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Abstract

This paper studies the asset pricing implications of Bayesian learning about the

parameters, states, and models determining aggregate consumption dynamics. Our

approach is empirical and focuses on the quantitative implications of learning in real-

time using post World War II consumption data. We characterize this learning process

and �nd that revisions in beliefs stemming from parameter and model uncertainty

are signi�cantly related to realized aggregate equity returns. This evidence is novel,

providing strong support for a learning-based story. Further, we show that beliefs

regarding the conditional moments of consumption growth are strongly time-varying

and exhibit business cycle and/or long-run �uctuations. Much of the long-run behavior

is unanticipated ex ante. We embed these subjective beliefs in a general equilibrium

model to investigate further asset pricing implications. We �nd that learning signi�-

cantly improves the model�s ability to �t standard asset pricing moments, relative to

benchmark model with �xed parameters. This provides additional evidence supporting

the importance of learning.
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1 Introduction

This paper studies the asset pricing implications of learning about aggregate consumption

dynamics. We are motivated by practical di¢ culties generated from the use of complicated

consumption-based asset pricing models with many di¢ cult-to-estimate parameters and la-

tent states. For example, parameters or states controlling long-run consumption growth are

at once extremely important for asset pricing and particularly di¢ cult to estimate. Thus,

we are interested in studying an economic agent who is burdened with some of the same

econometric problems faced by researchers, a problem suggested by Hansen (2007).1

A large existing literature studies asset pricing implications of statistical learning �the

process of updating beliefs about uncertain parameters, state variables, or even model speci�-

cations. Pastor and Veronesi (2009) provide a recent survey. In theory, learning can generate

a wide range of implications relating to stock valuation, levels and variation in expected re-

turns and volatility, and time series predictability, with many of the results focussed on the

implications of learning about dividend dynamics.

Our analysis di¤ers from existing work along three key dimensions. First, we focus on

the empirical implications of simultaneously learning about parameters, state variables, and

even model speci�cations. Most existing work focuses on learning a single parameter or

state variable. Learning about multiple unknowns is more di¢ cult as additional unknowns

often confounds inference, slowing the learning process. Second, we focus on the speci�c

implications of real-time learning about consumption dynamics from macroeconomic data

during the U.S. post World War II experience. Thus, we are not expressly interested in

general asset pricing implications of learning in repeated sampling settings, but rather the

speci�c implications generated by the historical macroeconomic shocks realized in the United

States over the last 65 years. Third, we use a new and stringent test of learning that relates

updates in investor beliefs to contemporaneous, realized equity returns.

In studying the implications of learning, we focus on the following types of questions.

Could an agent who updates his beliefs rationally detect non-i.i.d. consumption growth

dynamics in real time? How rapidly does the agent learn about parameters and models?

Are the revisions in beliefs about consumption moments correlated with asset returns, as a

1Hansen (2007) states: �In actual decision making, we may be required to learn about moving targets, to
make parametric inferences, to compare model performance, or to gauge the importance of long-run compo-
nents of uncertainty. As the statistical problem that agents confront in our model is made complex, rational
expectations�presumed con�dence in their knowledge of the probability speci�cation becomes more tenuous.
This leads me to ask: (a) how can we burden the investors with some of the speci�cation problems that
challenge the econometrician, and (b) when would doing so have important quantitative implications" (p.2).
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learning story would require? Is there evidence that learning e¤ects can help us understand

standard asset pricing puzzles, such as the high equity premium, return volatility, and degree

of return predictability?

One of the key implications of learning is that the agent�s beliefs are nonstationary. For

example, the agent may gradually learn that one model �ts the data better than an alter-

native model or that a parameter value is higher or lower than previously thought, both of

which generate nonstationarity in beliefs. The easiest way to see this is to note that the

posterior mean of a parameter, E [�jyt], where yt is data up to time t, is trivially a mar-
tingale. Thus revisions in beliefs represent permanent, nonstationary shocks, that can have

important asset pricing implications. For instance, nonstationary dynamics can generate

a quantitatively important wedge between ex post outcomes and ex ante beliefs, providing

an alternative explanation for standard asset pricing quantities such as the observed equity

premium or excess return predictability.2

We study learning in the context of three standard Markov switching models of con-

sumption growth: unrestricted 2- and 3-state models and a restricted 2-state model that

generates i.i.d. consumption growth. The states capture business cycle �uctuations and can

be labeled as expansion and recession in 2-state models, with an additional �disaster�state

in 3-state models.3 Our key assumption is that the agent views the parameters, states, and

even models as unknowns, using Bayes rule to update beliefs using consumption data, as

well as additional macroeconomic data such as GDP growth in extensions.

To focus on di¤erent aspects of learning, we consider three sets of initial parameter beliefs.

