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1. Introduction

This paper introduces a general equilibrium interest rate and interest rate
option pricing model, in which two observable, but unspanned, macro uncer-
tainty premiums drive expected excess bond returns, bond volatility and the
skewed option implied volatility smile.

Empirical research has documented that bond volatilities and bond premi-
ums are unspanned by the yield curve. Collin-Dufresne and Goldstein (2002)
use at-the-money straddles and swap rates to show that interest rate volatil-
ity is not spanned by interest rates.2 Cochrane and Piazzesi (2005) find a
single unspanned factor that predicts bond premiums and that is unrelated
to level, slope and curvature.3 Duffee (2010) finds that the fifth principal
component of the Treasury yield curve (a hidden factor) significantly pre-
dicts bond premiums. 4 Ludvigson and Ng (2009) shows that the unspanned
bond premium is driven by macroeconomic fundamentals.

I provide a parsimonious asset pricing model that provides an economic
story to these findings. My endowment economy has a homoscedastic con-
sumption and inflation process. In real-time, the investor observes their
conditional expected growth rates, which themselves follow homoscedastic
processes. These expected growth rates determine the long-run behavior of
the economic system. I therefore call them long-run risk components for
GDP growth and for inflation, respectively.5

2Heidari and Wu (2003) confirm the existence of an unspanned volatility factor in the
yield curve.

3Litterman and Scheinkman (1991) find that the first three principal components of
the Treasury yield curve (level, slope and curvature) explain more than 95% of yield curve
variations. Dai and Singleton (2000), Duffie and Singleton (1997), Cochrane and Piazzesi
(2010), and others, support this.

4In the data, the unspanned uncertainty premium for inflation explains 12% of the fifth
principal component.

5This notation builds a connection to the unobserved expected growth rates in con-
sumption and inflation that are used in the long-run risk literature. Compare Bansal and
Yaron (2004), Bansal et al. (2007), Bansal and Shaliastovich (2006), Bansal and Shalias-
tovich (2009), Bansal and Shaliastovich (2010b), Piazzesi and Schneider (2006), Piazzesi
and Schneider (2010), Drechsler (2009), Drechsler and Yaron (2010) among others. The
results of my model do not rely on Epstein and Zin (1989), Epstein and Duffie (1992) type
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The model relaxes the assumption that the investor knows the single cor-
rect model that describes both long-run risk components.6 Real-time data
from the Survey of Professional Forecasters (SPF) confirms that different
econometric professionals from Wall Street apply different models for fore-
casting next quarter GDP growth and next quarter inflation. I use the cross-
sectional standard deviation among these quarterly forecasts to construct a
set of potentially correct long-run risk models.7 I assume this time-varying
set follows a heteroscedastic diffusion, which makes bond yields and bond
premia heteroscedastic, as well.8

Although, the model is simplified and relies only on observable variables,
the equilibrium insights are of importance. First, an ambiguity averse in-
vestor requires a model uncertainty premium if forecasts on the fundamental
processes are disperse. One premium is paid for ambiguity about long-run
GDP growth, while the other is paid for ambiguity about long-run inflation.
Second, nominal bond yields load on the long-run risk factors and on their
uncertainty premiums. Third, a variance decomposition, evaluated at the
maximum likelihood estimates, reveals that the uncertainty premiums add
virtually nothing to the time-variation of nominal bond yields. An econo-
metrican looks at the model implied data and concludes that the yield curve
does not span the uncertainty premiums.9 Fourth, the equilibrium uncer-
tainty premiums give rise to counter cyclical bond premiums. This equi-
librium mechanism constitutes an alternative to the stochastic risk aversion

preferences.
6The concept of model uncertainty and model ambiguity follows Knight (1921), Hansen

and Sargent (2008), Chen and Epstein (2002) and is different to the concept of het-
eroscedasticity in fundamentals (Bekaert et al. (2009)).

7Patton and Timmermann (2010) analyze the term structure of survey based macro
forecasts and concludes that the economic reason for observing disperse forecasts is model
disagreement. My model approach accounts for this. Anderson et al. (2009), Ulrich (2010)
use similar assumptions.

8Shaliastovich (2009) and Bansal and Shaliastovich (2010a) use the cross-sectional stan-
dard deviation in SPF forecasts as a measure for confidence risk and assume it follows a
jump-diffusion process.

9The concept of unspanned factors, following the tradition in Collin-Dufresne and Gold-
stein (2002) and Cochrane and Piazzesi (2005) is based on variance decompositions and
picking up of correlations.

3



framework in Campbell and Cochrane (1999).10 Fifth, my measure for the
uncertainty premium explains 12% of the data implied fifth principal com-
ponent of the yield panel. This provides a macroeconomic interpretation to
the hidden factor of Duffee (2010).

Sixth, variations in the uncertainty premiums drive variations in the
snake-shaped volatility of yield changes.11 The model implied volatility smile
of interest rate options is skewed and entirely driven by the unspanned uncer-
tainty premiums. The model predicts that an increase in ambiguity about
long-run inflation increases the level of the smile and amplifies the skew.
On the contrary, an increase in uncertainty about the long-run GDP growth
prospects lowers the smile and flattens the skew. This counter intuitive be-
havior for the latter occurs because bond prices rise in times of increased
GDP uncertainty, while they fall in times of rising inflation uncertainty. The
intuition for this result is that real and nominal bonds are more valuable
in times of increased GDP uncertainty, because these assets are recession
hedges. In contrast, the value of nominal bonds is less valuable in times of
higher inflation uncertainty.12

The paper is structured as follows. Section 2 describes the model and
derives equilibrium bond yields, bond premia, yield volatility and specifies
the interest rate option contract of interest. I estimate the model in section 3
with bond yield and macro data. Results are explained and implications for
bond premia and bond volatility are visualized in section 3, as well. Section
4 quantifies the detection error. Section 5 concludes. The appendix contains
derivations and proofs.

10There is a growing literature on the importance of model uncertainty in asset pricing.
Recent examples are Cagetti et al. (2002), Gagliardini et al. (2009), Kleshecheslski and
Vincent (2009), Ulrich (2010), Anderson et al. (2003), Hansen and Sargent (2008), Hansen
et al. (2005), Maenhout (2004), Liu et al. (2005) and Maenhout (2006), among others.

11Piazzesi (2005) and Piazzesi (2003) discovered the snake pattern.
12Ulrich (2010) shows that log utility together with inflation ambiguity can recover the

positive term premium in U.S. Treasury bonds. Liu et al. (2005) and Drechsler (2009)
show that model uncertainty about the jump component in the endowment growth rate
can account for the skewed volatility smile of equity options.
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2. Model

I work with an endowment economy. Time is continuous and varies over
t ∈ [0, ...,∞). I assume a complete filtered probability space (Ω,F ,F, Q0),
where Q0 stands for the reference macro model. I denote expectations under
Q0 as E[.] instead of EQ0

[.]. I endogenously determine the robust probability
measure and denoted it Qh. All Brownian motions are pairwise orthogonal.

2.1. Assumptions on the Benchmark Economy

Realized growth of the investor’s endowment follows a homoscedastic pro-
cess with a time-varying trend growth rate z

d ln ct = (c0 + zt)dt+ σcdW
c
t , (1)

with c0 > 0 and σc > 0. The mean zero trend growth rate, z, follows a
continuous-time AR(1) process

dz = κzzdt+ σ1zdW
r + σ2zdW

w (2)

with κz < 0, σ1z > 0, and σ2z < 0. I call z the realization of the long-run
consumption risk process (or trend consumption growth).

The exogenous process for inflation, d ln p, follows also a homoscedastic
process

d ln pt = (p0 + wt)dt+ σpdW
p
t , (3)

with p0 > 0 and σp > 0. The mean zero trend growth rate of inflation, w,
follows a continuous-time AR(1) process

dw = κwwdt+ σwdW
w, (4)

with κw < 0 and σw > 0. I call w the long-run inflation risk component
(or trend inflation). I account for the negative correlation between z and
w through σ2z < 0 (Piazzesi and Schneider (2006) and Ulrich (2010)). The
realizations of z and w are observed in real-time.

