross income (= interest income - funding costs - default losses) minus other costs 

including transaction costs and taxes. Investors demand credit spreads which compensate 

them for their costs and the tranche risks. The level of these costs and risks may depend on 

tranching.  

 

3.1.1 Market incompleteness, portfolio quality and information asymmetry 

If markets are incomplete, then adding new securities which are not spanned by existing 

securities is mostly beneficial (Marin and Rahi (2000)). New securities enlarge the set of 

trading opportunities for investors and, thus, allow them to put together portfolios which 

better fit their needs. This should lower credit spreads and, thus, motivate the originator to 

issue many rated tranches (Malamud, Rui and Whinston (2009))3.  

Arguments for tranching can also be derived from information asymmetry between the 

originator and investors. (1) According to Boot and Thakor (1993) and DeMarzo and Duffie 

(1999) the originator should sell the information-insensitive senior bonds and perhaps retain 

the information-sensitive junior bonds. This idea can be extended to the subset of rated 

tranches. More differently rated tranches allow for more differentiation of information 

sensitivity and, thus, may better fit investor needs. (2) A higher number of rated tranches 

provides more information to investors. For each rated tranche, the attachment and the 

detachment points together with the rating and the credit spread are published. This additional 

information helps investors to more reliably infer the parameters of the portfolio loss rate 

distribution. (3) Suppose that tranche-ratings are governed by tranche-default probabilities as 

is true of S&P and Fitch. Split one tranche with a given size and a given rating into two 

tranches which together have the same size. Hence the new senior tranche has a better rating. 

As ratings affect credit spreads in the presence of information asymmetries, tranche splitting 

should reduce the overall credit spread paid on both tranches (see also Brennan, Hein and 

Poon 2009). (4) A higher number of rated tranches may provide investors of senior tranches 

with more early warning signals. Each time a subordinated tranche is hit by default losses for 

the first time, a signal is sent. The more rated tranches exist, the more signals are sent, the 
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smaller information asymmetry may be, perhaps leading to smaller credit spreads. The 

preceding arguments motivate  

 
Hypothesis 1: Given the underlying portfolio quality and the size of the equity tranche, a 

higher number of differently rated tranches reduces the weighted average credit spread of the 

rated tranches. 

 

The optimal number of tranches chosen by the originator depends on marginal costs and 

benefits of tranches. These costs increase in the number of tranches. As the marginal benefit 

declines, an interior optimal number of tranches should exist. Due to economies of scale-

effects, a higher transaction volume should raise the marginal tranche benefit, and, thus, the 

optimal number of tranches.  

The marginal benefit of a tranche should be inversely related to the quality of the underlying 

asset pool for two reasons. First, given a very good quality, there is little to be gained from 

tranching. Hence we should observe only a few tranches. For a low asset pool quality, the loss 

rate distribution would have a high mean and be broad providing more room for differently 

rated tranches.  

Second, the marginal benefit of a tranche should be higher, the stronger is the information 

asymmetry between the originator and investors. This asymmetry cannot be observed directly. 

We proxy it by the asset pool quality. We conjecture an inverse relation between asset pool 

quality and information asymmetry. Rating agencies publish information on the asset pool 

quality. It can be measured by the weighted average default probability of the asset pool 

(WADP) and its diversity score (DS). WADP is an average of the default probabilities of all 

assets, weighted by the par values of assets. Since the loss given default for each asset is often 

not available, assume that it is a constant being the same for all assets. Then the expected 

portfolio loss rate equals WADP, multiplied by this constant. The second measure of asset 

pool quality is asset pool diversification given by Moody´s Diversity Score (DS) or, in a 

refined version, the adjusted diversity score (ADS). An increase in WADP lowers asset pool 

quality while an increase in DS improves it. Errors in estimating WADP are likely to be 

proportional to the true WADP, implying a positive relation between WADP and information 

asymmetry. But a high DS reduces information asymmetries because the idiosyncratic risks of 

the assets are diversified away (DeMarzo (2005)). This inverse relation between asset pool 

quality and information asymmetries is also consistent with the empirical findings about asset 

pool quality and loss allocation in Franke, Herrmann and Weber (2011). They find that a 

better quality reduces the size of the FLP. The FLP is the most important credit enhancement 
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in a securitization to mitigate problems of adverse selection and moral hazard. Hence we use 

asset pool quality as an inversely related proxy for information asymmetry. The preceding 

arguments suggest 

 

Hypothesis 2:  

a) The optimal number of differently rated tranches is inversely related to the quality of the 

asset pool. 

b) The optimal number of differently rated tranches grows with the transaction volume. 

 

3.1.2 Costs of Equity Capital and Funding Costs 

Within a transaction the credit spread is lower for a tranche with a better rating. Hence the 

originator minimizes the attachment point of the Aaa-tranche to minimize credit spreads. Also 

regulators require less equity capital for a better rated tranche under Basel II4. Therefore, the 

originator maximizes the size of the Aaa-tranche in a true sale-transaction. 

As shown by Franke, Herrmann and Weber (2011), synthetic transactions are preferred to 

true sale transactions by banks with a strong rating. For them funding through standard bank 

bonds appears to be cheaper than funding through a Aaa-tranche. Also a Aaa-tranche does not 

allow a substantial default risk transfer so that we should not observe Aaa-tranches in 

synthetic transactions. Yet, most synthetic transactions include a Aaa-tranche. The purpose of 

this tranche may be to provide a quality signal to investors and regulators. Also the quality of 

the non-securitized super-senior tranche should be even better than that of the Aaa-tranche, 

implying very little regulatory capital and low cost of insuring against the default risk for the 

super-senior tranche. For these purposes, a very small Aaa-tranche should suffice in synthetic 

transactions. This motivates 

 
Hypothesis 3: In true sale-transactions the originator chooses a very large Aaa-tranche, in 

synthetic transactions a very small Aaa-tranche. 

 
3.2 Risk Premiums of Rated Tranches and Stochastic Discount Factors 

3.2.1 Some Foundations  

Credit spreads of bonds are driven by expected default losses, pricing kernel effects, tax, 

liquidity, maturity and other effects (Driessen 2005). This should also be true for initial credit 

spreads of tranches in securitization transactions. We do not have data on taxes, transaction 

costs and liquidity premiums for our set of European transactions. Therefore we refrain from 

modelling these determinants of credit spreads. We assume that they are taken into account in 
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the pricing kernels which determine the credit spreads. To investigate the pricing of default 

losses in securitization transactions, we focus on pricing kernel effects, on the effects of 

differences in the quality of the asset pools in securitization transactions, and on information 

asymmetry effects. We start with the (annualized) risk premium of a rated tranche,  

risk premium of tranche = tranche credit spread  

 - expected tranche loss per € invested /transaction maturity. 

Since the credit spread is the spread earned per € invested, we subtract the annualized 

expected tranche loss per € invested. It equals the expected default loss borne by the tranche 

divided by its par value and by the maturity of the transaction. Without loss of generality, we 

assume a par value of 1 € for the transaction volume. Then the default loss of the asset pool 

equals its loss rate and the par value of a tranche equals its size. For simplicity, the tranche 

loss per € invested is denoted the tranche loss. 

Let lτ and li denote the annualized random default loss of asset pool τ resp. tranche i of 

transaction τ. Ψ(lτ)  is the pricing kernel for transaction τ, i.e. all rated tranches of transaction τ 

are priced by this transaction-specific pricing kernel.  Then the risk premium of tranche i, RPi, 

is  

RPi = E[li Ψ(lτ) ] - E( li ) = cov [li , Ψ(lτ) ].                                             (1) 

Equation (1) assumes E( Ψ(lτ)) = 1 as in a perfect capital market. Since the tranche loss li 

weakly increases in the asset pool loss lτ, the risk premium should be positive given that Ψ(lτ) 

increases with the asset pool loss.  

The properties of the pricing kernel, or equivalently, the stochastic discount factor (SDF), can 

be seen more clearly by dividing the risk premium of tranche i by its expected loss,  

RPi / E( li ) = E[li  ( Ψ(lτ) -1 ) ] / E( li ) =: EQi ( Ψ(lτ) -1 )                          (2) 

Hence this ratio gives the weighted average of the stochastic discount factor minus 1 with the 

weight being the loss of tranche i multiplied by its probability density, divided by the 

expected tranche loss. We call EQi ( Ψ(lτ) ) the mean tranche-stochastic discount factor. 

Many papers study the stochastic discount factors implicit in corporate bonds and find that 

they tend to be lower for bonds and loans with a lower rating. For European Aaa, Aa, A and 

Baa rated bonds Amato/Remolona (2003) find average ratios of credit spreads over annualised 

expected losses of 210, 35, 6.7 and 1.6, respectively. For the US, they report 625 for Aaa-

bonds and 2.2 for Baa-bonds. Berndt et al (2005) find that the ratio of risk neutral over actual 

default intensities is higher for safer firms. Similarly, Chen et al (2009) find much higher 
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values for Aaa- than for Baa-firms. Similar effects should also be observed for securitizations 

with different WADPs of the asset pools. Weber (2008) looked into synthetic transactions and 

derived the portfolio loss rate distribution by a simulation model. Using a pricing kernel with 

constant relative risk aversion, he finds that the estimated relative risk aversion is highest for 

the Aaa-tranche and lower for lower rated tranches except for the lowest rated tranche. It 

should be kept in mind that the estimation of the tail risk of Aaa-tranches is particularly 

sensitive to estimation errors. Therefore the estimates of the Aaa-tranche risk premiums 

should be interpreted with caution.   

The intuition for all these findings is that default losses of the better rated bonds are more 

heavily concentrated in bad macro-states with high stochastic discount factors. To model the 

pricing kernel effect, we assume that the stochastic discount factor depends on a macro-factor 

and, perhaps, an orthogonal industry-factor. The macro-factor might be the aggregate default 

loss rate in the economy. This would be true in a world in which investors only bear default 

risk. But even if investors also invest in stocks, it is likely that stock prices are depressed 

when default losses in the economy are high and vice versa. Therefore the stochastic discount 

factor is likely to be an increasing function of the aggregate default loss rate. It might also 

increase in industry-specific default rates. Given a rather well-diversified asset pool in a 

securitization transaction, it is likely that the asset pool-loss rate is strongly positively 

correlated with the aggregate default rate. Hence the transaction-specific stochastic discount 

factor should also increase with the aggregate default rate.  