The �rst, the �historical prior,�trains the prior using Shiller�s consumption data from 1889

until 1946, a common approach to generate �objective�priors.4 The second, the �look-ahead

prior,�sets prior parameter means to full-sample maximum likelihood point estimates using

post World War II data. We embed substantial uncertainty around these estimates to study

the e¤ect of parameter uncertainty. This is often called an �empirical Bayes� approach.

2See also Cogley and Sargent (2008), Timmermann (1993), and Lewellen and Shanken (2002).
3Markov switching models for consumption or dividends are a benchmark speci�cation in the literature,

see, e.g., Mehra and Prescott (1985), Rietz (1988), Cecchetti, Lam, and Mark (1990, 1993), Whitelaw (2000),
Cagetti, Hansen, Sargent, and Williams (2002), Barro (2006), Barro and Ursua (2008), Chen (2008), Bhamra,
Kuehn, and Strebulaev (2008), Barro, Nakamura, Steinsson and Ursua (2009), Backus, Chernov, and Martin
(2009), and Gabaix (2009). Rietz (1988) and, more recently, Barro (2006, 2009) argue that consumption
disaster risk can help explain some of the standard macro-�nance asset pricing puzzles.

4We do account for measurement error, which likely increased reported macroeconomic volatility during
the pre-war period, as argued in Romer (1989). Malmendier and Nagel (2011) present evidence that the
experience of the Great Depression a¤ected investors� subsequent beliefs about risk and return, broadly
consistent with the Historical prior calibration approach.
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The third, the �xed parameter prior, is a rational expectations benchmark with dogmatic

beliefs that are �xed at the end-of-sample parameter estimates. Thus, there is no parameter

uncertainty. There is state uncertainty, however, which allows us to separate the e¤ects of

parameter and state uncertainty.

Our �rst results characterize the beliefs about parameters, states, models, and future

consumption dynamics (e.g., moments) through the sample. The perceived dynamic behavior

of aggregate consumption is at the heart of consumption-based asset pricing as it, jointly

with preferences, determines the dynamic properties of the pricing kernel. In terms of beliefs,

we compute at each point in time the posterior distribution of parameters, states, and

models. As new data arrives, we update beliefs using Bayes rule. In addition to usual

summaries of parameters and states, we also compute model probabilities and perform �model

monitoring�in real time as new data arrives. We �nd that the posterior probability of the

i.i.d. model falls dramatically over time, provided the prior weight is less than one. Thus our

agent is able to learn in real-time that consumption growth is not i.i.d., but has persistent

components.5 The agent believes that expected consumption growth is low in recessions and

high in expansions, with the opposite pattern for consumption growth volatility. The 2-state

model quickly emerges as the most likely, but the 3-state model with a disaster state has

5 � 10% probability at the end of the sample. At the onset of the �nancial crisis in 2008,

the probability of the disaster model increases.6

There is signi�cant learning about the expansion state parameters, slower learning about

the recession state, and almost no learning about the disaster state, as it is rarely, if ever, vis-

ited. Thus, there is an observed di¤erential in the speed of learning. Standard large sample

theory implies that all parameters converge at the same rate, but the realized convergence

rate depends on the actual observed sample path. There is also strong evidence for non-

stationary time-variation in the conditional means and variances of consumption growth, as

well as measures of non-normality such as skewness and kurtosis. For both the historical and

the look-ahead priors, the agent�s perception of the long-run mean (volatility) of consump-

tion growth generally increases (decreases) over the sample. The perceived persistence of

recessions (expansions) decreases (increases).7 As the agent�s beliefs about these parameters

5This result is robust to persistence induced by time-aggregation of the consumption data (see Working
(1960)).

6The posterior probability of the three-state model would change dramatically, if visited. For example, if
a -3% quarterly consumption growth shock were realized at the end of the sample, the posterior probability
of the three-state model would increase to almost 50%.

7All of the results described in the current and previous paragraphs are robust to learning from additional
GDP growth data.
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and moments change, asset prices and risk premia will also change.

The �rst formal test of the importance of learning regresses contemporaneous excess stock

market returns on revisions in beliefs about expected consumption growth. This test, which

to our knowledge is new to the literature, is a fundamental implication of any learning-based

explanation: for learning to matter, unexpected revisions in beliefs about expected consump-

tion growth should be re�ected in the unexpected aggregate equity returns.8. We �nd strong

statistical evidence that this relationship is positive, and the results are similar for both

the historical and the look-ahead prior. To disentangle parameter from state learning, we

include revisions in beliefs generated by the �xed parameter prior as a control. Revisions in

beliefs obtained using the historical and look-ahead priors remain statistically signi�cant, but

revisions in beliefs generated by models with known parameters are statistically insigni�cant.