Instead of assuming Epstein and Zin (1989) preferences, as done in the
long-run risk literature (Bansal and Yaron (2004), Piazzesi and Schneider
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(2006)), I assume the investor has simple logarithmic utility. His expected
life-time utility in period t is Et

[∫∞
t
e−ρs ln csds

]
, where ρ > 0 is the subjec-

tive time discount factor.13

2.2. Assumptions on the Robust Economy

The investor is uncertain about which transition density describes the
empirical dynamics of w and z best. This means that the investor faces am-
biguity about the long-run risk model. The investor believes that equations
(2) and (4) are a good approximation for the unknown data generating pro-
cess of the long-run risk components. They describe his benchmark model
(reference model).

The investor observes in each period t a set of potentially correct long-run
risk models. Different long-run risk models differ in their conditionally ex-
pected growth rates. After observing zt and wt, the investor uses likelihood
ratio tests to quantify the accuracy of his trusted benchmark model in com-
parison to the other models from the set. Due to the stochastic nature of z
and w, the investor is exposed to time-varying likelihood ratios.

I define an observed change in the log-likelihood ratio as d ln
dQht
dQ0

t
. An increase

in the latter is bad news for the trustworthiness of the benchmark model,
because it implies that the observed realization of dzt and dwt has probably
been generated by the worst-case model Qh and not by the benchmark model
Q0. While in general, the investor could focus on every potentially correct
model, the min-max investor focuses only on the benchmark model and on
the worst-case model.

The Gaussian processes z and w imply that the expected instantaneous
change of the log-likelihood ratio, under the worst-case measure, is given by

Eh
t

[
d ln

dQh
t

dQ0
t

]
=

1

2
(hrt )

2dt+
1

2
(hwt )2dt (5)

, where hrt are instantaneous drift distortions to long-run consumption risk,
while hwt are instantaneous drift distortions to long-run inflation risk. Math-
ematically this implies dW r,h

t +hrtdt = dW r
t and dWw,h

t +hwt dt = dWw
t , where

13The model implications hold for more general utility functions. It is an advantage of
log utility that it supports closed form solutions.
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dW h is a Brownian motion under the robust belief Qh.

I constrain the growth rate of relative entropy between different long-run
risk models in the set, by constraining each of the two components separately.
I assume that the expected relative entropy component that arises because
of long-run consumption ambiguity is constrained by

1

2
(hrt )

2dt ≤ Ar(ηrt )
2dt, (6)

with Ar > 0 and ηr follows a CIR process. The last equation says that
the empirical trustworthiness of the benchmark long-run consumption risk
model is time-varying over the business cycle. For the special case of Ar = 0,
the investor has 100% confidence in the benchmark model of equation (2).
For all other cases, the investor faces a time-varying amount of long-run
consumption uncertainty. I assume the time-variation follows

dηrt = (aηr + κηrη
r
t )dt+ σηr

√
ηrt dW

ηr

t , (7)

with aηr>0, κηr < 0 and σηr > 0.

Analogously, I assume that the expected growth in relative entropy, which
arises because of long-run inflation ambiguity, is constrained by

1

2
(hwt )2dt ≤ Aw(ηwt )2dt, (8)

where Aw > 0. I assume the time-varying amount of inflation uncertainty
follows a CIR process

dηwt = (aηw + κηwη
w
t )dt+ σηw

√
ηwt dW

ηw

t (9)

with aηw > 0, κηw < 0 and σηw > 0.

To summarize: The investor is uncertain about the transition density of
the long-run consumption and long-run inflation risk model

dz = κzzdt+ +σ1z(dW
r,h + hrdt) + σ2z(dW

w,h + hwdt) (10)

dw = κwwdt+ σw(dWw,h + hwdt). (11)

The amount of the worst-case distortions are indirectly constrained through
observed expected growth rates of relative entropy between the worst-case
and the benchmark long-run risk model.
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2.3. Equilibrium: Deciding which Model to Use

The investor has min-max preferences. In order to find the worst-case
long-run risk model, the investor solves

min
Z∈Z(ηr,ηw)

EZ

[∫ ∞
t

e−ρ(s−t) ln csds|Ft
]

(12)

s.t.(1), (10), (5), (8), (6). (13)

The solution to the minimization problem follows along the lines of Ulrich
(2010) and is summarized in the following proposition.

Proposition 1 The investor distorts the benchmark long-run risk dynam-
ics by a time-varying amount hr and hw

hr(t) = mrηr(t),mr := −
√

2Ar ∈ R− (14)

hw(t) = mwηw(t),mw :=
√

2Aw ∈ R+. (15)

The appendix contains the derivation.

Under the benchmark model, the economy is homoscedastic. Risk pre-
miums and asset return volatilities are constant. The robust economy is
heteroscedastic with time-varying uncertainty premiums and time varying
asset return volatilities. The time-variation of these financial variables is
exclusively driven by the observed amount of macro ambiguity.

2.4. Equilibrium: Marginal Rate of Substitution

I collect hr and hw into a vector h, i.e. ht = (hrt h
w
t )′. Similarly, I col-

lect the ambiguous shocks dW r and dWw into a vector dW z, i.e. dWw
t =

(dW r
t dW

w
t )′. In period T, the likelihood ratio between the worst-case and

the benchmark long-run risk model is
dQhT
dQ0

T
. I call this likelihood ratio aT .

The Gaussian dynamics of z and w imply

aT :=
dQh

T

dQ0
T

= exp

(
−1

2

∫ T

0

h′thtdt+

∫ T

0

ht · dW z
t

)
, a0 ≡ 1. (16)

The last equation stands for the amount of model uncertainty. In technical
terms, this coincides with the amount of entropy between the worst-case

8



and the benchmark model. The relative change of realized uncertainty is a
martingale under the benchmark model

dat
at

= ht · dW z
t . (17)

This implies that the investor does not expect to learn which model is cor-

rect, i.e. Et

[
dat
at

]
= 0.

The intertemporal marginal rate of substitution (MRS) contains informa-
tion on the degree of consumption risk and the degree of model uncertainty.
I define the MRS as m. It is endogenous in my economy, i.e.

mt,t+∆ = e−ρ∆

(
ct+∆

ct

)−1
at+∆

at
. (18)

The evolution of the MRS reveals the equilibrium real interest rate and the
equilibrium market prices of consumption risk and model uncertainty:

−dmt

mt

=
dct
ct
− dat

at
. (19)

According to assumption (1), the market price of consumption risk is σc. It
is constant and paid for shocks to realized consumption. The endogenous
dynamic in (17) reveals that the market price for ambiguity about the long-
run risk dynamics is: −hrt ∈ R+,∀t ≥ 0 and −hwt ∈ R−,∀t ≥ 0. The first is
the market price for uncertainty about the long-run consumption growth dy-
namic, while the latter is the market price for uncertainty about the long-run
inflation dynamic. The real interest rate coincides with rt = ρ+c0− 1

2
σ2
c +zt.

The nominal equilibrium SDF is m$

m$
t,t+∆ = mt,t+∆

pt
pt+∆

. (20)

The equilibrium nominal short rate equals Rt := −Et[
dm$

0,t

m$
0,t

] = rt+w0− 1
2
σ2
p+

wt.
The real short, and the nominal short-rates do not depend on macro un-

certainty. Interest rates on longer duration Treasury bonds depend on macro
uncertainty, because these long-term interest rates are risk and uncertainty
adjusted expectations of future short rates. A min-max investor prices assets
under the endogenously determined worst-case scenario.
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2.5. Equilibrium: Bond Market

Consumption, inflation, the real and nominal short rate, the market price
of risk are homoscedastic. Nevertheless, yields in the economy are het-
eroscedastic, because the market price of uncertainty is heteroscedastic.