For illustration, consider a standard linear Gordy-type model (2003) and combine it with the 

KMV-approach (see also Tarashew (2010)). We use this simple model to illustrate the basic 

idea which also holds in more sophisticated models. In this model, the date t - total market 

value of an obligor firm in industry j, V(t), divided by the current market value V(0), is driven 

by the aggregate default rate m, an orthogonal industry-factor nj and an idiosyncratic risk 

factor ε, all standardized to zero expectation and unit variance,  

 

V(t)/V(0) = a + σ[ - m √ρ - nj√ρ + ε √(1- ρ- ρ)]                                                      (3) 

 
-√ρ is the correlation coefficient between the firm value and the macro-factor, -√ρ the 

correlation coefficient between the firm value and the orthogonal industry-factor. V(t)/V(0) 

has an expectation of a and a standard deviation of σ. Suppose that the firm defaults when 

V(t) falls below a given trigger D. Then, assuming that the industry-factor and the 

idiosyncratic factor are normally distributed, the physical default probability PD of the firm, 

conditional on m, is given by  
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PD(m) = Prob(V(t) ≤ D│m) = N((-∆ + m√ρ)/√(1-ρ))                                        (4) 

 

with ∆ = (a-D/V(0))/σ being the distance to default and N(.) the cumulative standard normal 

distribution. Clearly, the conditional PD increases with the aggregate default rate if ρ> 0. It 

should be noted that we do not impose any distributional assumptions on the aggregate default 

rate. 

To see the impact of the macro-factor on tranche pricing, first consider a standard corporate 

bond. Then a lower obligor quality, measured by a smaller distance to default, should raise the 

risk premium, because default losses increase. Hence the covariance-term in (1) should 

increase. But, given a negative correlation between firm value and macro-factor, the mean 

bond-stochastic discount factor should decline because default losses should be concentrated 

relatively more in the “cheap” macro-states where the macro-factor, say the aggregate default 

rate, is low. To see this, differentiate ln PD(m) with respect to -∆ and then with respect to m 

    ∂² ln (PD(m)))/∂(-∆) ∂(m√ ρ) = - [N(y )y (y n(ym)/[ (1- ρ)N (y ],            (5) 

with ym =:  ( -∆ + m√ρ)/√(1- ρ). This derivative is negative whenever the first term in brackets 

on the right hand side is positive. This is true whenever ym   ≥    -4, i.e. PD(m) =N(ym) ≥ N(-4) 

≈ 0.. Hence, for ρ > 0, a lower obligor quality implies that default losses tend to grow faster in 

states with a lower aggregate default rate, i.e. in “cheaper” macro-states. Therefore, the mean 

bond-stochastic discount factor should decline with declining obligor quality. If the 

orthogonal industry-factor is also priced, this might reinforce the decline in the mean bond-

stochastic discount factor. This is in line with the empirical findings for corporate bonds. 

Similarly, the mean stochastic discount factor for a securitized asset pool should decline with 

declining pool quality. 

 

3.2.2 Implications for Securitizations  

a) Risk Premiums 

The preceding results allow us to derive hypotheses for securitization transactions. To see the 

effects of changes of the underlying asset pool on single tranches, we first repeat some basics. 

We model the effect of a higher weighted average default probability WADP of the asset pool 

as a first order stochastic dominance shift in the loss distribution. Hence a higher WADP 

raises the expected loss of the FLP and that of every tranche, given the attachment points of 

all tranches. We model the effect of a lower diversity score DS on the loss distribution of the 

asset pool as a second order dominance shift so that its risk increases. Hence a lower DS 
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implies a redistribution of default losses from the FLP to the rated tranches, given the size of 

the FLP.   

 

Hypothesis 4 (loss volume effect):  

a) Given the loss share of the First Loss Position, the risk premium of all rated tranches 

together increases with the weighted average default probability of the asset pool. 

b) An increase in the annualized expected loss of a tranche raises its risk premium. 

 

Hypothesis 4a) addresses the risk premium of all rated tranches together in a transaction. 

Assuming the same loss given default across transactions, the expected default loss rate of the 

asset pool is determined by its WADP. A higher expected loss rate of the asset pool raises the 

expected loss of the rated tranches, given the loss share of the First Loss Position. This share 

is defined as the expected default loss borne by the First Loss Position, divided by the 

expected loss of the asset pool. As shown in Franke, Herrmann and Weber 2011, the loss 

share is quite stable in our set of transactions. Hence, the expected losses of the rated tranches 

together should increase with WADP. Also, cov( ∑i li , Ψ(lτ) ) should increase so that, by 

equation (1), the risk premium should increase. This is not precisely true for synthetic 

transactions because the loss share of the non-securitized Third Loss Position might change. 

But this share is very small anyway so that we ignore it here.  

Hypothesis 4a) is driven by the volume of default losses borne by all rated tranches together. 

Note that a change in the diversity score of the asset pool would not change the expected loss 

of all rated tranches together, given a constant loss share. A volume effect should also exist 

for single tranches as stated in Hypothesis 4b. Whether an increase in the WADP of the asset 

pool raises the expected loss of a tranche, depends, however, also on the impact of WADP on 

the number of tranches. 

  

 

b) Mean Stochastic Discount Factors 

Next, we consider the mean tranche-stochastic discount factors for all rated tranches together 

and for single tranches. An increase in the attachment point of a tranche should, ceteris 

paribus, raise the mean tranche-stochastic discount factor because a higher attachment point 

tends to concentrate tranche losses in the range of “expensive” macro-states with high 

aggregate default rates. This motivates Hypothesis 5a.   
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Next, an increase in the WADP of the underlying asset pool has two opposing effects. First, 

as shown above, the mean transaction-stochastic discount factor should decline because a 

higher WADP concentrates default losses more in the “cheap” macro-states. But a higher 

WADP also raises the FLP so that losses tend to be concentrated more in the “expensive” 

macro-states. The net effect on the mean stochastic discount factor for all rated tranches 

together is open. A similar argument holds for the mean stochastic discount factor of a tranche 

with a given rating since the tranche-attachment point should also increase with WADP.  

To motivate Hypothesis 5b, assume a pricing kernel which is relatively flat for a wide range 

of macro-states and increases strongly in the bad macro-states. Then the attachment point 

effect should be relatively small for tranches with low attachment points. Therefore the mean 

tranche-stochastic discount factor of the lower rated tranches should decline with increasing 

WADP. For tranches with high attachment points, we might see the opposite result because 

the default losses are concentrated in the very bad macro states. Then the attachment point 

effect might dominate the WADP-effect.  

 

Hypothesis 5 (pricing kernel and attachment point effects):  

a) The mean tranche-stochastic discount factor increases with the tranche-attachment 

point.  

b) An increase in the weighted average default probability of the asset pool lowers the 

mean tranche-stochastic discount factor of tranches with a low rating and raises that of 

highly rated tranches. 

c) An increase in the diversity score of the asset pool lowers the mean tranche-stochastic 

discount factor of all rated tranches. 

 

Hypothesis 5c relates to asset pool diversification. A higher diversity score concentrates asset 

pool-default losses around the expected loss rate. Assuming value additivity, this should have 

no effect on the mean transaction-stochastic discount factor. Hence the effect of the DS on the 

mean tranche-stochastic discount factor should be driven mainly by the attachment point 

effect. Suppose that the attachment point is higher than the expected portfolio loss rate5. Then 

a higher DS should lower the attachment point of a rated tranche to preserve its default 

probability or its expected loss. As a consequence, according to Hypothesis 5a, the mean 

tranche-stochastic discount factor should decline.  

 

c) Information Asymmetry Effects 
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So far we have excluded information asymmetry effects. Since investors are averse to 

information asymmetry, this asymmetry should raise tranche-risk premiums. As compared to 

a perfect capital market with E( Ψ(lτ)) = 1, information asymmetry might raise this 

expectation above 1 so that credit spreads increase. This motivates 

 

Hypothesis 6 (information asymmetry effect): The risk premiums and mean stochastic 

discount factors of rated tranches increase with information asymmetry. Hence they are 

inversely related to asset pool quality, to the loss share of the First Loss Position and the 

number of rated tranches. 

 

The impact of asset pool quality and the number of rated tranches on information asymmetry 

has been discussed before. A higher loss share of the First Loss Position discourages the 

originator from adverse selection and moral hazard so that it should reduce information 

asymmetry problems. 

 

A final hypothesis concerns the importance of ratings. Rating agencies claim to have very 

good information so that information asymmetries have only small effects on ratings. This 

suggests that investors rely more on tranche rating than on asset pool quality and observable 

tranche properties. This motivates 

 
Hypothesis 7: The risk premium and the mean stochastic discount factor of a tranche are 

better explained by the tranche rating than by the underlying portfolio quality, the size and 

the attachment point of the tranche.  

 

4 Empirical Findings 
4.1 Summary Statistics 

These hypotheses will be tested in the following. Our empirical analysis is based on 167 

European CDO-transactions. Except for two poorly documented transactions, these 

transactions include all European CDO-transactions between the end of 1997 and the end of 

2005, for which we know Moody´s diversity score and for which we can derive WADP. 

These transactions represent about half of the European CDO-transactions over this time 

period. The data are collected from offering circulars, Moody´s presale reports on CDO-

transactions and from the Deutsche Bank Almanac.  

Moody´s diversity score DS was criticized as a diversification measure because it ignores 

correlations between obligors of different industries. The adjusted diversity score is a more 
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sophisticated diversification measure; it assumes an asset correlation ρex between all obligors 

in the underlying asset pool and an additional correlation ( ρint - ρex ) for obligors within the 

same industry. Rating agencies use these correlations in their simulation models to derive the 

loss rate distributions of asset pools. We use additional information on the industry structure 

of asset pools from securitization documents to derive the adjusted diversity score ADS. This 

is possible only for 92 transactions. We assume an intra-industry correlation ρint = 0.2 and an 

inter-industry correlation of ρex = 0.00, 0.02 or 0.04. There is no agreement on the “correct” 

asset correlations. As illustrated in Fender and Kiff (2004) and confirmed in informal 

discussions with the rating agencies, the assumed correlations appear to be roughly in line 

with those used by the agencies.  