These results imply that learning about parameters and models is a statistically signi�-

cant determinant of asset returns in our sample, con�rming our main hypothesis. This result

is strengthened if the agent learns from both consumption and GDP growth. It is important

to note that our agent only learns in real-time and from macroeconomic fundamentals, as no

asset price data (such as the dividend-price ratio) is used when forming beliefs. Since the revi-

sions in beliefs obtained from the models with �xed parameters are statistically insigni�cant,

the evidence questions the standard full-information, rational expectations implementation

of the standard consumption-based model, at least for the models of consumption dynamics

that we consider.9

As mentioned earlier, parameter and model learning generate nonstationary dynamics

and permanent shocks that could have important implications. To investigate these implica-

tions, we consider a formal asset pricing exercise assuming Epstein-Zin preferences. Because

the speci�c time-path of beliefs is important, the usual calibration and simulation approach

used in the literature is not applicable, and we consider the following alternative pricing

procedure. At time t, given beliefs over parameters, models, and states, our agent prices

a levered claim to a future consumption stream, computing quantities such as ex-ante ex-

pected returns and dividend-price ratios.10 Then, at time t + 1, our agent updates beliefs

8The sign of the e¤ect would in a model depend on the elasticity of intertemporal substitution, and also on
the other moments that change at the same time (volatility, skewness, kurtosis, etc.). In the model section,
we show that this positive relation is consistent with a model with an elasticity of intertemporal substitution
greater than 1.

9Parameter and model learning, on the one hand, and state learning on the other hand are distinct in
our setting because the former generates a non-stationary path of beliefs, while the latter, after an initial
burn-in period, is stationary.
10We do price a levered consumption claim and introduce idiosyncratic noise to break the perfect rela-
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using new macro realizations at time t+1, recomputes prices, expected returns and dividend-

price ratios. From this time series of prices, we compute realized equity returns, volatilities,

etc. Thus, we feed historically realized macroeconomic data into the model and analyze the

asset pricing implications for various models and prior speci�cations. This process is re-

quired when the time path matters and was previously used in, for example, Campbell and

Cochrane (1999), where habit is a function of past consumption growth. We use standard

preference parameters taken from Bansal and Yaron (2004).

Solving the full pricing problem with priced parameter uncertainty is computationally

prohibitive, as the dimensionality of the problem is too large.11 To price assets in a tractable

way, while still incorporating learning, we follow Piazzesi and Schneider (2010) and Cogley

and Sargent (2009) and use a version of Kreps�(1994) anticipated utility. This implies that

our agent prices claims at each point in time using current posterior means for the parameters

and model probabilities, assuming those values will persist into the inde�nite future. We do

account for state uncertainty when pricing.

This pricing experiment provides additional evidence, along multiple dimensions, for the

importance of learning. Focussing on the 3-state model, we �rst note that the model with

parameters �xed at the full-sample values has a di¢ cult time with standard asset pricing

moments: the realized equity premium and Sharpe ratio are less than half the values observed

in the data. The volatility of the price-dividend ratio is eighty percent less than the observed

value. Parameter learning uniformly improves all of these statistics, bringing them close to

observed values. The results are, after a burn-in period, similar for the look-ahead and the

historical prior as the agent quickly unlearns the mean parameter beliefs of the look-ahead

prior early in the sample. It is important to note that this is not a calibration exercise �we

did not choose the structural parameters to generate these returns.

The increase in the realized equity premium and return volatility is due to unexpected

revisions in beliefs resulting from the parameter and model learning. In particular, the

average annualized ex ante quarterly risk premium is similar across the models at about

1:7%, but the models with uncertain parameters generate a higher realized equity premium of

about 3:8% to 4:2%, close to the 4:7% observed over the sample. This documents a dramatic

tionship between consumption and dividend growth. The dividends are calibrated to match the volatility of
dividend growth and the correlation between dividend and consumption growth.
11As an example, for the 3-state model there are twelve parameters, each with two hyperparameters

characterizing the posteriors. This implies that we would have to have to solve numerically for prices on a
very high dimensional grid, which is infeasible. There are additional di¢ cult technical issues associated with
priced parameter uncertainty, as noted by Geweke (2001) and Weitzman (2007).

5



impact of the speci�c time path of beliefs about parameters and models for standard asset

pricing statistics, at least relative to the �xed parameter, rational expectations benchmark.