Bt(τ) is the price at time t of a τ maturity real bond. Its price is exponen-
tially affine in the long-run consumption risk factor and in the uncertainty
premiums:

Bt(τ) = eA
r(τ)+Br(τ)St, S≡(z hw hr)′. (21)

The continuously compounded real interest rate is affine in the long-run
consumption risk factor and its uncertainty premiums

yrt (τ) = ar(τ) + br(τ)St, (22)

with ar(τ) := −Ar(τ)/τ and br(τ) := −Br(τ)/τ . The loadings are deter-
ministic functions of the parameters of the economy. The appendix contains
details on the derivation.

I denote the price at time t of a τ maturity nominal Treasury bond as
Nt(τ). Its equilibrium price is exponentially affine in long-run consumption
risk, long-run inflation risk, and the market prices of long-run ambiguity:

Nt(τ) = eA
n(τ)+Bn(τ)Xt, X≡(wS)′. (23)

with an(τ) := −An(τ)/τ and bn(τ) := −Bn(τ)/τ . Nominal interest rates are
affine in the risk and uncertainty factors

ynt (τ) = an(τ) + bn(τ)Xt, (24)

with an(τ) := −An(τ)/τ and bn(τ) := −Bn(τ)/τ . The appendix specifies
the factor loadings as functions of the underlying economy.

The slope of the nominal yield curve, measured as the 40-quarter nominal
yield minus the nominal short-rate, is an affine function in expected infla-
tion and expected consumption growth and in their corresponding model
uncertainty premium:

yn(40)−R = (bnw(τ)− 1)wt + (bnz (40)− 1)zt + bnhr(40)hrt + bnhwh
w
t . (25)
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The instantaneous bond premium of a nominal Treasury bond varies with
the degree of long-run ambiguity

Eh
t

[
dNt(τ)

Nt(τ)
−Rtdt

]
= (σ2zB

n
z (τ) + σwB

n
w(τ))(−hw(t))dt+

+ σ1zB
n
z (τ)(−hr(t))dt. (26)

The bond price loadings are negative. This implies that an expected increase
in the cross-sectional dispersion of inflation forecasts, increases hw > 0, which
leads to an increase in the bond premium across all maturities. On the other
hand, an expected increase in the cross-sectional dispersion of consumption
forecasts, lowers hr < 0, which reduces the bond premium across all maturi-
ties.

The type of uncertainty matters for the bond premium. While bonds
hedge consumption uncertainty, they do not hedge inflation uncertainty.
This results in a positive inflation uncertainty premium and a negative con-
sumption uncertainty premium. The bond premium can have different signs,
depending on the relative magnitude of long-run consumption uncertainty
versus long-run inflation uncertainty.

The volatility of interest rate changes is time-varying as well. If the
macro economy becomes more uncertain, real and nominal bond yields be-
come more volatile. The quadratic variation of changes in yields depends on
the heteroscedastic uncertainty premiums. Mathematically this means

< dynt (τ), dynt (τ) > = (bnhr(τ))2mrσηrh
r
tdt+ (bnhw(τ))2mwσ2

ηwh
w
t dt (27)

< dyrt (τ), dyrt (τ) > = (brhr(τ))2mrσηrh
r
tdt+ (brhw(τ))2mwσ2

ηwh
w
t dt (28)

where bhr and bhw are the corresponding yield loadings for the market price
of consumption uncertainty and the market price of inflation uncertainty.

2.6. Equilibrium: Option Market

Bond options carry a time-varying implied volatility. Changes in the
volatility of options are induced by changes in the trustworthiness of the
benchmark long-run risk dynamics. This implies that periods of increased
macro uncertainty lead to endogenous fluctuations in the option implied
volatilities.
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While the precise type of bond option does not matter, I consider an
interest rate option that is traded on the CBOE. Let C be a floor on an
interest rate yn(τ). Being long a floor entitles the owner of the option to
receive at maturity T the maximum of (yT (τ) − K, 0), where K is a fixed
interest rate level. The value of this option depends on the maturity of the
contract, strike, current value of the yield of interest, current nominal short
rate. I fix the notional of the contract to $100. Its equilibrium price is

C(t, T,K, yt(τ), Rt) := $100E
(
m$
t,T (yT (τ)−K)+

)
. (29)

Under rational expectations (benchmark model), the option price follows
the Black (1976) model. The implied volatility would be constant and the
model would fail to reproduce the skewed option smile as observed in the
data. Accounting for model uncertainty (worst-case model), makes option
prices follow a Black (1993) type model. Variations in implied volatility
coincide with variations in macro uncertainty. The model can account for
smiles and skews in the option market.14 The casual interpretation of im-
plied volatility as a fear index (uncertainty index) is correct in a model with
uncertainty about the long-run risk dynamics.

In the empirical section, I determine the price of a call option via Monte
Carlo simulation. I use an Euler-Marujuama discretization scheme, and sim-
ulate the system on a daily interval. I plug the resulting call price into Black
(1976) formula to invert the option implied volatility.

14Recent equilibrium models have exclusively focused on equity options. Liu et al.
(2005) and Drechsler (2009) show that ambiguity about rare events can explain the skewed
volatility smile in equity options. Buraschi et al. (2009), David and Veronesi (2009),
Buraschi and Jiltsov (2006), David and Veronesi (2002) show that learning about the
fundamental processes in the economy helps to explain why dispersion in forecasts explain
equity option prices. Drechsler and Yaron (2010), Bollerslev et al. (2009b), Eraker and
Shaliastovich (2008), Bollerslev et al. (2009a), Shaliastovich (2009) show that stochastic
volatility in consumption growth together with Epstein-Zin preferences can explain equity
option prices.
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3. Empirical Part

The model is estimated with macro, bond yield, and bond variance data.
I analyze the model’s implications for expected bond returns, and the smile
and skew of option implied volatilities.

3.1. Data

The data is from 1972 to 2009. The data frequency is quarterly. I use
the following data to match the exogenous processes of the economy. First,
d ln c is matched with realized GDP growth. Second, d ln p is matched with
realized inflation. Third, zt is matched with the demeaned median forecast in
period t, of next quarter GDP growth. The forecast is taken from the Survey
of Professional Forecasters (SPF). Fourth, wt is matched with the demeaned
median SPF forecast in period t, of next quarter inflation. Fifth, ηwt coincides
with the cross-sectional standard deviation in t across one quarter ahead SPF
inflation forecasts. Sixth, ηrt is matched with the cross-sectional standard de-
viation in t across one quarter ahead SPF GDP growth forecasts. I use GDP
data instead of consumption data, because there is no forecast and model
disagreement data for consumption growth available. To remove seasonality
in ηwt and ηzt , I use a 4-quarter moving average, which implies that I use the
t− 3, t− 2, t− 1, t dispersion to construct the non-seasonal t-measure for ηw

and ηr. The appendix contains a more detailed description of the macro data.

Patton and Timmermann (2010) econometrically analyze the economic
reason for disagreement in macro forecasts. Their analysis shows that dis-
agreement in models is a plausible economic reason for disperse forecasts.
First, the longer the forecast horizon, the higher the dispersion in forecasts.
Second, dispersion in forecasts persist over time. Anderson et al. (2009) and
Ulrich (2010) also use the cross-sectional dispersion in forecasts as a measure
for the amount of macro ambiguity.15

I match the model output with the following financial data. First, ten
panels of continuously compounded nominal Treasury bond yields of matu-
rity one year to ten years. Second, six panels of continuously compounded

15Buraschi et al. (2009), David and Veronesi (2009), Buraschi and Jiltsov (2006), David
and Veronesi (2002), among others, use dispersion in forecasts as a measure for hetero-
geneity in beliefs.
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real Treasury bond yields of maturity five years to ten years. Real bond
yields coincide with yields of Treasury Inflation Protected Securities (TIPS).
Third, ten panels of variances of continuously compounded nominal Treasury
yields with maturity of one year to ten years. The quarterly variance within
a quarter is estimated as the sum of quadratic daily yield changes within the
corresponding quarter. The appendix contains details on the exact construc-
tion of the financial data.

A first look at macro data reveals that z and w are unbiased predictors
of realized GDP growth and realized inflation, respectively. The former ex-
plains 9% of the variance of realized GDP growth, while the latter explains
65% of the variance of realized inflation.