First, we present some summary statistics (Table 1). About 48 % are true sale-transactions, 

about 52 % are synthetic. About 44 (56) % are CLO (CBO)-transactions. Most of the 

transactions were set up between 2000 and 2004.  

 

- Table 1- 

 

As shown in Table 2, the weighted average default probability (WADP) is, on average, much 

smaller for synthetic than for true sale-transactions. As expected, the FLP shows a similar 

pattern. CLO-transactions tend to be much better diversified than CBO-transactions.  

 

- Table 2 - 

 

To estimate the expected default loss rate of an asset pool, multiply WADP by the loss given 

default LGD. With few exceptions, we assume LGD = 50 percent, due to a lack of transaction 

specific information. Acharya et al (2007) find an average LGD of slightly below 50 percent 

for loans and bonds in the US. For 2 transactions with secured bonds we use LGD = 25 

percent, for some mezzannine transactions with subordinated, unsecured loans we use LGD = 

100 percent, in line with the rating agencies. 

Table 3 provides an overview of the tranching. In many transactions, there are some rated 

tranches which are not subordinated to each other. For example, two equally rated tranches 

are denominated in different currencies or one tranche pays a fixed coupon while the other 

tranche pays a floating rate. We count tranches of equal rating as one tranche because we 

focus on quality differentiation in tranching. As the upper and the lower panel in Table 3 

show, the number of tranches with different ratings varies between 1 and 6. Most transactions 
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have 3 to 5 differently rated tranches. 14 transactions have only one rated tranche (single-

tranche deals6) while 6 transactions have 6 tranches. In 9 transactions with 4 or 5 tranches 

there are two strictly subordinated Aaa-tranches which we count as two differently rated 

tranches. The total number of tranches with the same rating is, by far, the highest for Aaa. 88 

% of all transactions have at least one Aaa-tranche. Also, there is a concentration of tranches 

in Aa2, A2, Baa2 and Ba2 which correspond to the “even” S&P-ratings AA, A, BBB and BB. 

The tranches in the few-tranche-deals are mostly concentrated in the good rating classes. The 

more tranches are issued, the more likely low rated tranches are issued, too. About 14% of the 

tranches are subinvestment-grade. They exist mostly in 4, 5- and 6-tranche deals. B-rated 

tranches are issued only in synthetic deals with at least 4 tranches.  

 

- Table 3 - 
 

Additional evidence on tranche rating can be obtained by looking at the rating range and the 

average rating gap for transactions with at least two rated tranches. The rating range of a 

transaction, i.e. the range between the lowest and the highest rating within a transaction, is 

defined as (1 + the difference between the lowest and the highest rated tranche measured in 

rating notches). We assign 1 to the rating Aaa, 2 to Aa1, 3 to Aa2 and so forth until 16 to B3. 

Given at least two rated tranches, the minimum rating range is 2 while the maximum rating 

range is 16 (for a transaction with a Aaa- and a B3-tranche). Table 4 displays the medians of 

the rating range. It supports the visual impression of Table 3 that a higher number of tranches 

is associated with a wider rating range. Since most transactions have a Aaa-tranche, a higher 

number of tranches tends to add tranches with lower ratings. 

 

- Table 4 - 

 

In addition, define for each transaction 

average rating gap = ( rating range - number of rated tranches) /(number of rated tranches -

1). 

It indicates how many notches between two adjacent tranche ratings are missing on average 

within a transaction.While the median rating gap is 4 given 2 rated tranches, it declines to 2, 

given 4 or more rated tranches. Hence even though a higher number of tranches includes 

tranches with lower ratings, the median rating gap declines, indicating a stronger clustering of 

ratings. 
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If there are more than two rated tranches, then the question arises whether these tranches are 

clustered more in the higher or the lower rating range. Define for each transaction  

 

    rating asymmetry measure = ∑i (rating gap i/average rating gap of transaction) (i/∑i)   - 1 

 

The rating gap between two adjacent tranches is the difference between their numerical 

ratings minus 1, i.e. the number of missing notches between the two tranches. The rating gap 

between the two highest rated tranches is indexed by i = 1, the rating gap between the second 

and third best rated tranches is indexed i = 2 and so on. Rating gaps are attached a higher 

weight (i/∑i), the lower are the ratings of the adjacent tranches. The rating asymmetry 

measure is 0 when the rating gaps are the same for tranches with high and low ratings. The 

measure is positive when the rating gaps are larger between tranches with low ratings. In our 

sample the rating asymmetry measure has a mean of 0.087, a standard deviation of 0.20, a 

minimum of -1/3and a maximum of 1.17. This indicates that rating gaps tend to be stronger 

between tranches with lower ratings, i.e. ratings are clustered more in the higher rating range. 

Possibly a more differentiated tranching does not pay in the range of lower ratings because 

investors buying these tranches are more sophisticated and do not rely much on ratings. 

Another potential explanation might be that tranche sizes tend to be smaller in the range of 

low ratings so that it does not pay to split a small tranche. Therefore we next look at the 

tranche sizes (Table 5).  

 

- Table 5 - 

 
In true sale transactions the average size of the Aaa-tranche is large. It declines from 81% for 

single-tranche deals to 68% for deals with 6 rated tranches, with an average of about 76 %. In 

synthetic deals the average size of the Aaa-tranche varies between 3 % for single-tranche 

deals and 5 % for deals with 3 or 4 tranches, with an average of about 4.5 %. Thus, 

Hypothesis 3 is clearly supported. The small average size of Aaa-tranches in synthetic deals 

can be understood better in relation to the non-securitized super-senior tranche (Third Loss 

Position) which is on average about 87 % (excluding 3 atypical fully funded synthetic 

transactions). Adding this and the average size of the Aaa-tranche yields 91.5 % for synthetic 

deals. Hence the attachment point of Aaa-tranches is about 15 % higher in synthetic than in 

true sale transactions. This is due to the better quality of the asset pools in synthetic deals. The 

quality difference materializes also in the size of the FLPs. The average size of the FLP is 

about 8.7 % in true sale and 3.3 % in synthetic transactions. The aggregate size of all rated 
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non-Aaa-tranches is 100 – 8.7 – 76 = 15.3 % in true sale transactions, but only 100 – 3.3 - 87- 

4.5 = 5.2 % in synthetic transactions. This explains why the average size of the non-Aaa-

tranches tends to be much smaller in synthetic deals. For true sale transactions, Table 5 shows 

several examples of average tranche sizes above 10 % in the A-range, but for synthetic 

transactions only single tranche-deals provide one example. 

The average size of tranches rated below A3 is small. In most transactions, the size of a 

tranche tends to decline with its rating. But the originator cannot choose the tranche sizes 

arbitrarily because they are constrained through the default probabilities resp. the expected 

losses as defined by the rating agencies. As an example7 demonstrates, the tranche size does 

not decline monotonically with the tranche rating. Also, if two tranches with adjacent ratings 

are merged, then the merged tranche is rather thick. In our transaction sample, within a 

transaction the size of a tranche is larger than that of the adjacent lower rated tranche in about 

75 % and smaller in about 25 % of the cases. Surprisingly, in synthetic transactions we 

observe rather thin tranches with a rating below Ba3, which are absent in true sale-

transactions. Possibly there is more investor demand for low rated tranches in high quality 

synthetic transactions. 

A puzzling finding relates to the initial credit spreads of rated tranches. Within a transaction, 

the credit spread always increases from one tranche to the adjacent tranche with a lower 

rating. Fig. 2 plots the credit spreads of all rated tranches for all transactions on a logarithmic 

scale, differentiated with respect to the issuance quarter. For tractability, Fig. 2 differentiates 

only among the rating classes Aaa, Aa, A, Baa, Ba and B. Although the credit spreads for the 

A-related ratings are mostly below those for the B-related ratings, there is surprisingly much 

overlap in several issuance quarters. These overlaps can be explained neither by variations 

over time nor by different transaction maturities. Berndt et al (2005) also find a rather strong 

overlap of credit spreads for corporate bonds.  

 
- Figure 2 - 

 

4.2 Regression results 

Next we run regressions to test the hypotheses stated before. In all regressions we control for 

originator characteristics which may affect credit spreads and tranching decisions. We 

distinguish banks and investment firms as originators and include various characteristics of 

originating banks in our empirical analysis. In the regressions we include as controls  

- the tier 1-capital ratio and the total capital ratio,  

- capital structure: equity/total assets,  
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- asset structure: loans/total assets, 

- profitability: return on average equity capital in the transaction year, average return 

over the years 1994 to 2004, and the standard deviation of these returns as a proxy for 

profitability risk, 

- Tobin´s Q to proxy for the bank´s profitability and also for its growth potential, 

- the bank´s rating. Rating is captured by an integer variable which equals 1 for a Aaa-

rating and increases by 1 for every notch, with 16 for a rating of B3. A higher integer 

indicates a lower rating. 

These bank data are obtained from the Bank Scope Database. These data are not available for 

investment firms, some data are also missing for some banks. We subtract from each bank 

control variable its average to eliminate effects of averages. The standardized bank control 

variable then is multiplied by a dummy which is 1 for a bank if this variable is available and 0 

otherwise. In the regressions, reported in the following sections, insignificant regressors are 

mostly excluded and, thus, not shown. 