This also implies, looking forward, that the perceived equity premium is much smaller than

the realized equity premium over the post World War II period. These points are consistent

with the results in Cogley and Sargent (2008).12

In terms of predictability, the returns generated by learning over time closely match the

data. For the historical and look-ahead priors and for forecasting excess market returns

with the lagged log dividend-price ratio, the generated regression coe¢ cients and R2�s are

increasing with the forecasting horizon and similar to those found in the data. The �xed

parameters case, however, does not deliver signi�cant ex post predictability, although the ex

ante risk premium is in fact time-varying in these models as well because the risk premium

time-variation assuming �xed parameters is too small relative to the volatility of realized

returns to result in signi�cant t-statistics. The intuition for why in-sample predictability oc-

curs when agents are uncertain about parameters and models is the same as in Timmermann

(1993) and Lewellen and Shanken (2002) �unexpected updates in growth and discount rates

impact the dividend-price ratio and returns in opposite directions leading to the observed

positive in-sample relation. Thus, in-sample predictability can be expected with parameter

and model learning. The quantitatively large degree of in-sample relative to out-of-sample

predictability we �nd is consistent with the literature.13

We also note that the model exhibits volatile long maturity risk-free yields, consistent

with the data. Learning about �xed quantities such as models or parameters generate per-

manent shocks that a¤ect agents�expectations of the long-run (in�nite-horizon) distribution

of consumption growth. This is di¤erent from existing asset pricing models where only sta-

tionary variables a¤ect marginal utility growth (see, e.g., Bansal and Yaron (2004), and

Wachter�s (2005) extension of Campbell and Cochrane (1999) model, as well as our �xed pa-

rameters benchmark model). In these models, long-run (in�nite-horizon) risk-free yields are

12Cogley and Sargent (2008) assume negatively biased beliefs about the consumption dynamics to highlight
the same mechanism and also consider the role of robustness. In their model, the subjective probability of
recessions is higher than the �objective�estimate from the data. The results we present here are consistent
with their conclusions, but our models are estimated from fundamentals in real-time, which allows for an out-
of-sample examination of the time-series of revisions in beliefs. Further, we allow for learning over di¤erent
models of the data generating process, as well as all the parameters of each model.
13For example, Fama and French (1988) document a high degree of in-sample predictability of excess

(long-horizon) stock market returns using the price-dividend ratio as the predictive variable. On the other
hand, Goyal and Welch (2008) and Ang and Bekaert (2007) document poor out-of-sample performance of
these regressions in the data, and the historical and look-ahead prior learning models presented here are
consistent with this evidence.
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constant as the transitory shocks to marginal utility growth die out in the long run. This is

additional evidence supporting a learning-based explanation relative to the �xed parameters

alternative.

In conclusion, our results strongly support the importance of parameter and model learn-

ing for understanding the joint behavior of consumption and asset prices in the U.S. post

World War II sample. First, parameter and model learning leads to a time path of belief re-

visions that are correlated with realized equity returns, controlling for realized consumption

growth. Second, the time series of beliefs help explain the time-series of the price level of the

market (the time-series of the price-dividend ratio) in a general equilibrium model. Third,

beliefs display strong nonstationarity over time, driving a wedge between ex ante beliefs

and ex post realizations that is absent in rational expectations models. Fourth, permanent

shocks to beliefs generate permanent shocks to marginal utility growth. These features help

explain common asset pricing puzzles such as excess return volatility, the high sample eq-

uity premium, the high degree of in-sample return predictability, and the high volatility of

long-run yields, all relative to a �xed parameter alternative. The results are generated by

real-time learning from consumption (and GDP growth), using standard preference para-

meters without directly calibrating to asset returns. In this sense the results are entirely

�out-of-sample.�

2 The Environment

2.1 Model

We follow a large literature and assume an exogenous Markov or regime switching process

for aggregate, real, per capita consumption growth dynamics. Log consumption growth, �ct,

evolves via:

�ct = �st + �st"t; (1)

where "t are i.i.d. standard normal shocks, st 2 f1; :::; Ng is a discretely-valued Markov state
variable, and

�
�st ; �

2
st

�
are the Markov state-dependent mean and variance of consumption

growth. The Markov chain evolves via a N �N transition matrix � with elements �ij such

that Prob[st = jjst�1 = i] = �ij; with the restriction that
PN

j=1 �ij = 1. The �xed parameters

of the N -state model contain the means and variances in each state,
n
�n; �

2

n

oN
n=1

as well as

the elements of the transition matrix. The transition matrix controls the persistence of the
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Markov state.

Markov switching models are �exible and tractable and have been widely used since

Mehra and Prescott (1985) and Rietz (1988). By varying the number, persistence, and dis-

tribution of the states, the model can generate a wide range of economically interesting and

statistically �exible distributions. Although the "t�s are i.i.d. normal and the distribution of

consumption growth, conditional on st and parameters, is normally distributed, the distrib-

ution of future consumption growth is neither i.i.d. nor normal due to the shifting Markov

state. This time-variation induces very �exible marginal and predictive distributions for

consumption growth. These models are also tractable, as it is possible to compute likelihood

functions and �ltering distributions, given parameters.

We consider two and three state models and also consider a restricted version of the two

state model generating i.i.d consumption growth by imposing the restriction �11 = �21 and

�22 = �12 = 1� �11. Under this assumption, consumption growth is an i.i.d. mixture of two
normal distributions, essentially a discrete-time version of Merton�s (1976) mixture model.