A first look at the bond data reveals interesting relations between the
macro and the bond market. I denote the principal components of the panel
of nominal yields as PC. PC1 stands for the first principal component, PC2
stands for the second, and so on. First, variations in Xt = (wt zt η

r
t η

w
t ) ex-

plain 63% of PC1 variations, with wt and ηwt having t-stats bigger than 2.
Second, variations in X explain variations in PC2, with wt and ηrt having
t-stats bigger than 2. Third, variations in X explain 19% of PC3 variations,
with wt and ηwt having t-stats bigger than 2. Fourth, variations in X explain
4% of PC4 variations, while zt has a t-stat of bigger than 2. Fifth, 12% of
variations in PC5 are explained by variations in ηw. Sixth, 23% of variations
in the slope (40-quarter yield minus federal funds rate) are explained by wt
and ηrt . The negative loading on these factors is consistent with the model
implied sign in equation (25).

The data evidence suggests that uncertainty on trend inflation signifi-
cantly explains variations in PC1, PC3, and PC5. It further implies that
uncertainty about trend GDP growth explains variations in PC2. Cochrane
and Piazzesi (2005) find that a single factor predicts bond returns. This
factor is mostly unrelated to the first three principal components of nominal
yields. Duffee (2010) finds that the fifth principal component is a hidden
factor in the yield curve which has substantial predictive power for bond
returns. My first look at the data reveals that cross-sectional dispersion in
inflation forecasts, which is part of the bond premium in my model, explains
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12% of variations in the fifth principal component.

A first look at the volatility of yield changes reveals the following. First,
one factor explains 94% of bond yield variance fluctuations. Second, regress-
ing this factor on (ηw)2 and (ηr)2 reveals that both factors together explain
20% of its variation. The t-stat of both uncertainty factors is around −2.4.

3.2. Econometric Method

I use 29 measurement equations and 4 observable state variables in the
estimation. I use 10 time-series of nominal yields, 10 time-series of nominal
yield variances, one time-series of the federal funds rate, six time-series of real
yields and two time-series of macro growth (inflation and GDP growth). The
four state equations are trend GDP growth, trend inflation, cross-sectional
dispersion in inflation forecasts and cross-sectional dispersion in GDP growth
forecasts.

The estimation uses a conservative approach. I first, run a QML estima-
tion with the observable state equations and inflation and GDP growth only
in order to determine the 99% confidence interval of macroeconomic param-
eter estimates. Second, I run a one step QML with bond and macro data at
the same time, with the constraint that the macro parameters lie within that
99% confidence interval. After the estimation, I check the model implications
for the mean of the yield curve, its volatility, as well as the option volatility
smile.

3.3. Empirical Findings:

3.3.1. Yield Curve

Figure 1 shows that the model explains term structure of nominal yields
well. Panel A of Table 3 shows that changes in long-run inflation risk ex-
plains nearly all variations in yields. More specifically, 73.6% of variations
in the 4-quarter yield arise from variations in long-run inflation risk. The
remaining 26.4% arise from variations in long-run GDP risk. On the other
hand, 97% of variations in the 40-quarter yield are due to variations on long-
run inflation risk and the remaining 3% are due to variations in long-run
GDP risk. The uncertainty premiums hr and hw are practically unspanned
by the yield curve. The premiums affect the bond premiums and the option
volatilities, but they do not explain variations in bond yields. The model
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basically endogenizes two unspanned macro factors that drive bond returns
and bond volatilities. This provides a potential equilibrium explanation to
the challenging empirical findings of Collin-Dufresne and Goldstein (2002),
Joslin et al. (2009), Cochrane and Piazzesi (2005), Duffee (2010), and Lud-
vigson and Ng (2009) who find that factors that are unspanned by the yield
curve drive bond returns and bond volatilities.

Figure 2 shows impulse responses of the yield curve to a one percent in-
crease in the cross-sectional dispersion of both long-run risk factors. Confirm-
ing the results from Table 1, the impulse responses show that the unspanned
uncertainty premiums affect the yield curve only marginally. Moreover, it
matters for the yield curve, whether there is a shock to long-run GDP un-
certainty or to long-run inflation uncertainty. A one percent increase in the
cross-sectional dispersion of long-run GDP growth leaves the nominal short
rate unaffected and lowers the 40-quarter yield by 0.3 basis points. The slope
flattens by 0.3 basis points. Long-term bond yields fall as a result of rising
bond prices. The equilibrium supports rising bond prices because an increase
in GDP uncertainty is potentially good news for the future value of a bond,
because bonds are recession hedges. The implications are different for infla-
tion uncertainty. A one percent increase in the cross-sectional dispersion of
long-run inflation does not affect the short rate but increases the 40-quarter
yield by 9 basis points. The slope increases if the cross-sectional dispersion
of inflation increases.

3.3.2. Bond Premium

Figure 3 compares empirical 4-quarter holding period returns of different
bonds over the federal funds rate with the model counterpart. The empirical
bond panel allows the exact measurement of 4 quarter holding period returns
for all bond maturities. I construct excess returns by subtracting the federal
funds rate.16 As the model counterpart, I use the integrated four quarter
expected excess return. Its unconditional correlation with the instantaneous

16I use the federal funds rate as the risk-free rate and not the four-quarter yield. This
is the closest counterpart to the model implied expected excess return.
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expected excess return from equation (26) is higher than 98%.17

The figure shows that the model matches the data counterpart. In the
data, the term structure of 4-quarter holding period returns is upward slop-
ing, from slightly above zero (4-quarter bond) to 2.2% for the 40 quarter
bond. The term structure of excess 4-quarter holding period returns is
volatile in the data. The population expected excess return for a 40-quarter
bond lies within 0 and 4.5%. The model implied expected excess return lies
in the upper part of the empirical confidence interval. It is entirely driven by
unspanned uncertainty premiums and especially by the inflation uncertainty
component, which in the data explains 12% of fifth principal component.

In order to analyze the 4-quarter holding period excess bond returns,
I normalize the model and data implied ones to have zero mean and unit
variance. The upper panel of Figure 4 shows the time-variation of both nor-
malized excess returns for the ten year nominal bond. A predictive regression
on a quarterly frequency shows that the model implied bond premium has
predictive power. For the period of the Great Moderation, the R2 equals 5%,
the regression loading is 0.2 with a t-stat of 2.1.

The lower panel of Figure 4 shows that both unspanned uncertainty pre-
miums affect the bond premium differently. The expected bond premium
for long-run inflation ambiguity goes up at the beginning and during NBER
recessions. The long-run GDP ambiguity premium behaves in an opposite
way. The unconditional correlation with the long-run inflation ambiguity is
−73%. The negative long-run GDP ambiguity premium leads to rising bond
prices at the beginning and during recessions. In the model, both uncertainty

17The integrated four quarter expected excess return is∫ t+4

t

d

(
Eht

[
dNt(τ)

Nt(τ)
−Rtdt

])
= (σ2zB

n
z (τ) + σwB

n
w(τ))

((
mwaηw

κ2ηw
− hwt
κηw

)
(eκηw ·4 − 1) + 4

mwaηw

κηw

)
+ σ1zB

n
z (τ)

(
4
mraηr

κηr
+

(
mraηr

κ2ηr
− hrt
κηr

)
(eκ4ηr − 1)

)
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premiums counter balance each other. The premium can therefore be posi-
tive or negative. Evaluated at the estimated QML parameters, the long-run
inflation ambiguity premium is the dominant component. Panel B of Figure
3 shows that more than 90 percent of variations in expected bond returns
are driven by variations in the long-run inflation ambiguity premium. The
remaining part is attributed to variations in the long-run GDP ambiguity
premium.