 

4.2.1 The Number of Tranches 

The first regression is a probit regression explaining the number of tranches in a transaction 

by several characteristics of the transaction and of the originator. For banks, the average 

return on equity and the loans/assets ratio have some explanatory power and therefore are 

included. We find 

         
Number of tranches = 
     .19 WADP + 9.6 1/ln ADS - .19 FLP + .58 ln vol -.70 CBO -.04 return on equity + .02 loans/assets 
   (0.0000)        (0.0377)      (0.0002)     (0.0004 )    (0.0101)   (0.0353)        (0.0068) 
 
                                                                                                                       Pseudo-R2 = 0.238 
 
The regression coefficients are shown together with their p-values (in parentheses). The 

regression is based on the 92 transactions for which we can derive the adjusted diversity score 

(ADS), based on asset correlations ρint = 0.20 and ρex = 0.02. FLP is the size of the FLP, 

defined as a fraction of the transaction volume. Vol is the €-volume of the transaction. CBO is 

a dummy which is 1 for a CBO-transaction and 0 otherwise. The regression indicates that the 

number of tranches is inversely related to the portfolio quality as stated in Hypothesis 2a. Not 

surprisingly, the FLP-size has a negative impact on the number of tranches because a larger 

FLP reduces the space for rated tranches. The positive impact of the transaction volume on 

the number of tranches clearly supports Hypothesis 2b. The negative sign of the CBO-dummy 
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indicates that the number of tranches tends to be smaller in CBO-transactions. This is not 

surprising since 13 out of 14 single tranche-deals are CBO-transactions. 

While the regression coefficient of WADP is stable in various regressions, the regression 

coefficient of 1/ln ADS depends on the regressors included. The regression coefficient for 1/ln 

ADS is positive even though the correlation coefficient between the number of tranches and ln 

ADS is 0.31.This sign reversal is intuitive since well diversified asset pools tend to have a 

high transaction volume and a small FLP, both suggesting a high number of tranches. 

Controlling for transaction volume and FLP reveals a negative impact of asset pool 

diversification on the number of tranches. 

Only two originator characteristics have a significant impact on the number of tranches. For 

banks as originators, a lower return of equity and a higher loan to assets ratio tend to raise the 

number of tranches. The positive impact of the loans to assets-ratio might indicate more 

securitization activity of the originating bank and, thus, a need for a broader investor base 

which might be easier to attract through more differentiated tranches. A lower return on 

equity might intensify a bank´s securitization activities to raise bank profits quickly as found 

by Titman and Tsyplakov (2010). The impact of these originator characteristics on the 

explanatory power of the regression is quite limited, however. If we exclude them, the 

pseudo-R2 decreases to 0.201.  

 

4.2.2 Aggregate Risk Premiums  

Next, we analyse the aggregate risk premiums, i.e. the sum of the risk premiums of all rated 

tranches in a transaction. The originator of a transaction minimizes the credit spreads on the 

rated tranches, given the asset pool quality and the FLP. The weighted average spread of all 

tranches should be inversely related to the number of differently rated tranches (Hypothesis 

1). Given the loss rate distribution of the asset pool, the FLP, and, in a synthetic transaction, 

the Third Loss Position, minimizing the weighted average credit spread is equivalent to 

minimizing the aggregate risk premium (ARP).  

As Moody´s does not publish expected tranche losses, we need to estimate them. The rating 

agencies use multi-period simulation models to derive the loss rate distribution of the asset 

pool. These models produce unimodal loss rate distributions. Given the strong impact of 

rating agencies in securitization, we also use a unimodal distribution. This may be dangerous. 

Longstaff/Rajan (2008) analysed the loss rate distribution of CDX-tranches and find a three-

modal loss rate distribution where the second (third) mode has a much smaller density than 

the first (second).  
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From Moody´s we know for each transaction WADP and DS of the asset pool and, for a 

restricted sample, the more refined adjusted diversity score (ADS). These two parameters 

allow us to use a two-parameter distribution. We assume that the loss rate distribution can be 

reasonably approximated by a lognormal distribution8. Also Moody´s (2000) used this 

distribution. The two parameters of this distribution are inferred from WADP and ADS as 

explained in Appendix 1. The lognormal distribution approximates the distribution, obtained 

from the simulation models of the rating agencies, reasonably well. This approximation 

allows us to use the Black-Scholes framework, and hence, to use analytic expressions for the 

expected tranche losses and the share of expected default losses of the asset pool borne by the 

FLP (see Appendix 2).  

Table 6 shows the regression results. Regressions are based on 37 true sale- and 45 synthetic 

observations. We have assigned the atypical 3 fully funded synthetic transactions to the true 

sale-sample. We distinguish true sale and synthetic transactions because the average 

aggregate risk premium (ARP) for true sale transactions is 39 basis points while it is 102 bp 

for synthetic transactions. This difference is due to the large non-sold super-senior tranche in 

synthetic transactions which is not included in ARP. In true sale-transactions the large Aaa-

tranches earn an average credit spread of 35 basis points, but they bear an annual expected 

loss per € invested of only 2.5 basis points so that the risk premium is about 32 bp. Hence the 

large Aaa-tranche strongly pulls down the ARP in true sale-transactions.  

 

- Table 6 - 
 

The first regression shows that in true sale-transactions the aggregate risk premium ARP 

increases with WADP. This supports the loss volume effect stated in Hypothesis 4a. A higher 

WADP imposes more default losses on investors and, hence, they charge a higher risk 

premium. A higher WADP is also associated with stronger information asymmetry which 

should also raise ARP, consistent with Hypothesis 6. According to this hypothesis, a lower 

diversity score should also raise ARP. But the regression coefficient of ln ADS is far from 

being significant so that we exclude this regressor.  

To account for different conditions in credit markets, we include the IBOXX-spread at the 

issuance date as a regressor. This spread is the difference between the BBB- and the 

government credit spreads for a maturity between 3 and 5 years. Not surprisingly, a higher 

IBOXX-spread raises ARP. More importantly, a higher number of rated tranches lowers ARP, 

supporting Hypothesis 1. Issuing more tranches allows the originator to better signal the asset 

pool quality and to better exploit heterogeneous investor preferences. One might expect also a 
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negative influence of the FLP-loss share. But this variable has no significant impact. This may 

be due to the observation that the loss share varies only little across transactions (Franke, 

Herrmann and Weber (2011)). 

The second regression indicates that a higher rating asymmetry measure tends to lower ARP. 

This measure is higher in a transaction where the tranche ratings are clustered more in the 

high rating range. This tends to reduce the weighted average credit spread and, hence, ARP. 

Originator characteristics do not play a significant role. 

Regressions (3) and (4) in Table 6 analyse ARP for synthetic transactions. Surprisingly, 

regression (3) shows a negative regression coefficient of WADP, significant at the 5%-level. 

When we include in regression (4) the number of tranches and the rating asymmetry measure, 

the coefficient of WADP is no longer significant. Hence the puzzling sign of the WADP-

coefficient in regression (3) may be driven by tranching effects. Moreover, in synthetic 

transactions WADPs are, on average, quite small and have small standard deviations (Table 

2) so that WADPs may convey little information. Again, a higher number of rated tranches 

and a higher rating asymmetry measure lower ARP, supporting Hypothesis 1. Now, adjusted 

diversity scores are significant. The negative coefficient suggests that investors may prefer 

highly diversified transactions because of smaller information asymmetry (Hypothesis 6). 

 

4.2.3 Mean Stochastic Discount Factor of all Rated Tranches in a Transaction 

To analyse pricing kernel effects, we first study the mean stochastic discount factor of all 

rated tranches in a transaction, ASDF.  Since ASDF is 7.8 for synthetic transactions and 27.5 

for true sale-transactions, due to the expensive Aaa-tranche in true sale transactions, we run 

regressions on ASDF first separately for true sale and synthetic transactions, then jointly for 

all transactions. The results are shown in regressions (5) to (8) in Table 6. 

In all these regressions WADP and ADS have a clearly negative impact on ASDF as 

suggested by the pricing kernel effect. As argued before, an increase in WADP should reduce 

the mean stochastic discount factor of the asset pool, and hence ASDF. Similarly, Hypothesis 

5 c predicts a negative effect of the diversity score.  

The FLP-loss share has a significant positive impact on ASDF in all four regressions. A 

higher loss share suggests a higher attachment point for the lowest rated tranche which, by a 

pricing kernel effect, should raise ASDF (Hypothesis 5 a). But a higher loss share also 

supports investor confidence and thus should lower ASDF (Hypothesis 6). Apparently, the 

pricing kernel effect dominates. As expected, the IBOXX-spread has a positive impact on 

ASDF. In line with Hypothesis 1, a higher number of rated tranches has a clearly negative 
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impact on ASDF in synthetic transactions (regression (6)), but not in true sale transactions 

(regression (5)). 

The synthetic dummy has a strongly negative impact on ASDF. By the pricing kernel effect, 

the better quality of asset pools in synthetic transactions suggests a higher ASDF, but the 

exclusion of the non-securitized super-senior tranche suggests a lower ASDF. Also, less 

information asymmetry due to the better quality of the asset pool suggests a lower ASDF. 

Apparently, the latter two effects dominate. Finally, originator characteristics are mostly 

irrelevant. But a bank with a higher total capital ratio and lower return variability tends to pay 

a smaller ASDF. Investors may have more confidence in an originator with better 

capitalization and less profitability risk. 

It is worth noting that the adjusted R²s are much higher for the ASDF- than for the ARP-

regressions. This indicates that the pricing of risk transfer in securitizations follows a common 

logic making it difficult to earn arbitrage profits by trading securitization tranches against 

each other.  

 

4.2.4 Pricing of Individual Tranches 

So far, we analysed properties of all rated tranches in a transaction. Next, we analyse 

properties of individual rated tranches. There are 4 tranches with an annual risk premium 

below -1 %. We exclude these tranches because of potential data errors. Since most 

transactions have more than one tranche, the residuals of tranches belonging to one 

transaction might be clustered. Therefore the p-values are estimated using a clustered residual 

robust variance matrix9. Originator characteristics play a small role in the aggregate risk 

premium and the mean stochastic discount factor of all rated tranches as shown above. Their 

empirical impact on properties of individual tranches is even smaller because tranche 

characteristics play a more important role. Therefore originator characteristics do not show up 

as regressors in the following regressions.  

 

First, we run OLS-regressions to explain the (annual) tranche risk premium (TRP). In the first 

regression of Table 7, WADP/maturity, a proxy for the expected annual asset pool loss, has a 

significant, positive impact on TRP, supporting a loss volume effect (Hypothesis 4). This is 

also consistent with an information asymmetry effect (Hypothesis 6). But asset pool 

diversification measured by the adjusted diversity score has no impact. The loss volume effect 

is supported by the FLP-impact. Since an increase in WADP/maturity raises the FLP in a 

linear regression with the coefficient 2.72, we use (FLP - 2.72 WADP/maturity) as a 
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regressor. Its negative coefficient indicates that a higher FLP takes away more default losses 

from the rated tranches and therefore reduces TRP.  