The general two and 3-state models have 6 and 12 parameters, respectively. The i.i.d. two

state model has 5 parameters (�1; �2; �1; �2 and �11).

It is common in these models to provide business cycle labels to the states. In a 2-state

model, we interpret the two states as �recession�and �expansion,�while the three state model

additionally allows for a �disaster�state.14 Although rare event models have been used for

understanding equity valuation since Rietz (1988), there has been a recent resurgence in

research using these models (see, e.g., Barro (2006, 2009), Barro and Ursua (2008), Barro,

Nakamura, Steinsson and Ursua (2009), Backus, Chernov, and Martin (2009), and Gabaix

(2009)).

2.2 Information and learning

To operationalize the model, additional assumptions are required regarding the economic

agent�s information set. Since we want to model learning similar to that faced by the

econometrician, we assume agents observe aggregate consumption growth, but are uncertain

about the Markov state, the parameters, and the total number of Markov states. We label

these unknowns as state, parameter, and model uncertainty, respectively. We assume agents

14We do not consider, for instance, 1- or 4-state models as the Likelihood ratios of these relative to the 2-
or 3-state model show that the 2- and 3-state models better describe the data. As we will show, however,
there is some time-variation in whether a 2- or 3-state model matches the data better, which is one of the
reasons we entertain both of these as alternative models.
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are Bayesian, which means they update initial beliefs via Bayes�rule as data arrives. Later

in the paper, we develop an extension to this model where agents can also learn from a vector

of additional macro variables and consider the case of additional learning from GDP growth

data.

The learning problem is as follows. We consider k = 1; :::; K models, fMkgKk=1, and
in model Mk, the state variables and parameters are denoted as st and �, respectively.15

The distribution p (�; st;Mkjyt) summarizes beliefs after observing data yt = (y1; :::yt). To
understand the components of the learning problem, we can decompose the posterior as:

p
�
�; st;Mkjyt

�
= p

�
�; stjMk; y

t
�
p
�
Mkjyt

�
: (2)

p (�; stjMk; y
t) solves the parameter and state �estimation�problem conditional on a model

and p (Mkjyt) provides model probabilities. It is important to note that this is a non-trivial,
high-dimensional learning problem, as posterior beliefs depend in a complicated manner on

past data and can vary substantially over time. The dimensionality of the posterior can be

high, in our case more than 10 dimensions.

One of our primary goals is to characterize and understand the asset pricing implications

of the transient process of learning about the parameters, states, and models.16 Learning

generates a form of nonstationarity, since parameter estimates and model probabilities are

changing through the sample. When pricing assets, this can lead to large di¤erences between

ex ante beliefs and ex post outcomes, as shown in Cogley and Sargent (2008). Given this

nonstationarity, we are concerned with understanding the implications of learning based on

the speci�c experience of the U.S. post-war economy.17

To operationalize the learning problem, we need to specify the prior distribution, the

data the agent uses to update beliefs, and develop an econometric method for sampling from

the posterior distribution. In terms of data, we in a benchmark case assume that agents

learn only from observing past and current consumption growth, a common assumption

in the learning literature (see, e.g., Cogley and Sargent (2008) and Hansen and Sargent

15This is a notational abuse. In general, the state and dimension of the parameter vector should depend on
the model, thus we should superscript the parameters and states by �k�, �k and skt . For notational simplicity,
we drop the model dependence and denote the parameters and states as � and st, respectively.
16These type of problems received quite a bit of theoretical attention early in the rational expectations

paradigm - see for example Bray and Savin (1986) for a discussion of model speci�cation and convergence
to rational expectations equilibria by learning from observed outcomes.
17This is di¤erent from the standard practice of looking at population or average small-sample uncondi-

tional asset price and consumption growth moments from a model calibrated to the U.S. postwar data �we
are looking at a single outcome corresponding to the U.S. post-war economy.
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(2009)). The primary data used is the �standard� data set consisting of real, per capita

quarterly consumption growth observations obtained from the Bureau of Economic Analysis

(the National Income and Product Account tables) from 1947:Q1 until 2009:Q1.

2.3 Initial beliefs

The learning process begins with initial beliefs or the prior distribution. In terms of functional

forms, we assume proper, conjugate prior distributions (Rai¤a and Schlaifer (1956)). One

alternative would be �at or �uninformative�priors, but this is not possible in Markov switch-

ing models, as this creates identi�cation issues (the label switching problem) and causes

problems sampling from the posterior.18 Conjugate priors imply that the functional form

of beliefs is the same before and after sampling, are analytically tractable for econometric

implementation, and are �exible enough to express a wide range initial beliefs.