Figure 5 depicts that both unspanned ambiguity premiums affect the
bond premiums differently. A one percent increase in the cross-sectional dis-
persion of inflation forecasts makes the bond investor request a 1.5% higher
bond premium for a 40-quarter bond. This 1.5 multiple indicates a quanti-
tatively important mechanism. On the other hand, a one percent increase
in the cross-sectional dispersion of GDP growth forecasts makes the investor
willing to pay a 2.5 basis point premium for holding a 40-quarter nominal
bond. Intuitively, the investor pays a GDP uncertainty premium, because
if the benchmark long-run GDP risk model turns out to be too optimistic,
this positively affects the value of real and nominal bonds. On the contrary
and consistent with the analysis in Ulrich (2010), inflation uncertainty in-
creases in periods where the real value of nominal bonds falls. The bond
premium for inflation uncertainty is therefore positive. Figure 5 and Fig-
ure 2 together show that an increase in the amount of ambiguity about the
long-run inflation component increases the slope of the yield curve, as well
as the expected bond premium. The model is therefore able to explain the
empirical phenomenon that a steepening of the yield curve coincides with a
higher uncertainty premium.

3.3.3. Volatility

Figure 6 visualizes the snake shaped model implied term structure of
volatility of yield changes (Piazzesi (2005)). The model implied snake pattern
is more pronounced than in my data sample, but it lies within two standard
deviations of the data. The model attributes the volatility in the bond mar-
ket to variations in unspanned ambiguity premiums. The unspanned nature
of bond volatility is documented in Collin-Dufresne and Goldstein (2002).

Figure 7 shows that a one percent increase in the cross-sectional disper-
sion of the long-run risk factors, leads to rising volatility in the bond market.
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More specifically, a one percent increase in the cross-sectional dispersion of
trend inflation increases the head of the snake by 15%. Such a higher multi-
ple shows that a modest increase in inflation ambiguity can lead to dramatic
changes in bond market volatility. A 40-quarter bond reacts still with a mul-
tiple of 2.5. The impact of an increase in GDP uncertainty is qualitatively
the same, but quantitatively different. The magnitude is roughly a tenth of
the inflation uncertainty counterpart.

Figure 8 shows that changes in macro uncertainty changes the level and
slope of the Black implied option volatilities. I perform a Monte Carlo simula-
tion to determine the price in equation (29) on a three month call on nominal
Treasury yields of maturity in 8, 12, 16 and 20 quarters, for different strikes.
The x-axis denotes the moneyness, defined as ln K

ynt (τ)
. Under the benchmark

model, option implied volatilities are constant for all strikes. This is the
case because the benchmark model is homoscedastic. The bond option price
follows the Black (1976) model. Adding model uncertainty makes bond op-
tions follow a multi-dimensional Black (1993) type model. Unspanned macro
uncertainty, in the form of unspanned premiums for the uncertain path of
future economic growth (real and nominal) makes option implied volatilities
have a skewed smile.

Collin-Dufresne and Goldstein (2002) provide evidence that option im-
plied volatilities are driven by unspanned factors. My model is a theoretical
explanation of how and why unspanned macro factors might affect option
prices. My model implies that Black implied volatilities are higher the shorter
the duration of the bond. The skew of implied volatilities turns to a smile
the longer the duration of the bond. Statistical pricing models for interest
rate options need either jumps in interest rates or a correlation between in-
terest rates and its volatility (Jarrow et al. (2007) and Trolle and Schwartz
(2000)). My analysis shows that a smooth macro equilibrium model with
heteroscedastic uncertainty aversion is capable of generating a pronounced
skew for options on short-duration yields. The skew is generated through
the correlation of unspanned uncertainty and variations in bond yields. The
model does not require a separate variance risk premium to generate the re-
sult.
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Figure 9 summarizes the changes in implied volatility for a one percent
increase in the cross-sectional standard deviation of long-run risk forecasts.
This figure shows that unspanned ambiguity about the long-run risk compo-
nents affects the skewed volatility smile differently. A one percent increase
in the cross-sectional standard deviation of trend inflation forecasts increases
the level of the smile and makes the skew more pronounced. This reflects
that an increase in inflation ambiguity increases the fear in the bond mar-
ket. In our model it is therefore consistent to interpret changes in implied
volatility as a result of changes in economic fear.

On the contrary, a one percent increase in the cross-sectional standard devi-
ation of trend GDP growth lowers the level of the volatility curve and lessens
the skew of the smile. This implies that an increase in uncertainty does not
automatically lead to higher fear in the bond market. The model provides a
case where an increase in GDP uncertainty leads to falling implied volatility
on the interest rate option market. The intuition for this behavior is that
a more blurry outlook on GDP growth is good news for bond holders. The
Euler equation shows that the value of bonds increases in times of a deteri-
orating GDP outlook.

All in one, it is the inflation uncertainty premium that dominates variations
in the smile. Table 4 decomposes variations in the option implied smile into
its two components. It shows that the inflation uncertainty premium drives
roughly 99% of variations in implied volatilities.

4. Robustness

If the worst-case and the benchmark model are in a statistical sense far
apart from each other, it becomes easy for an econometrician to tell which
model generated the data. I therefore, determine the detection error proba-
bility (DEP), evaluated at the QML estimates. This probability denotes the
likelihood, that a likelihood ratio test favors one model, although the data
has been generated by the other model. Ulrich (2010) explains in detail how
to derive DEPs in macro-finance models, and how they relate to Hansen and
Sargent (2008).

The time-varying log-likelihood ratio between the worst-case model and
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the benchmark model is

ln

(
dQh

T

dQ0
T

)
= −1

2

∫ T

0

((mr)2(ηrt )
2 + (mw)2(ηwt )2)dt+

∫ T

0

(mrηrt dW
r
t +mwηwt dW

w
t ).

(30)

The detection error probability depends on the market price of uncertainty
and the realization of shocks to both long-run risk components. The ap-
pendix provides details on the derivation of the DEP.

The DEP, evaluated at the QML estimates is 23.5%. This says that after
seeing the data, if the investor was to choose whether the data has been
generated by the reference or the worst-case model, the likelihood ratio test
would by statistical chance fool the investor in 23.5% of all cases.

5. Conclusion

We know from Campbell and Cochrane (1999) that stochastic risk aver-
sion can explain a counter cyclical equity premium, while the conditional
volatility of consumption is constant. I extend this reasoning and show that
stochastic uncertainty aversion (Knight (1921)) is an alternative channel for
the bond market. In the model, the equilibrium bond premium, volatility,
and option implied volatility are counter cyclical, while conditional volatility
of consumption and inflation is constant. The reason are time-varying un-
certainty premiums. Both premiums exist in equilibrium, because the agent
faces model uncertainty about the underlying long-run risk dynamics.

The analysis concludes that the yield curve does not span the uncertainty
premiums. At the same, these premiums are of first-order importance for un-
derstanding bond returns and option markets in this model. The model pro-
vides a general equilibrium story for the empirical findings that unspanned
factors drive bond premiums, bond volatility, and option implied volatility
(Collin-Dufresne and Goldstein (2002), Cochrane and Piazzesi (2005), Lud-
vigson and Ng (2009)).
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I conclude that the introduced small deviation from an otherwise con-
ditionally homoscedastic consumption based asset pricing model has impor-
tant and realistic implications for bond and bond option markets. For future
research it is promising to study stochastic risk aversion and stochastic un-
certainty aversion in a unified model.
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Appendices
A. Data

Macro data:

The Survey of Professional Forecasters (SPF) does not publish forecasts on
consumption growth. I use forecasts and dispersion on GDP growth instead.
Real GDP growth, GDP implicit price deflator, federal funds rate are from
the St. Louis Fed database (FRED). The quarterly forecast on GDP growth
and inflation coincide with the corresponding median forecast from the SPF.
For each quarter, I determine the amount of ambiguity, η2, as the cross-
sectional variance of SPF’s inflation and GDP growth forecasts. To remove
seasonality I use a 4-quarter moving average. All data is from first quarter
1972 to second quarter 2009.

Bond data:

Nominal yields: continuously compounded U.S. government bond yields of
maturities 1,2,3,4,5,6,7,8,9,10 years. Data is from first quarter 1972 to second
quarter 2009.
Real yields: continuously compounded yields from U.S. Treasury Inflation
Protected Securities (TIPS) with maturities of 5,6,7,8,9,10 years. Data is
from first quarter 2003 to second quarter 2009.
All bond data is from the Board of Governors of the Federal Reserve System.