Surprisingly, the number of subordinated tranches adds more to the explanatory power of the 

regression than the strongly correlated attachment point. Therefore, regression (1) of table 7 

reports the regression coefficient of the number of subordinated tranches, but not that of the 

attachment point. A higher number of subordinated rated tranches reduces TRP. More 

subordinated tranches signal a higher attachment point and, thus, a smaller expected tranche 

loss which should reduce the annual tranche risk premium (Hypothesis 4 b). Also more 

subordinated tranches may provide more information about the tranche risk, thereby reducing 

risk premiums. There is a strong additional risk premium for the lowest rated tranche as 

shown by the positive regression coefficient for the lowest rated tranche-dummy. This tranche 

is particularly risky, it is the most information-sensitive rated tranche, also managing its risk 

is most complex (see also Weber 2008). As expected, the IBOXX-spread has a positive 

impact on the tranche risk premium. Tranche size and originator characteristics do not help 

explaining TRP. 

 

- Table 7 - 

 

Next we ask whether the tranche risk premium can be better explained by the tranche rating 

than by the observable economic properties used in regression (1). As shown in regression 

(2), substituting tranche rating for economic tranche properties slightly increases the 

explanatory power of the regression from 39.1 to 42.6 %. This supports the strong impact of 

ratings and, thus, Hypothesis 7. Yet, the R² of only 42.6 % indicates that investors do not 

blindly trust ratings, but also evaluate other tranche properties.  

While the tranche risk premium appears to be driven primarily by volume and pricing kernel 

effects, the mean tranche stochastic discount factor (TSDF) should be driven primarily by 

pricing kernel effects. To check for this, first consider TSDF for different ratings classes. 

Senior tranches generate losses primarily in the “expensive” macro-states and therefore 

should pay a high risk premium per unit of expected loss. This should be particularly true for 

the thick Aaa-tranches in true sale transactions, not so much for the thin Aaa-tranches in 

synthetic transactions. This conjecture is strongly supported by the following table which 

shows the averages of the mean stochastic discount factors for different rating classes in our 

sample. Since the estimation of the very small expected loss of the Aaa-tranche is subject to 
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strong estimation error implying a strong effect on TSDF, we winsorize the mean stochastic 

discount factor of Aaa-tranches assigning a cap of 200 to all tranches with a higher value. 

 

rating class TS Aaa  
 

SYN Aaa  Aa and A 
 

Baa 
 

Ba and B
 

mean tranche stochastic 
discount factor (average) 

47.7 20.39 7.97 5.22 3.31 

 

The mean tranche stochastic discount factors in the table are in line with the spread ratios for 

corporate bonds derived by Amato/Remolona (2003). The pricing kernel effect clearly 

dominates the potential information asymmetry effect. The senior tranches are less 

information-sensitive which should reduce their mean tranche stochastic discount factors. 

 

Regressions (3) to (6) in Table 7 display our findings on mean tranche stochastic discount 

factors. Since WADP and the attachment point are strongly correlated, we regress on WADP 

and on (WADP – 0.424 attachment point) with 0.424 being the coefficient of the attachment 

point on WADP in a linear regression. As a primer, the R² of regression (3) is 77% which is 

surprisingly high. This indicates that the pricing of securitization tranches is more 

homogeneous than suggested by Fig. 1. The attachment point has a clearly positive impact on 

TSDF, supporting Hypothesis 5a. The regression coefficient of WADP is negative, in line with 

Hypothesis 5b for lower rated tranches. We will see, however, that this result needs to be 

differentiated for rating classes. The IBOXX spread has a positive impact as usual.  

The dummy “TS-Aaa”, being 1 for the Aaa-tranche in true sale transactions and 0 otherwise, 

has a very strong impact on TSDF. This is not surprising, given the very high mean stochastic 

discount factor of 47.7 in the previous table. The dummy “lowest” also has a strong positive 

regression coefficient indicating a complexity premium for the lowest rated tranche. 

Regression (4) in Table 7 excludes true sale-Aaa-tranches, otherwise being the same. The R² 

strongly goes down from 77 to 48.6%. This once more illustrates the strong effect of the true 

sale-Aaa-tranches. 

Again, we check the explanatory power of ratings by substituting the tranche rating for 

WADP and attachment point. Since rating agencies do not care about pricing kernel effects, 

ratings should do a poor job in explaining mean stochastic discount factors of tranches. 

Regression (5), which includes true sale Aaa-tranches, shows that the substitution clearly 

reduces the explanatory power from 77 to 57.9 %. The regression coefficient of the tranche 
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rating is negative as expected. The dummies for the true sale-Aaa-tranche and the lowest rated 

tranche remain significant. In regression (6), we exclude the true sale Aaa-tranches. The 

decline of R² from 48.6 to 10.1 % is dramatic. This confirms that ratings ignore pricing kernel 

effects. Yet, the rating coefficient remains strongly significant. This is in line with Hypothesis 

5 a), since a better rating indicates a higher attachment point. 

The minor importance of ratings in explaining mean stochastic discount factors of tranches is 

also supported by another regression excluding true sale-Aaa-tranches (not shown). If we add 

the tranche rating as a regressor in regression (4), the R² increases only from 48.6 to 52.3%. 

These findings indicate that investors rely less on ratings and more on economic tranche 

properties in pricing trranches. The observed tranche pricing is consistent with pricing kernel 

effects predicted by theory.  

 

4.2.5 Mean Stochastic Discount Factors of Butterfly Spreads 

The previous findings for the mean stochastic discount factors of tranches document a 

positive attachment point effect as well as a positive impact of the tranche rating. This 

suggests that the stochastic discount factor increases with the aggregate default rate in the 

economy. It is, however, also possible that the pricing kernel is flat over a large range of 

aggregate default rates and only increases in the range of high rates. The findings for the mean 

stochastic discount factors of tranches would be similar because the tranche losses occur not 

only between the attachment and the detachment point of the tranche, but more so in the range 

of very high loss rates of the asset pool, i.e. in the range of very “expensive” macro-states.  

To obtain a more precise picture of the pricing kernel, we check the mean stochastic discount 

factors of butterfly spreads. Consider two adjacent tranches i and (i+1) in a transaction with 

sizes si and si+1 and tranche i having the better rating. A butterfly spread is a portfolio of 

investing 1 € in tranche (i+1) and selling short si+1/ si € of the better rated tranche i. The 

butterfly spread generates triangular default losses for a portfolio loss rate between the 

attachment point of tranche (i+1) and the detachment point of tranche i. Otherwise the payoff 

of the spread is zero. The loss of the butterfly spread is highest at the attachment point of 

tranche i. Hence a butterfly spread is similar to a state-contingent default loss if both tranches 

have a small size. Thus, butterfly spreads should reveal pricing kernel effects more clearly 

than tranches with default losses in a wide range of states.  

15 (14) out of 78 (90) butterfly spreads in true sale- (synthetic) transactions have a mean 

stochastic discount factor BSDF below 1. This is to be expected whenever the (forward) 

stochastic discount factor is mostly below 1 in the range between the attachment and the 
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detachment point of the butterfly spread. We would expect that for butterfly spreads with low 

attachment points. But mean stochastic discount factors below 1 might also indicate a puzzle 

similar to that in option pricing discovered by Jackwerth (2000) and later confirmed by 

Rosenberg/Engle (2002) as well as Barone-Adesi et al (2008). The puzzle is that the 

aggregate relative risk aversion implicit in option prices, appears to be negative in some 

moneyness-range. A similar phenomenon might explain negative mean stochastic discount 

factors of some butterfly spreads in securitizations. 

                                            - Fig. 3  - 

Plotting the mean stochastic discount factors (minus 1) of butterfly spreads BSDF against 

their attachment points reveals no systematic pattern as shown in Fig. 3a) for true sale-

transactions and in Fig. 3b) for synthetic transactions. Only the mean stochastic discount 

factor of the most senior butterfly spread in true sale-transactions which includes the large 

Aaa-tranche tends to be higher. This is also confirmed in the regressions reported in Table 8. 

- Table 8 - 

Regression (1) in Table 8 shows the determinants of BSDF for butterfly spreads in synthetic 

transactions. The attachment point of the butterfly spread has no significant effect. The 

dummy lowest equals 1 for the butterfly spread with the lowest attachment point within a 

transaction and 0 otherwise. Its regression coefficient of 1.5 indicates a complexity premium 

for this butterfly spread, but it is insignificant, in contrast to the findings for the lowest rated 

tranche. Besides of the IBOXX-spread, WADP and ADS have strong negative effects, 

supporting Hypothesis 5b and c. The ADS-effect may be driven by information asymmetry as 

stated in Hypothesis 6 rather than an attachment point effect. This is likely since the 

attachment point effect is insignificant even in the absence of the ADS-regressor.  

For true sale-transactions, log ADS turns out to be insignificant (regression (2)). But the 

attachment point effect is positive and strongly significant, as expected. This finding 

disappears, however, if we exclude the most senior butterfly spread of each transaction 

(regression (3)). Now the attachment point effect is clearly insignificant. This indicates that 

the pricing kernel is flat in the range of asset pool loss rates below the attachment points of 

Aaa-tranches and strongly increases above these points. A much higher R² can be obtained by 

including log ADS as a regressor, again excluding the most senior butterfly spreads 

(regression (4)). The strong impact of ADS may be due to an information asymmetry effect. 

These findings correspond to those in regression (1) for synthetic transactions. Overall, these 

results indicate that the attachment point effect disappears if we exclude the most senior 
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butterfly spreads. The pricing kernel appears to be rather flat in a wide range of asset pool loss 

rates. 

 

4.3 Checks and Robustness Tests 

4.3.1 Mean Stochastic Discount Factors and Ratings of Tranches 

In the following, we check our findings by additional regressions and by robustness tests. 