For the mean and variance parameters in each state, (�i; �
2
i ), the conjugate prior is

p(�ij�2i )p(�2i ) � NIG(ai; Ai; bi; Bi), where NIG is the normal/inverse gamma distribution.
The transition probabilities are assumed to follow a Beta distribution in 2-state speci�cation

and its generalization, the Dirichlet distribution, in models with three states. Calibration of

the hyperparameters completes the speci�cation.

We endow our agent with economically motivated initial beliefs to study how learning

proceeds from various starting points. We consider three prior distributions and use an

�objective�approach to calibrate the prior parameters. The �rst, the �historical prior,�uses a

training sample to calibrate the prior distribution. Training samples are the most common

way of generating objective prior distributions (see, e.g., O�Hagan (1994)). In this case, an

initial data set is used to provide information on the location and scale of the parameters.

In our application, we use the annual consumption data from Shiller from 1889 until 1946.

Given the prior generated from the training sample, learning proceeds on the second data

set �in our case, the post World War II sample.19

18The label switching problem refers to the fact that the likelihood function is invariant to a relabeling
of the components. For example, in a two-state model, it is possible to swap the de�nitions of the �rst and
second states and the associated parameters without changing the value of the likelihood. The solution is to
impose parameter constraints in optimization for MLE or to use informative prior distributions for Bayesian
approaches. These constraints/information often take the form of an ordering of the means or variances of
the parameters. For example in a two state model, it is common to impose that �1 < �2 and/or �1 < �2 to
breaks the symmetry of the likelihood function.
19Romer (1989) presents evidence that a substantial fraction of the volatility of macro variables such as

consumption growth pre-WW2 is due to measurement error. To alleviate this concern, we set the prior mean
over the variance parameters to a quarter of the value estimated over the training sample. See the Appendix
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The second is called the �look-ahead prior.� This prior sets the prior mean for each

parameter equal to full-sample maximum likelihood estimates using the post World War

II sample, similar to the procedure employed in an �Empirical Bayes�approach. The prior

variances are chosen to be relatively �at around these full-sample estimates, in order to

allow for meaningful learning about the parameters as new data arrives, without running

into label-switching identi�cation problems. This approach violates the central idea of the

Bayesian approach, as the prior contains information from the sample, but it is useful for

analyzing the evolution of parameter uncertainty through the post World War II sample.

The main di¤erences between the historical and the look-ahead priors are that the historical

priors have on average higher consumption growth volatility, shorter expansions, and longer

recessions. For the 3-state model, the disaster state is also more severe in the historical prior,

re�ecting the Great Depression.

The third is called the ��xed parameter�prior. This is a point-mass prior located at the

end-of-sample estimates. In this case, the agent only learns about the latent Markov state.

This prior mimics the typical rational expectations approach and allows us to separately

identify the role of state and parameter learning, since the other priors have both state and

parameter learning.

The details of the priors, the speci�c prior parameters chosen, as well as a description of

the econometric technique we apply to solve this high-dimensional learning problem (particle

�ltering) are given in the Appendix.

3 The time-series of subjective beliefs

This section characterizes the learning process. We �rst discuss state, parameter, and model

learning and their implications for the time series of conditional consumption moments, as

perceived by the Bayesian agent. Next, we empirically investigate how revisions in the agent�s

beliefs are related to stock market returns. We also consider the case of learning from GDP

data, in addition to consumption data. In the following section, we embed these beliefs in a

general equilibrium model and discuss the asset pricing implications in more detail.

for further details.
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3.1 State and parameter learning

Conditional on a model speci�cation, our agent learns about the Markov state and the

parameters, with revisions in beliefs generated by a combination of data, model speci�cation,

and initial beliefs. To start, consider the agent�s beliefs about the current state of the

economy, st, where state 1 is an �expansion�state, state 2 the �contraction�state and, if a

3-state model, state 3 the �disaster�state. Estimates are given by

E
�
stjMk; y

t
�
=

Z
stp
�
�; stjMk; y

t
�
d�dst.

Note that these are marginal mean state beliefs, as parameter uncertainty is integrated out.

Although st is discrete, the mean estimates need not be integer valued. Figure 1 displays

the posterior state beliefs over time, for each model and for di¤erent priors.

There are a number of notable features of these beliefs. NBER recessions (shaded yellow)

and expansions are clearly identi�ed in the models. The only exceptions are the recessions in

the late 1960s and 2001, which were not associated with substantial consumption declines.

Comparing the panels, one area in which the models generate strong di¤erences is persis-

tence of the states. The i.i.d. model identi�es recessions as a one-o¤ negative shock, but

since shocks are i.i.d., the agent does not forecast that the recession state will persist with

high likelihood. In contrast, the 2- and 3-state models clearly show the persistence of the

recession states. Disaster states are rare �after the initial transient post war period, there

are only really two observations that place even modest probability on the disaster state �

the recession in 1981 and the �nancial crisis at the end of 2008. This implies that disaster

states are nearly �Peso�events in the post WW2 sample.