Volatility data:

Realized volatility of changes in nominal yields: I use daily squared differ-
ences in continuously compounded U.S. government bond yields of maturities
1,2,3,4,5,6,7,8,9,10 years to construct a quarterly measure of realized volatil-
ity. Data is from first quarter 1972 to second quarter 2009.

B. Proof of Proposition 1

Rewrite the constrained minimization in (12) as a relative entropy con-
strained HJB. J denotes the value function. It depends on J = J(ln c, ηw, ηr, zt).
The time varying Lagrange multipliers for the entropy constraints are θrt and

23



θwt .

ρJ(ln ct, η
w, ηr, zt) = min

hrt ,h
w
t

ln ct + θrt

(
(hrt )

2

2
− Ar(ηrt )2

)
+ θwt

(
(hwt )2

2
− Aw(ηwt )2

)
+

+AhJ(ln ct, η
w, ηr, zt), (31)

where Ah is the second order differential operator (under the ambiguity ad-
justed measure) applied to the value function J. Guess the value function is
linear in the states, i.e. J = δ0 + δzzt + δηwη

w
t + δηrη

r
t . The second order

differential operator applied to the value function is

Ah J = δz(κz + σ1zh
r
t + σ2zh

w
t ) + δηr(aηr + κηrη

r
t ) + δηw(aηw + κηwη

w
t ) (32)

First-order conditions with regard to hrt and θrt reveal

θrt =
−σ1zδz

±
√

2Arηrt
(33)

hrt = ±
√

2Arηrt . (34)

Note (δz > 0, σ1z > 0), the robust HJB is minimized at

hrt = −
√

2Arηrt ≡ mrηrt , mr ∈ R− (35)

θrt =
−σ1zδz

−
√

2Arηrt
≡ b0

ηrt
, b0 ∈ R+, (36)

where we defined mr ≡ −
√

2Ar < 0 and b0 ≡ −σ1zδz
−
√

2Ar
> 0. This proofs the

first part of the proposition.
First-order conditions with regard to hwt and θwt reveal

θwt =
−σ2zδz

±
√

2Awηwt
(37)

hwt = ±
√

2Awηwt . (38)

Note (δz > 0, σ2z < 0), the robust HJB is minimized at

hwt =
√

2Awηwt ≡ mwη
w
t , mw ∈ R+ (39)

θwt = − σ2zδz√
2Awηwt

≡ b1

ηwt
, b1 ∈ R+, (40)

where we defined mw ≡
√

2Aw < 0 and b1 ≡ −σ2zδz√
2Aw

> 0. This proofs the
remaining part of the proposition. Plug the solution to the robust HJB and
verify that the guess of the linearized value function was correct.
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C. Derivation of Real Bond Yields

Let F r = F r
t (τ) be the price of a real bond. In the economy this price

is exponentially affine F r = eA
r(τ)+Br(τ)S where S denotes the state vector

St = (zt h
r
t h

w
t )′. F r solves the following PDE

r · F r = AHF r + F r
t , F r

t = −F r
τ (41)

where r is the real risk free rate, AH is the second order differential operator
and F r

τ is the first derivative of F r with regard to τ . Using the equilibrium
real interest rate and the exogenous dynamics of S reveals that the bond
loadings solve simple ordinary differential equations. The solution for Br

z(τ)
is Br

z(τ) = 1
κz

(1− eκzτ ). The corresponding ode for Br
hw and Br

hw solve

d

dτ
Br
hw(τ) = κηwB

r
hw(τ) +

1

2
σ2
ηwm

w (Br
hw(τ))2 + σ2zB

r
z(τ), Br

hw(0) = 0 (42)

d

dτ
Br
hr(τ) = κηrB

r
hr(τ) +

1

2
σ2
ηrm

r (Br
hr(τ))2 + σ1zB

r
z(τ), Br

hr(0) = 0 (43)

(44)

The analytic solution to the Riccati equations (approximating Br
z(τ) at its

steady state value Br
z(∞)) is

Br
hr(τ) =

(−β1 + d)(1− edτ )
2β2(1− gedτ )

(45)

g :=
−β1 + d

−β1 − d
(46)

d :=
√
β2

1 − 4β0β2 (47)

β0 :=
σ1z

κz
(48)

β1 := κηr (49)

β2 := 0.5mrσ2
ηr (50)
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and

Br
hw(τ) =

(−β1 + d)(1− edτ )
2β2(1− gedτ )

(51)

g :=
−β1 + d

−β1 − d
(52)

d :=
√
β2

1 − 4β0β2 (53)

β0 :=
σ2z

κz
(54)

β1 := κηw (55)

β2 := 0.5mwσ2
ηw . (56)

Function Ar(τ) follows from direct integration.

D. Derivation of Nominal Bond Yields

Let F = Ft(τ) be the price of a nominal bond. In the economy this price
is exponentially affine F = eA

n(τ)+Bn(τ)X where X denotes the state vector
Xt = (wt St)

′. F solves the following PDE

R · F = AHF + Ft, Ft = −Fτ (57)

where R is the nominal short rate, AH is the second order differential operator
and Fτ is the first derivative of F with regard to τ . Using the equilibrium
nominal short rate and the exogenous dynamics of X reveals that the bond
loadings solve simple ordinary differential equations. The solution to the
loadings is as follows: Bn

z (τ) = Br
z(τ), Bn

hr(τ) = Br
hr(τ), Bn

w(τ) = 1
κw

(1 −
eκwτ ). The analytical solution to Bn

hw(τ) (approximated Bn
w(τ) at its steady

state value Bn
w(τ)) is

Bn
hw(τ) =

(−β1 + d)(1− edτ )
2β2(1− gedτ )

(58)

g :=
−β1 + d

−β1 − d
(59)

d :=
√
β2

1 − 4β0β2 (60)

β0 :=
σ2z

κz
+
σw
κw

(61)

β1 := κηw (62)

β2 := 0.5mwσ2
ηw . (63)
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Function An(τ) follows from direct integration.

E. Derivation of Detection Error Probability

The derivation of the detection-error probabilities pT (mr,mw) follows di-
rectly from Maenhout (2006):

pT (mr,mw) =
1

2

(
Pr

(
ln
dQh

T

dQ0
T

> 0|dQ0,F0

)
+ Pr

(
ln
dQ0

T

dQh
T

> 0|dQh,F0

))
(64)

=
1

2

(
Pr

(
−1

2

∫ T

0

h′mhmdm+

∫ T

0

hm · dW z
m > 0|dQ0,F0

))
+

1

2

(
Pr

(
−1

2

∫ T

0

h′mhmdm−
∫ T

0

hm · dW z,h
m > 0|dQh,F0

))
(65)

where ht = (mwηwt m
rηrt )

′ is the endogenous distortion to trend GDP growth.
The last equation coincides with

pT (mr,mw) =
1

2
− 1

2π

∫ ∞
0

(
Re

(
φh(k, 0, T )

ik

)
−Re

(
φ(k, 0, T )

ik

))
dk

(66)

where i =
√
−1, φ(.) is defined as φ(k, 0, T ) := E

[
ei·k·ξ1,T |F0

]
and φh(.) is

defined as φh(k, 0, T ) := Eh
[
ei·k·ξ1,T |F0

]
and ξ1,T = ln

dQhT
dQ0

T
.