First, since a better rating tends to be associated with a higher attachment point, we also check 

for the attachment point effect by analysing the impact of WADP and ADS on the mean 

stochastic discount factors TSDF of tranches separately for each rating class. Besides of the 

Aaa-tranches in true sale- and synthetic transactions, we do not differentiate within the rating 

classes Aa, A, Baa, Ba and B. We use a dummy variable which is 1 if the tranche has a 

specific rating and 0 otherwise. In an OLS–regression we find for 301 observations (p-values 

in parentheses) 
 

TSDF =   82.1                                                                (0.0000) 

                  349 D(TS Aaa)      WADP                            (0.0050) 

                  375 D(SYN Aaa)   WADP                            (0.0652) 

                  -21.5 D(Aa and A) WADP                            (0.3534) 

                  -32.0 D(Baa)          WADP                            (0.0002) 

                  -24.9 D(Ba and B)  WADP                           (0.0000) 

 

                   22.8 D(TS Aaa) ln ADS                               (0.0000) 

                  -5.01 D(SYN Aaa) ln ADS                           (0.0603) 

                  -3.86 D(Aa and A) ln ADS                           (0.0477) 

                  -4.74 D(Baa) ln ADS                                    (0.0112) 

                  -5.40 D(Ba and B) ln ADS                            (0.0002) 

    

            Adj   R² = .58 

These results corroborate our finding that Aaa-tranches are special. A higher WADP tends to 

raise the mean stochastic discount factor of a Aaa-tranche, but to lower that of a lower rated 

tranche. This supports Hypothesis 5b. While a higher WADP appears to lower the mean 

stochastic discount factor of the asset pool, it raises the attachment point of a tranche 

concentrating default losses in the more expensive macro-states. If the pricing kernel 

increases weakly with the aggregate default rate in the range of low aggregate default rates, 
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but strongly in the range of high rates, then the mean stochastic discount factor of a tranche 

with a weak (strong) rating should decline (increase) with WADP. These findings are 

consistent with those derived from butterfly-spreads.  

A stronger asset pool diversification should lower the mean stochastic discount factor of all 

tranches because it may reduce information asymmetry (Hypothesis 6) and lower the 

attachment point of a tranche (Hypothesis 5c). This ADS-effect is supported by the 

regression, with the exception of Aaa-tranches in true sale-transactions. A possible 

explanation for this exception might be that a higher diversity score concentrates default 

losses of the Aaa-tranches in the very expensive macro-states. 

 

4.3.2 Different Measures of Diversification 

One controversial issue is the correlation between debtor defaults in an asset pool. Therefore 

we check our findings by using different diversity scores. So far, we used the adjusted 

diversity score based on an asset correlation of debtors within the same industry of 0.2 and of 

debtors in different industries of 0.02. First, we replace the adjusted diversity score by 

Moody´s traditional diversity score which ignores correlations of debtors in different 

industries. But this should be viewed with caution because the allocation of default losses to 

individual tranches reacts quite sensitively to the input parameters (Duffie and Garleanu 

(2001)). The difference between the adjusted diversity score and the diversity score can be 

quite large. While the diversity score has a mean of 63.6 in all 167 transactions, the mean 

adjusted diversity score in the subset of 92 transactions is 25.3. This suggests that the adjusted 

diversity score is less than half the diversity score. For the 92 transactions, the mean 

difference (0.5 diversity score - adjusted diversity score) is 12.3, the difference is above 40 for 

8 transactions. Therefore it would be surprising if regressions based on 0.5 diversity score 

would provide answers similar to those obtained with the adjusted diversity score. This 

conjecture is verified. Even though the number of observations almost doubles when we use 

0.5 diversity score instead of the adjusted diversity score, the adjusted R² almost invariably 

goes down, sometimes dramatically. Also in many cases the coefficients of regressors which 

are significant in our previous regressions, show higher p-values or lose significance.  

In addition, we run the regressions with the adjusted diversity score based on asset 

correlations of ρex = 0.00 or 0.04 for debtors in different industries. This has little effect on the 

significance of the regressors. But the adjusted R² s are clearly smaller for ρex = 0.00 than for  

ρex = 0.02. Replacing ρex = 0.02 by ρex = 0.04 sometimes raises and sometimes lowers the 
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adjusted R². This suggests that a range between 0.02 and 0.04 was considered realistic by 

market participants. 

 

4.3.3 The Impact of Diversification Across Industries 

Our findings on the tranche pricing depend on the underlying assumptions, in particular on 

approximating the asset pool loss rate distribution by a lognormal distribution. Many papers 

use more sophisticated distributions like Levy-distributions, based on more complicated 

default factor structures. But we cannot obtain the information required for more sophisticated 

distributions from the offering circulars and other available documents. Also, the simulation 

models used by the rating agencies generate loss rate distributions which are reasonably 

approximated by a lognormal distribution. To check for default clustering effects found by 

Longstaff and Rajan (2008), we include the regressor (1/ADS 4- 1/ADS0) with ADS4 based on 

ρex = 0.04 and ADS0 based on ρex = 0.00. Given an asset pool with equally sized loans, m 

industries and the same number of loans in each industry, (1/ADS 4- 1/ADS0) = 0.04 (1- 1/m) 

(see Fender and Kiff (2004)). Hence it would monotonically increase in the diversification of 

the asset pool across industries. This regressor has no significant impact in our regressions. 

Hence, interindustry diversification does not seem to have an impact on tranche pricing 

beyond what is captured in the adjusted diversity score.  

 In all loss rate models, the upper tail reacts very sensitively to the parameter input. Therefore,  

the expected losses and the mean stochastic discount factors derived for Aaa-tranches should 

be viewed with caution. Duffie et al (2009) argue that most models miss unobservable default 

risk factors which may imply a much higher tail risk. 

 

4.3.4 CBO-versus CLO-Transactions 

Another issue might be our joint analysis of CLO- and CBO-transactions. Franke,Herrmann 

and Weber (2011) found that the FLP-loss share tends to be higher in CBO- than in CLO-

transactions. In our regressions, we check for potential differences between CLO- and CBO-

transactions by including a dummy which is 1 for CBO-transactions and 0 otherwise. This 

dummy always turns out to be insignificant; therefore we do not report it in our regressions. 

The difference between true sale and synthetic transactions, however, is important as shown 

before. 

 

4.3.5 Originator Characteristics and Endogeneity Issues  
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The impact of originator characteristics on our findings is very limited. These characteristics 

are apparently of little concern to investors and rating agencies. This suggests that tranching 

and pricing mainly depend on transaction characteristics. We cannot rule out that the 

originator chooses these characteristics taking into consideration their impact on tranching 

and pricing. But this potential endogeneity is of little concern because we try to find out the 

effects of transaction characteristics on tranching and pricing. Thus, we take the transaction 

characteristics as exogenous. We account for interdependencies betweeen them by avoiding 

strongly correlated regressors or by using regressors adjusted for linear dependencies. 

 

5 Conclusion 
This paper analyses the tranching and pricing of securitized pools of corporate bonds and 

loans, using a sample of European securitizations. The number of issued bond tranches with 

different ratings varies between 1 and 6. 88 percent of the transactions have at least one Aaa-

tranche, about 14 percent of the tranches are subinvestment grade. Given a transaction with at 

least three differently rated tranches, tranche ratings tend to be clustered more in the good 

rating range. Since credit spreads of Aaa-tranches are lower than those of lower rated 

tranches, the originator issues very large Aaa-tranches in true sale-transactions. In synthetic 

transactions, Aaa-tranches are very thin. This is presumably explained by two reasons. First, 

in synthetic transactions the originator cannot use the funds from issuing bond tranches. 

Second, the transfer of default losses through Aaa-tranches is expensive.  

The number of tranches tends to be higher for asset pools with larger volume and those with 

lower quality. More tranches provide more signals about asset pool quality and permit the 

originator to extract more investor rents. In line with this, the risk premium paid on all rated 

tranches in a transaction tends to decline if the number of tranches increases.  

The risk premium, paid on all rated tranches in a transaction, increases with the expected 

default loss of the asset pool in true sale-transactions, presumably because a larger volume of 

losses is transferred. For synthetic transactions, the expected default loss has no systematic 

risk premium-effect when we include the positively correlated number of tranches. The mean 

stochastic discount factor of all rated tranches in a transaction declines with a higher expected 

loss of the asset pool, as suggested by a pricing kernel effect. Apparently this effect dominates 

the opposite information asymmetry effect. A higher loss share of the First Loss Position 

raises the mean stochastic discount factor of all rated tranches, again indicating the dominance 

of the pricing kernel over the information asymmetry effect.  
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Our findings for the risk premiums and mean stochastic discount factors of individual 

tranches mostly confirm the results obtained for all rated tranches in a transaction. The 

analysis of individual tranches is, however, complicated by the fact that their attachment 

points depend on the quality of the asset pool. A decline in asset pool quality should reinforce 

the information asymmetry effect and, thus, raise the risk premium, while the pricing kernel 

effect is less clear. The relative strength of theses effects appears to vary across tranches. The 

risk premium of the lowest rated tranche is upward biased indicating a complexity premium, 

perhaps because this tranche is very information-sensitive and requires  more skills of  risk 

management. The mean stochastic discount factor tends to increase with a better tranche 

rating, consistent with a pricing kernel effect dominating the information asymmetry effect. 

The mean stochastic discount factor is very high for Aaa-tranches in true sale–transactions.  

The mean stochastic discount factors of butterfly-spreads which are obtained from two 

adjacent tranches, provide a more precise picture of the pricing kernel. We find that the 

attachment point of a butterfly spread has almost no effect on the mean stochastic discount 

factor except for the most senior butterfly spread. This suggests that the pricing kernel may be 

rather flat below the attachment point of the Aaa-tranche, but then increases strongly with the 

loss rate of the asset pool.  

The finding that tranche ratings have very little power explaining the mean stochastic 

discount factor of non-Aaa-tranches, confirms that ratings ignore pricing kernel effects. Yet 

the economic properties of tranches explain their mean stochastic discount factors reasonably 

well. This indicates that investors do not blindly rely on ratings, but adjust required credit 

spreads to pricing kernel and information asymmetry considerations. 

This paper is a first step to better understand tranching and pricing in securitizations. More 

research is needed. The paper uses particular measures of expected losses and diversification 

of asset pools and postulates a lognormal loss rate distribution. It is necessary to check the 

sensitivity of findings to the model setup in further studies. Also, the findings are based on a 

European sample of securitization transactions and might differ for US-transactions. 