The agent�s beliefs are quite volatile early in the sample in all of the models. This is

not surprising. Since initial parameter beliefs are highly uncertain, the agent has a di¢ cult

time discerning the current state as parameter uncertainty exacerbates state uncertainty.

As the agent learns, parameter uncertainty decreases and state identi�cation is easier. It is

important to note that even with full knowledge of the parameters, the agent will never be

able to perfectly identify the state.20 The results also show that the priors do not have a

large impact on the mean state beliefs, at least for the unrestricted 2- and 3-state models,

as the posterior beliefs are roughly similar for the historical and look-ahead priors.

20The posterior variance of the state, var [stjMk; y
t], does decline over time due to decreasing parameter

uncertainty. This will be discussed further when we use GDP growth as an additional observation to help
identify the state.
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Figure 1 - Evolution of Mean State Beliefs
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Figure 1: The plots show the means of agents�beliefs about the state of the economy at each point
in time. "1" is an expansion good state, "2" is a recession state, and "3" is a disaster state. The
models have either 2 or 3 states as indicated on each plot, and the time t state beliefs are formed
using the history of consumption only up until and including time t. The "i.i.d. Model" is a model
with i.i.d. consumption growth but that allows for jumps ("2" is a jump state). The sample is from
1947:Q2 until 2009:Q1.
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Next, consider beliefs over parameters. Due to the large number of parameters and in the

interests of parsimony, we focus on a few of the more economically interesting and important

parameters. For the 2-state models, the top panels of Figure 2 display posterior means of the

beliefs over �1 and �2. Notice that for the Historical prior the conditional volatilities slowly

decrease, after a short (about 5 year) burn-in period, essentially throughout the sample.

This is a combination of the Great Moderation (realized consumption volatility did decrease

over the post-war sample) and the initial beliefs, which based on the historical experience

expected higher consumption growth volatility. Interestingly, for the look-ahead prior, which

is centered at the end of sample posterior values, the agents quickly unlearns the low full

sample consumption growth volatility, and after about 5-year burn-in, the volatility is close

to that observed for the historical prior. This occur because volatility was higher in the

�rst portion of the sample. The subsequent decline in the volatility in the good state is

quantitatively large (about a 30% drop).

The lower panels in Figure 2 display the transition probabilities, �11 and �22. After

the burn-in period, the �rst is essentially increasing over the sample, while the latter is

decreasing. That is, 50 years of, on average, long expansions and high consumption growth

leads to revisions in beliefs that are manifested in higher probabilities of staying in the good

state and lower probabilities of staying in recession state. The probability of staying in a

recession, conditional on being in a recession, goes down from about 0:85 to 0:75. Clearly,

such positive shocks to the agents�perception of the data generating process will lead to

higher ex post equity returns than compared to ex ante expectations.

The �rst three panels of Figure 3 displays estimates of the mean parameters, E [�ijMk; y
t]

for i = 1; 2; 3, as well as a posterior two standard deviation band for the 3-state model using

the historical prior. Learning is most apparent in the good state and least apparent in the

disaster state. This is intuitive, since the economy spends most of its time in the good state

and little, if any, time in the disaster state. This provides empirical evidence supporting

the argument that a high level of parameter uncertainty is a likely feature of a model with

a rarely observed state and is an important feature for disaster risk models (see also Chen,

Joslin, and Tran, 2010).

The fourth, lower right panel shows how the speed of learning di¤ers in the three models

we consider. We use the conditional variance over the in�nite horizon mean of quarterly con-

sumption growth, V ar (E [�ct+1] jyt), as a measure of the amount of parameter uncertainty
(with no parameter uncertainty, the long-run mean of consumption growth is constant in all

14



Figure 2 - Evolution of Mean Parameter Beliefs
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Figure 2: The two top plots in this �gure show the mean beliefs of the volatility parameters within
each state for the 2-state model, based on historical consumption data only. The two lower plots
show the mean beliefs of the probabilities of remaining in the current state. The sample is from
1947:Q2 until 2009:Q1.
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Figure 3 - Speed of Learning
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Figure 3: The �rst three Panels of this Figure shows the average and 2 standard deviation bounds
of agents�time t beliefs about the mean parameters in the 3-state model, where only consumption
data is used. The sample is from 1947:Q2 until 2009:Q1. The fourth, lower right panel shows the
variance of the in�nite-horizon mean of consumption growth, V ar(E[�ct+1]jyt), for the 2- and
3-state models, normalized by the same for the i.i.d. model. Thus, the graph shows a measure of
the relative speed of parameter learning in the models.
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models), and show this variance for the unrestricted 2- and 3-state models normalized by

the variance from the simpler i.i.d. model. The plot shows that learning happens faster in

the simpler i.i.d. model in that both the variance ratios quickly increases. The unrestricted

2-state model settles at a variance about 50% higher than for the i.i.d. 2-state model, while

the 3-state model increases its relative amount of parameter uncertainty to about 3 times

that of the i.i.d. model at the end of the sample. This is due to the very slow learning about

the disaster state and the di¢ culty present in learning the transition probabilities.