Applying Feynman-Kac theorem to φh and φ reveals that they are an
exponentially quadratic function in the amount of inflation distortion ht:

φh(k, t, T ) = zik+1
t eG(τ,k)+

∑
j∈{w,r} Ej(τ,k)hj(t)+

∑
j∈{w,r}

Fj(τ,k)

2
h2j (t) (67)

φ(k, t, T ) = zikt e
Ĝ(τ,k)+

∑
j∈{w,r} Êj(τ,k)hj(t)+

∑
j∈{w,r}

F̂j(τ,k)

2
h2j (t) (68)

zT := eξ1,T , (69)

whereG(τ, k), Ej(τ, k), Fj(τ, k), Ĝ(τ, k), Êj(τ, k), F̂j(τ, k) are deterministic so-
lutions to standard complex valued Riccati equations. I provide details on
the derivation of the Riccati equations for φh. The derivation of φ is analo-
gous.
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In order to get an analytical solution, I approximate the conditional volatility
of the uncertainty premium by its steady state value, i.e.

dht = (aηm+ κηht)dt+ ση
√
m
√
htdW

η
t (70)

≈ (aηm+ κηht)dt+ ση
√
m
√
maη/(−κη)dW η

t (71)

For ease of notation I define b :=
√
m
√
maη/(−κη), where more specifically

br refers to the conditional steady state volatility of dhr and bw is the analog
for dhw.

φh(k, t, T ) solves φhτ = Aφh where τ = T − t and φhτ stands for ∂φh

∂τ
.

φhτ = φh

Ġ(τ, k) +
∑

j∈{w,r}

Ėj(τ, k)hj(t) +
1

2

∑
j∈{w,r}

Ḟj(τ, k)h2
j(t)

 (72)

Aφh

φh
=

∑
j∈{w,r}

[
(Ej(τ, k) + Fj(τ, k)hj(t))

(
aηjm

j + κηjhj(t)
)]

+ 0.5ik(k + 1)
(
h2
w(t) + h2

r(t)
)

+
1

2

∑
j∈{w,r}

(
E2
j (τ, k) + F 2

j (τ, k)h2
j(t) + 2Ej(τ, k)Fj(τ, k)hj(t)

)
b2
j (73)

Set φhτ = Aφh and match coefficients:

Fj(τ, k) = F r
j (τ, k) + F c

j (τ, k) (74)

F c
j (τ, k) = k · τ (75)

F r
j (τ, k) =

(aj + dj)(1− edjτ )
2br2j(1− gjedjτ )

(76)

where F r is the real part of F and F c is the complex part and

aj = −br1j; dj =
√
a2
j − 4br0jb

r
2j; gj =

aj + dj
aj − dj

; br0j = −k2 (77)

br1j = 2κηj ; br2j = b2
j (78)

where j ∈ {w, r}. The stable steady state solution of F is

Fj(∞, k) = −
br1j + dj

2br2j
. (79)
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The loadings Ej(τ, k), j ∈ {f, w, r} solve the following ode

d

dτ
Ej(τ, k) = κηjEj(τ, k) +mjaηjFj(τ, k) + Ej(τ, k)Fj(τ, k)b2

j . (80)

We obtain an analytical approximation by approximating Fj(τ, k) around its
steady state value Fj(∞, k).

Ej(τ, k) = − âj
b̂j

(1− eb̂jτ ) (81)

âj = Fj(∞, k)mjaηj (82)

b̂j = Fj(∞, k)b2
j + κηj . (83)

The loading G(τ, k) is obtained through straightforward integration

G(τ, k) =
∑

j∈{f,w,r}

(
mjaηj

∫ τ

0

Ej(u, k)du

)
+

1

2

∑
j∈{w,r}

b2
j

∫ τ

0

E2
j (u, k)du.

(84)

The required expression φh(k, 0, T ) is therefore

φh(k, 0, T ) = eG(T,k)+
∑
j∈{w,r} Ej(T,k)hj(∞)+ 1

2

∑
j∈{w,r} Fj(T,k)h2j (∞), (85)

where we assumed that hj(0) started in its steady state hj(∞) =
mjaηj

−κ
ηj

.
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Table 1: PARAMETER ESTIMATES (Standard Errors)

Panel A: State Variables

Drift, Volatility

κ σ a

w -0.049 (0.0004 ) 0.0023 (0.00002) 0 (fixed)
z -0.27 (0.002 ) 0.0078 (0.00039) -0.0018 (0.00005) 0 (fixed)
ηw -0.49 (0.007) 0.78 (0.16) 0.0015 (0.00025)
ηz -0.22 (0.002) 0.50 (0.95) 0.0017(0.00075)

Panel B: Growth and Inflation

c0 0.0065 (fixed)
p0 0.0096 (fixed)
σc 8.8e-5 (4e-5)
σp 5.4e-5 (4e-5)
ρ 0.001 (fixed)
mw 40.97 (0.496)
mr -0.93 (0.042)

Note: The table presents QML parameter estimates and their standard error
(in parenthesis). The asymptotic standard errors are determined based on
the score of the log likelihood. The QML estimation uses bond yield, bond
volatility and macro data from 1972.I to 2009.II.

35



Table 2: Yield Curve, in %, per quarter

Panel A: Nominal Yields

yn

maturity R 4 8 12 16 20 24 28 32 36 40
data 1.6 1.5822 1.6391 1.6819 1.7159 1.7453 1.7717 1.795 1.8154 1.8327 1.8484
model 1.5991 1.5577 1.5915 1.6354 1.6797 1.7215 1.7601 1.7952 1.8270 1.8558 1.8817

Panel B: Real Yields

yr

maturity 20 24 28 32 36 40
data 0.3782 0.4109 0.4400 0.4650 0.4859 0.5014
model 0.5274 0.5233 0.5204 0.5181 0.5164 0.5150

Panel C: Volatility of Nominal Yield Changes√
V ar(∆yn)

maturity 4 8 12 16 20 24 28 32 36 40
data 0.1221 0.1321 0.1344 0.1326 0.1298 0.1269 0.1245 0.1226 0.1214 0.1206
model 0.4050 0.2060 0.1385 0.1041 0.0834 0.0695 0.0596 0.0521 0.0464 0.0417

Note: Panel A compares model implied nominal bond yields with the data
counterpart. R stands for the nominal short rate (federal funds rate),
while the other maturities refer to quarters. The yields are in quarterly
percentage units. Panel B compares model implied real bond yields with
the data counterpart. Maturity is in quarterly units, and interest rates
are in quarterly percentage units. Panel C compares the model implied
volatility of nominal yield changes with the data counterpart. Volatilities
are in quarterly units and in percent. The QML estimation uses bond yield,
bond volatility and macro data from 1972.I to 2009.II.
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Table 3: Variance Decomposition

Panel A: Nominal Yields

yn

maturity total w z hw hr

4 1.0000 0.7358 0.2637 0.0004 0.0000
8 1.0000 0.8397 0.1602 0.0001 0.0000
12 1.0000 0.8937 0.1062 0.0001 0.0000
16 1.0000 0.9228 0.0771 0.0001 0.0000
20 1.0000 0.9395 0.0604 0.0000 0.0000
24 1.0000 0.9498 0.0502 0.0000 0.0000
28 1.0000 0.9565 0.0435 0.0000 0.0000
32 1.0000 0.9611 0.0389 0.0000 0.0000
36 1.0000 0.9643 0.0356 0.0000 0.0000
40 1.0000 0.9667 0.0333 0.0000 0.0000

Panel B: 4-Quarter Excess Holding Period Return of Nominal Bonds

BondPremium

maturity total w z hw hr

4 1.0000 0 0 0.9313 0.0687
8 1.0000 0 0 0.9769 0.0231
12 1.0000 0 0 0.9886 0.0114
16 1.0000 0 0 0.9929 0.0071
20 1.0000 0 0 0.9950 0.0050
24 1.0000 0 0 0.9961 0.0039
28 1.0000 0 0 0.9967 0.0033
32 1.0000 0 0 0.9972 0.0028
36 1.0000 0 0 0.9975 0.0025
40 1.0000 0 0 0.9977 0.0023

Note: This table summarizes several variance decompositions. Panel A
depicts variance decompositions for nominal bond yields. Panel B presents
variance decompositions for the 4-quarter model implied expected excess
return of holding a nominal bond with different maturities. The QML
estimation uses bond yield, bond volatility and macro data from 1972.I to
2009.II.
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Table 4: Variance Decomposition