Moreover, we need to better understand the interdependence between the pricing kernels in 

credit and in stock markets. Since tranching is often considered a driver of the subprime 

crisis, new insights on tranching should also be helpful in improving regulations of 

securitization transactions.  
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Appendix 
 

1. The Parameters of the Lognormal Loss Rate Distribution 

We estimate the portfolio loss rate distribution assuming a lognormal distribution. We 

simplify the analysis by a two date-analysis so that all default losses occur at date 1. The 

expected portfolio loss rate equals ( ) πλ=lE  with 

π  = WADP,  

λ  = loss given default, assumed to be non-random.  

Hence we need to know the standard deviation of the loss rate of the asset pool to obtain the 

parameters of the lognormal distribution. Let denote 

S = standard deviation of the loan loss rate , 

( lln )σσ =  = standard deviation of the lognormally distributed asset pool loss rate,  

μ  = expectation of the lognormally distributed asset pool loss rate, ( )lE ln=μ , 

iP  = par value of loan i, divided by the par value of all loans; i = 1,…, n, 

jiρ  = asset correlation between loan i and loan j. 

Assuming identical default properties of all loans, the variance of the loan loss rate is 

( ) ( ) ( ) πλπλπλπ 22 10² −+−−=S ( ) 21 λππ −= .                                                               

Then the variance of the asset pool loss rate is 
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The latter part of the equation follows from the definition of the adjusted diversity score. It is 

the number of equally sized loans whose defaults are uncorrelated which generates the same 

variance of the asset pool loss rate. 

For a lognormally distributed asset pool loss rate,  
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For μ  we obtain 

( ) =−= 2
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2. Expected Default Losses of Tranches 

Given strict subordination of tranches, the expected default loss of a tranche with attachment 

point a and detachment point d equals  

 

 ∫ad (l-a) dF(l) +(d-a) (1 – F(d)). 

 

F(l) is the cumulative lognormal distribution function of the portfolio loss rate l. Since the 

expected tranche loss equals the expected loss of a call with strike price a minus the expected 

loss of a call with strike price d, we derive the expected loss of the tranche analytically, as in 

the Black-Scholes world. The expected tranche loss per € invested is the expected tranche 

loss, divided by (d-a), the par value of the tranche which equals its market value at the 

issuance date. 
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Tables and Figures 
 

 

 True sale Synthetic ∑ 

CLO 

CBO 

35 

45 

38 

49 

73 

94 

∑ 80 87 167 

Table 1: The table shows the number of transactions in the sample differentiating CLO- and 

CBO-transactions as well as true sale- and synthetic transactions.  

 

 

 CLO – ts CLO – synth CBO – ts CBO – synth 

WADP – mean 
WADP – std. 

7.2 % 
7.3 % 

3.5 % 

2.3 % 

14.0 % 
9.6 % 

1.9 % 
3.1% 

DS – mean 
DS – std. 

89 
45 

88 
29 

32 
10 

56 
26 

FLP – mean 
FLP std. 

5.6 % 
4.7 % 

2.9 % 
1.4 % 

11.2 % 
5.7 % 

3.6 % 
2.5 % 

Table 2: The table presents averages and standard deviations of WADP (weighted average 

default probability of the asset pool in a transaction), DS (Moody’s diversity score 

of the asset pool) and FLP (the initial size of the first loss position as a percentage 

of the volume of the asset pool). The data are presented separately for the four 

subsets of CLO-true sale, CLO-synthetic, CBO-true sale and CBO-synthetic 

transactions.  
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   Absolute frequencies of tranches. Total number of tranches is 594         

# tr. per 
transact. 

# 
transact. Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 

1 14 6 2 2  1 1   1  1      
2 17 14 2 1 2 2 6 1  3 3       
3 47 37 8 17 8 11 10 7 5 20 6 4 6 2    
4 46 46 8 16 5 9 19 11 10 29 6 5 13 6 1   
5 37 44 10 23 3 5 23 7 7 19 12 8 16 7  1  
6 6 5 4 4 1 1 5   4 1  5 1  2 3 
∑ 167 152 34 63 19 29 64 26 22 76 28 18 40 16 1 3 3 
                  
    Relative frequencies of tranches.          

# tr. per 
transact. 

# 
transact. Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 

1 14 43 % 14% 14% - 7% 7%   7%  7%      
2 17 82% 12% 6% 12% 12% 35% 6%  18% 18%       
3 47 79% 17% 36% 17% 23% 21% 15% 11% 43% 13% 9% 13% 4%    
4 46 100% 17% 35% 11% 20% 41% 24% 22% 63% 13% 11% 28% 13% 2%   
5 37 119% 27% 62% 8% 14% 62% 19% 19% 51% 32% 22% 43% 19%  3%  
6 6 83% 67% 67% 17% 17% 83%   67% 17%  83% 17%  33% 50% 

                            

Table 3: In each panel, the first column classifies transactions by the number of differently rated tranches. The second column shows the observed 

number of transactions for each class. The top line indicates the rating. In the upper (lower) panel, the following columns display for each 

rating the absolute (relative) frequencies of issued tranches. Relative frequency is the number of tranches with a given rating, divided by 

the number of transactions in the same line (2nd column).The last line in the upper panel displays the total number of transactions resp. of 

tranches with a given rating. Bold figures in the upper (lower) panel indicate local maxima in the last line (relative frequencies ≥ 50 %).  
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Number of differently rated 
tranches in a transaction 

2 3 4 5 6 

Median of rating range 6 9 10 12 15 

Median of average  
rating gap 

4 3 2 2 2 

Table 4: It shows the median of the rating range (= 1+ difference between highest and 

lowest rating) and the median of the average rating gap for transactions, given the 

number of differently rated tranches.  

 

 



Table 5: The table displays the average tranche size separately for true sale (upper panel) and synthetic transactions (lower panel). The first 

column classifies transactions by the number of differently rated tranches, the second column shows the total number of rated tranches in 

this class in parentheses, the following columns display for each rating the average tranche size (= tranche volume/transaction volume, in 

percent), below in parentheses the number of tranches with the indicated rating. The last column gives the average size of the FLP, below 

the number of transactions in parentheses. Average tranche sizes of at least 10% are in bold numbers. The last line in each panel displays 

the number of rated tranches in parentheses, i.e. the sum of the numbers in parentheses in the respective column. In the FLP-column, last 

line,  80 is the number of true sale transactions. 

The lower panel displays the same for synthetic transactions, with the third loss position TLP (non-securitized super senior tranche) in the 

third column, below the number of transactions in parenthesis. The number of synthetic transactions is 87.  

45 



 

True Sale 
Transactions: average tranche size               

# tr. per 
transact. 

Total # 
rated 

tranches Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 FLP 

1  81%  88%   68%           18   %

%

 (6) (4)  (1)   (1)           (6) 

2  79%   14% 15% 10%   11%         10   

 (14) (7)   (1) (1) (4)   (1)        (7) 

3  78% 31%  38% 6%  5%  8%  5%  3%  6%  5%  3%  2%  8%     8%  

 (65) (18) (6) (5) (3) (6) (6) (3) (1) (9) (4) (2) (2) (1)    (22) 

4  77% 14%  13% 10% 3%  5%  10% 4%  4%  7%  1%  2%  3%     8%  

 (104) (28) (2) (9) (1) (4) (12) (6) (5) (18) (3) (2) (8) (6)    (26) 

5  71% 6%  9%  2%   7% 8%  3%  5%  5%  1%  3%  2%     9% 

 (90) (22) (4) (12) (1)  (12) (5) (1) (9) (8) (2) (8) (6)    (18) 

6  68% 1%  7%    7%     4%    4%     9%  

 (6) (1) (1) (1)   (1)    (1)   (1)    (1) 

∑ (286) (80) (13) (28) (6) (11) (36) (14) (7) (37) (16) (6) (18) (14)    (80) 
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Synthetic 
Transactions 

 
 average tranche size                

# tr. per 
transact. 

Total # 
rated 

tranches TLP 

 
 

Aaa Aa1 Aa2 Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 FLP 

1  89%  3% 5%  17%  3%     6%   3%       6%  

 (8) (8) (2) (2) (1)  (1)    (1)  (1)      (8) 

2  89%  4% 6%  4%  4%  3%  10% 1%   5%  5%        3%  

 (20) (10) (7) (2) (1) (1) (1) (2) (1)  (2) (3)       (10) 

3  88%  5% 1%  3%  3%  3%  3%  2%  3%  2%  2%  2%  1%  1%     3%  

 (75) (25) (19) (2) (12) (5) (5) (4) (4) (4) (11) (2) (2) (4) (1)    (25) 

4  87%  5% 2%  3% 3%  1%  2%  2%  1%  1%  2%  1%  2%   1%    3%  

 (80) (20) (18) (6) (7) (4) (5) (7) (5) (5) (11) (3) (3) (5)  (1)   (20) 

5  86%  4% 2%  3%  1%  1%  1%  1%  2%  1%  1%  1%  1%  1%   0.5%  3%  

 (95) (19) (22) (6) (11) (2) (5) (11) (2) (6) (10) (4) (6) (8) (1)  (1)  (19) 

6  82%  4% 2%  3%  0.5% 3%  2%    2%   2%    0.5% 2%  4% 

 (30) (5) (4) (3) (3) (1) (1) (4)   (4)   (5)   (2) (3) (5) 

∑ (308) (87) (72) (21) (35) (13) (18) (28) (12) (15) (39) (12) (12) (22) (2) (1) (3) (3) (87) 
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Explained 
variable 

ARP 
True 

sale (%) 
(1) 

ARP 
True 

sale (%) 
(2) 

ARP 
Syn 
(%) 
(3) 

ARP 
Syn 
(%) 
(4) 

ASDF 
True 
Sale  
(5) 

ASDF 
Syn 

 
(6) 

ASDF 
All 

 
(7) 

ASDF 
All 

 
(8) 

Constant  0.442 
(0.0335) 

0.484 
(0.0235) 

4.986 
(0.0186) 

4.669 
(0.0209) 

-20.90 
(0.2269) 

53.34 
(0.0064) 

55.96 
(0.0006) 