Panel C: Implied Volatility for One Quarter Yield Option

BlackImpliedV olatilities

maturity total w z hw hr

4 1.0000 0 0 0.9982 0.0018
8 1.0000 0 0 0.9933 0.0067
12 1.0000 0 0 0.9901 0.0099
16 1.0000 0 0 0.9886 0.0114
20 1.0000 0 0 0.9880 0.0120
24 1.0000 0 0 0.9878 0.0122
28 1.0000 0 0 0.9878 0.0122
32 1.0000 0 0 0.9877 0.0123
36 1.0000 0 0 0.9878 0.0122
40 1.0000 0 0 0.9877 0.0123

Note: Panel C depicts variance decompositions for the Black implied volatil-
ity for a three month call on several interest rates. The QML estimation
uses bond yield, bond volatility and macro data from 1972.I to 2009.II.
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Figure 1: Term Structure of Nominal Interest Rates

This figure shows the model implied nominal yield curve (annualized and
in %) together with the data counter part. The four factor macro model
uses only observable factors in X = (w z ηw ηr)′ (trend inflation, trend GDP
growth, dispersion in inflation forecasts, dispersion in GDP growth forecasts),
i.e. ynt (τ) = an(τ) + bn(τ)Xt. The data is from 1972.I to 2009.II. The x-
axis is in quarterly units, the y-axis is in percent. The GDP and inflation
uncertainty premiums are practically unspanned by the yield curve, which
makes the yield curve itself be primarily driven by long-run inflation risk
(trend inflation) and long-run GDP risk (trend GDP growth).

5 10 15 20 25 30 35 40
5

5.5

6

6.5

7

7.5

8

 

 
model
data

39



Figure 2: Impulse Responses: Yield Curve

This figure presents impulse responses of the yield curve for a one percent
increase in the cross-sectional standard deviation of forecasts on long-run
risk. The left panels, from top to bottom, analyze the impact of a one percent
increase in the cross-sectional standard deviation in inflation forecasts on the
nominal short rate, the 40-quarter nominal yield, and the slope of the yield
curve. The right panels present the analog for a one percent increase in the
cross-sectional dispersion in GDP forecasts. The x-axis are in quarters, the
y-axis is in percent. The model is estimated with QML and uses data from
1972.I to 2009.II.
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Figure 3: Term Structure of Bond Premiums

This figure presents the cross-section of bond premiums in the data and in
the model. The bond premium is calculated as the 4-quarter holding period
return of all nominal bonds minus the nominal short rate (federal funds
rate). The x-axis is in quarterly units and corresponds to the maturity of the
nominal bond. The y-axis is in percent. The premiums are annualized. The
dotted line corresponds to the realized sample average. The solid line stands
for the model implied expected excess bond return. The −. line in the lower
panel represents the empirical confidence interval around the realized sample
average return. The confidence interval is determined as the realized sample
average plus and minus two times the sample standard deviation divided by
the square-root of the sample size. It represents the data estimate for the
expected bond return in population. The model is estimated with yields
and macro data in a one step QML. The data length is 1972.I to 2009.II.
The bond premium in the model depends only on the unspanned long-run
ambiguity premiums.
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Figure 4: Time-Series of Bond Premium

This figure presents the bond premium for the ten year bond and its compo-
nents together with NBER recession dates. The bond premium is normalized
(mean zero and unit variance) and calculated as the 4-quarter holding pe-
riod return of a ten year bond over the nominal short rate (federal funds
rate). The solid line of the top panel presents the realized normalized bond
premium, while the dotted line corresponds to the model implied expected
normalized bond premium. The lower panel decomposes the model implied
expected normalized bond premium for a ten year bond (∗ line) to its two
components. The first component is the unspanned ambiguity factor for
trend inflation (solid line, ηw) (cross-sectional standard deviation of infla-
tion forecasts). The second component is the unspanned ambiguity factor
for trend GDP growth (dotted line, ηz) (cross-sectional standard deviation
of GDP forecasts). The model is estimated with yield and macro data and
uses a one step QML estimation with data from 1972.I to 2009.II.
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Figure 5: Impulse Responses: Bond Premium

This figure presents impulse responses for a one percent increase in the cross-
sectional standard deviation of inflation and GDP growth forecasts on itself
and on bond premiums. The x-axis is in quarterly units, while the y-axis is
in percentage units. The upper panel, from left to right, shows the response
of cross-sectional dispersion of inflation forecasts, the bond premium of a 4-
quarter bond, and the bond premium of a 40-quarter bond for a one percent
increase in the cross-sectional dispersion of inflation forecasts. The lower
panel presents the equivalent statistics for a one percent increase in the cross-
sectional dispersion of GDP growth forecasts. The model is estimated with
yield and macro data and uses a one step QML estimation with data from
1972.I to 2009.II.
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Figure 6: Term Structure of Yield Volatility

This figure presents the data and model implied volatility of yield changes.
The x-axis stands for the maturity of the particular yield, while the y-axis
is in percent. The volatility data is annualized. The solid dotted line rep-
resents the sample mean of the corresponding volatility of yield changes.
This volatility is determined as the square-root of the average of the sum
of squared daily yield changes within a particular quarter. The dotted line
represents this sample mean plus and minus two standard deviations. The
model is estimated with yield and macro data and uses a one step QML
estimation with data from 1972.I to 2009.II.
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Figure 7: Impulse Responses: Yield Volatility

This figure presents the change in the volatility of (nominal) yield changes for
a one percent increase in the cross-sectional standard deviation of inflation
and GDP growth forecasts. The left panels, from top to bottom, presents the
vol response for the 4-quarter and 40-quarter yield to a one percent increase in
the cross-sectional standard deviation of inflation forecasts. The right panels
present the same responses for a one percent increase in the cross-sectional
standard deviation of GDP growth forecasts. The model is estimated with
yield and macro data and uses a one step QML estimation with data from
1972.I to 2009.II.
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Figure 8: Option Implied Volatilities

This figure presents Black implied volatilities a three month call on several
Treasury bond yields. The panels from left to right represent the Black
implied volatilities for the 8-quarter, 12-quarter, 16-quarter, and 20-quarter
yield. The call is priced as $100Et[m

$
t+1max(ynt+1(τ) − K, 0)], where τ =

(8, 12, 16, 20) quarters stands for the maturity of the yield, K is the strike,
and m$ is the equilibrium implied nominal stochastic discount factor. The
notional of the contract is $100. The call price is found via monte carlo
simulation, with an Euler-Marujama scheme, simulated at a daily interval.
In order to get the option implied volatility, I plug the call price into the
Black(1973) option formula and invert for the volatility. The skewed smile is
entirely driven by the unspanned uncertainty premiums. The x-axis depicts
the moneyness, i.e. ln K

yt(τ)
. The y-axis is in percent. The QML estimates

and sample mean of the states are used to construct the pictures. The model
is estimated with yield and macro data and uses a one step QML estimation
with data from 1972.I to 2009.II.
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Figure 9: Impulse Responses: Option Implied Volatilities

This figure presents responses of option implied volatilities to a one per-
cent increase in the cross-sectional standard deviation of forecasts on next
quarter inflation and GDP growth. The upper panels, from left to right,
summarize changes in the implied volatility of a three month call on the
8-quarter, 12-quarter, 16-quarter, and 20-quarter yield for a one percent in-
crease in the cross-sectional standard deviation of GDP growth forecasts.
The lower panel presents the same statistics for a one percent increase in the
cross-sectional standard deviation of inflation forecasts. The call is priced as
$100Et[m

$
t+1max(ynt+1(τ) − K, 0)], where τ = (8, 12, 16, 20) quarters stands

for the maturity of the yield, K is the strike, and m$ is the equilibrium im-
plied nominal stochastic discount factor. The notional of the contract is $100.
The corresponding dispersion is increased by one percent, and the call price
determined via Monte Carlo simulation, with an Euler-Marujama scheme,
simulated at a daily interval. The Black implied volatility is determined.
In order to get the implied volatility response to the one percent shock, I
subtract the status-quo implied volatility. The x-axis depicts the moneyness,
i.e. ln K

yt(τ)
. The y-axis is in percent. The model is estimated with yield and

macro data and uses a one step QML estimation with data from 1972.I to
2009.II.
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