27.04 
(0.0806) 

WADP (%) 0.0233 
(0.0000) 

0.0228 
(0.0000) 

-0.074 
(0.0337) 

- - 0.67 
(0.0002) 

-1.18 
(0.0000) 

- 0.35 
(0.0021) 

- 0.57 
(0.0000) 

ln ADS  - - -1.50 
(0.0319) 

-1.20 
(0.0707) 

-16.42 
(0.0000) 

-19.3 
(0.0003) 

-27.12 
(0.0000) 

-20.58 
(0.0000) 

Rating 
asymmetry 

- -0.350 
(0.0245) 

- -1.339 
(0.0746) 

- - - - 

FLP- loss 
share (%) 

- - - - 84.5 
(0.0000 

24.5 
(0.0646)

45.4 
(0.0028) 

50.88 
(0.0029) 

Spread35 0.137 
(0.0290) 

0.120 
(0.0622) 

0.656 
(0.0319) 

0.647 
(0.0139) 

14.83  
(0.0000) 

2.88  
(0.2788) 

7.25  
(0.0004) 

9.60  
(0.0000) 

No. of 
tranches 

-0.115 
(0.0145) 

-0.0115 
(0.0135) 

- -0.195 
(0.0655) 

- -0.89  
(0.0696)

-1.53  
(0.0440) 

- 

SYN-dummy - - - - - - - -9.34  
(0.0001) 

Total capital 
ratio 

- - - - - - - -1.34 
(0.0271) 

Var of return 
on equity 

- - - - - 
 

.0332 
(0.0001) 

- - 

Adj. R² 0.538 0.586 0.248 0.356 0.833 0.573 0.633 0.729 

Observations 37 37 45 45 37 45 82 82 

Table 6: The table shows the regression coefficients from OLS-regressions with Newey-
West heteroscedasticity adjusted p-values (in parentheses), explaining the 
aggregate risk premiums ARP and the mean stochastic discount factor of all rated 
tranches in a transaction, ASDF. ARP is measured in percent. Rating asymmetry is 
the rating asymmetry measure explained above. FLP-loss share is the share of 
expected losses of the asset pool borne by the FLP. Spread 35 is the IBOXX-spread 
difference between BBB- and government bonds for a maturity of 3-5 years at the 
issue date. No. of tranches is the number of differently rated tranches. SYN is a 
dummy variable which is 1 for a synthetic transaction and 0 otherwise. Total 
capital ratio and var of return on equity are the originating banks´s total capital 
ratio and variance of its return on equity. 

 



explained 
variable 

TRP 
(%) 
(1) 

TRP 
(%) 
(2) 

TSDF 
 

(3) 

TSDF  
w/o TS-Aaa 

(4) 

TSDF  
 

(5) 

TSDF  
w/o TS-Aaa 

(6) 

constant .0867 
(0.742) 

-1.008 
(0.001) 

-33.04 
(0.000) 

-16.51  
0.000) 

2.378 
(0.756) 

13.70 
(0.016) 

WADP/ 
maturity (%) 

0.253  
(0.023) 

- - - - - 

FLP – 2.72 
WADP/mat. (%) 

- 0.072 
(0.003) 

- -  - - 

WADP  -0.424 
attachment point 
(%) 

- - -1.43 
(0.000) 

-1.68 
(0.000) 

- - 

attachment point 
(%) 

- - 3.18 
(0.000) 

2.73  
(0.000) 

- 
 

- 

no of sub 
tranches 

-0.262 
(0.000) 

- - - - - 

spread 35  0.754 
(0.000) 

0.714 
(0.000) 

13.03 
(0.000) 

5.22  
(0.016) 

10.53 
(0.013) 

4.05 
(0.114) 

dummy TS-Aaa - - 60.39 
(0.000) 

- 101.26 
(0.000) 

- 

dummy lowest 1.067 
(0.000) 

0.881 
(0.000) 

7.26 
(0.001) 

6.47  
(0.000) 

3.99 
(0.021) 

5.50 
(0.000) 

Tranche 
rating 

- 0.117  
(0.000) 

- -- -1.59 
(0.000) 

-1.80 
(0.000) 

Adj R² .391 0.426 .770 .486 .579 0.101 

Observations 298 298 298 261 298 261 

Table 7: The table shows the regression coefficients from OLS-regressions with 

heteroscedasticity, clustered residual adjusted p-values (in parentheses) explaining 

the tranche-risk premiums TRP and the mean-tranche stochastic discount factors 

TSDF. Attachment point is the attachment point of the tranche. No of sub tranches 

is the number of subordinated rated tranches. Spread 35 is the IBOXX-spread 

difference between BBB- and government bonds for a maturity of 3-5 years at the 

issue date. Dummy TS-Aaa is 1 for a Aaa-tranche in a true sale transaction and 0 

otherwise. Dummy lowest is 1 if the tranche is the tranche with the lowest rating in 

a transaction, and 0 otherwise. Tranche rating is captured by an integer variable 

which is 1 for Aaa and 16 for B3.  
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explained variable 

 
BSDF 

synthetic tr.
 

(1) 

BSDF 
true sale-tr.

 
(2) 

BSDF 
w/o top BS 
true sale-tr. 

(3) 

BSDF 
 w/o top BS  
true sale-tr 

(4) 

constant 64.07 
(0.001) 

-18.29 
(0.000) 

-5.393 
(0.034) 

59.23 
(0.002) 

Attachment point (%) 
 

- 2.16 
(0.0000) 

0.67 
(0.2149) 

- 

Dummy lowest 1.508 
(0.1189) 

- - - 

WADP (%) 
 

-0.820 
(0.0000) 

- - -0.175 
(0.0306) 

WADP-0.54 
attachment point  (%) 

- -1.38 
(0.0000) 

-0.71 
(0.0779) 

- 

Log ADS  -19.43 
(0.0000) 

- - -19.50 
(0.0006) 

Spread 35 4.52 
(0.0002) 

9.55 
(0.0108) 

5.92 
(0.0087) 

5.95 
0.0193) 

Adj R² 0.467 0.578 0.353 0.506 

Observations 90 78 48 48 

Table 8: The table shows OLS-regressions explaining the mean stochastic discount factors  

of butterfly spreads BSDF in synthetic and true sale-transactions, with 

heteroscedasticity, clustered residual adjusted p-values (in parentheses). In 

regressions (1) and (4) WADP is a regressor, excluding the attachment point. In 

regressions (2) and (3) the attachment point is a regressor so that (WADP – 0.54 

attachment point) is used to neutralize the dependence between the attachment 

point and WADP as given by a linear regression. Dummy lowest is 1 for the 

butterfly spread with the lowest attachment point in a transaction and 0 otherwise. 

Spread 35 is the IBOXX-spread difference between BBB- and government bonds 

for a maturity of 3-5 years at the issue date.  In the true sale-regressions (3) and (4), 

the top butterfly spread including the large Aaa-tranche is excluded.  
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Asset pool-loss rate 

TLP 
 

 
Aaa 

A 

Ba 

FLP

Tranche  
losses 

0                    a       b            c     d              1 
 
 
 
 

Figure 1: This figure shows the allocation of the asset pool loss in a synthetic transaction to 

the First Loss Position (FLP), the Ba-, the A-, the Aaa-rated tranche and the non-

securitized super-senior tranche (Third Loss Position TLP). a, b, c and d denote the 

attachment points of the Ba-, the A-, the Aaa- and the Third Loss Position. The 

losses of the FLP and the TLP are given by the lowest resp. the top area, the losses 

of the Ba-tranche by the downward hatched area, those of the A- and the Aaa-

tranche by the vertically resp. the upward hatched area.  
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Figure 2: It displays the credit spreads (logarithmic scale) of rated tranches across issuance quarters differentiated for the main  

rating classes. 
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Figure 3:  Mean stochastic discount factors of butterfly spreads in securitization 
transactions plotted against their attachment points. The means are reduced by 1 so 
that zero is the expectation of the (stochastic discount factor -1). 
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Footnotes 
                                                 
1 David (1997) argues that tranches are sold to individual and institutional investors. The 

latter buy tranches to hedge their endowment risk. Hence tranches should be differentiated 
so as to allow the different groups of investors an effective hedging.  

2 Cebenoyan and Strahan (2004) document that banks securitizing loans have less capital 
than other banks and more risky assets relative to total assets.  

3 The benefits of quality differences between tranches derive from investor heterogeneity. 
Institutional investors may have statutes which allow them to invest in Aaa-tranches only. 
Regarding the capacity of analysing und managing default risks, investors with low 
capacity may prefer tranches with low default risk. Sophisticated investors like hedge 
funds may prefer high risk tranches. 

4 Under Basel I, the standard risk weight of 100 percent applied to all rated tranches, so that 
tranching had little impact on regulatory equity capital. But originators and investors 
anticipated capital requirements differentiated to tranche ratings according to Basel II. 
Regulators in some countries required little equity capital for the most senior tranche if it 
was insured against default risk. 

5 Franke, Herrmann and Weber (2011) find in their European sample that the FLP always 
exceeds the expected portfolio loss rate. 

6 Single-tranche deals are often initiated by investors looking for an investment in a 
diversified asset pool with a prespecified tranche rating. 

7 To provide an intuition, consider a lognormal distribution of the portfolio loss rate and 
derive the attachment points for a B, BB, BBB, A, AA and AAA tranche in a true sale 
transaction according to the idealized probabilities of default according to S&P. Assume a 
transaction with 6 years maturity, WADP = 6 %, loss given default λ= 50% and an 
adjusted diversity score of 40. Then the tranche sizes are depicted in the following Table. 

Tranche rating S&P Tranche -PD  Tranche size 
AAA  
AA   
A  
BBB  
BB   
B   
FLP 

0.19% 
0.51% 
1.01% 
3.61% 

13.31% 
29.73% 

100 % 

83.88% 
2.77% 
1.75% 
3.02% 
2.80% 
1.64% 
3.45% 

 
8 Theoretically, a lognormal distribution allows for portfolio loss rates above 1. But for all 

realistic parameter values, the cumulative probability of these loss rates is negligible. 
9 The differences in p-values between the Newey-West and the cluster robust estimates are 

very small.  
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