There is additional interesting time-variation in beliefs about the parameters, but this

time-variation is best summarized via the total impact across all parameters, which is mea-

sured via predictive moments and discussed in the next section.

3.2 Beliefs about models and consumption dynamics

Figure 4 shows the marginal model probabilities, p (Mkjyt), for each of the models we con-
sider for the Historical and the Look-ahead priors, respectively.21 For simplicity, the prior

probability of each model was set to 1/3. Note �rst that the posterior probability of the i.i.d.

model decreases towards zero for both priors. Thus, i.i.d. consumption growth is rejected

by a Bayesian agent that updates by observing past realized consumption growth. Although

not reported for brevity, this conclusion is robust even if the prior probability of the i.i.d.

model is set to 0.95 - in this case it takes somewhat longer (but still just a little over half

the sample) for the probability of the i.i.d. model to drop very close to zero. The 3-state

model also sees a reduction in its likelihood and ends at about 10% and 20% probability

levels at the end of the sample for the Historical and Look-ahead priors, respectively. The

Look-ahead prior has a less severe disaster state, as it does not re�ect the Great Depression,

and this is why the probability of the 3-state model is higher in this case. As mentioned

in the introduction, a single large negative consumption shock would quickly change these

probabilities. In sum, we observe large changes in the model uncertainty over the sample.

The fact that the agent can learn that consumption growth is not i.i.d. is important.

Many asset pricing models specify i.i.d. consumption growth with the implicit assumption

that it is not possible or di¢ cult to detect non-i.i.d. dynamics in consumption. Our results

show that agents, using only consumption growth data, can detect non-i.i.d. dynamics, and

21Note that marginal model probabilities (i.e., where parameter uncertainty is integrated out) penalizes
extra parameters as more sources of parameter uncertainty tends to �atten the likelihood function. Thus,
it is not the case, as we see an example of here, that a 3-state model always dominates a 2-state model in
Bayesian model selection.
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Figure 4 - Marginal Model Probabilities
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Figure 4: The top panel shows for the case of the Historical prior the evolution of the probability
of each model being the true model, where the models at the beginning of the sample are set to
have an equal probability, and where state and parameter uncertainty have been integrated out.
The lower plot shows the same for the Look-ahead prior. The sample period is 1947:Q2 - 2009:Q1.
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can do so in real time, which is an even stronger result. The agent does not need to wait

until the end of the sample. This result holds for various prior speci�cations and is robust

to time-aggregation.22

The results of the previous section indicate that beliefs about the parameters vary through

the sample, even for the look-ahead prior, but it is not clear from this how much variation

in conditional moments is present.23 To provide asset-pricing relevant measures, we report

the agent�s beliefs regarding the �rst four moments of conditional consumption growth and

model probabilities. All of these quantities are marginal, integrating out parameter, state,

and/or model uncertainty. For example, the predictive mean for a given model,Mk, is

E
�
�ct+1jMk; y

t
�
=

Z
�ct+1p

�
�ct+1j�; st;Mk; y

t
�
p
�
�; stjMk; y

t
�
d�dst.

In describing these moments, we generally abstract from the �rst ten years and treat it is

a �burn-in�period, in order to allow the prior some time to adjust to the data, as there is

some transient volatility over these �rst few years.

The top two panels in Figure 5 (for historical and look-ahead priors, respectively) display

the conditional expected quarterly consumption growth for each model. The two and 3-

state models generate relatively modest di¤erences in this moment �both pick up business

cycle �uctuations in expected consumption growth, with the 3-state model identifying the

recessions in the early 80�s and the �nancial crisis in �08 as severe. Persistent recessions are

missing from the i.i.d. model, as expected. All three models exhibit a low frequency increase

in expected consumption growth over the �rst half of the sample, due to parameter learning.

The bottom panel of Figures 5 shows model averaged expected quarterly consumption

growth for the two priors. In the �rst third of the sample, the presence of the i.i.d. model

smooths business cycle �uctuations in expected consumption growth. Thereafter, only the

2- and 3-state models are relevant and model uncertainty has a minor impact as the condi-

tional expected growth is similar in these models. Overall, recessions are associated with a

mean quarterly consumption growth of about 0.3%, while the mean consumption growth in

22In the Appendix, we show that taking out an autocorrelation of 0.25 from the consumption growth data,
which is what time-aggregation of i.i.d. data predicts (see Working (1960)), does not qualitatively change
these results - if anything it makes the rejection of the i.i.d. model occur sooner. The same is true if we
purge the data of its full sample �rst order autocorrelation.
23As an example, consider the conditional volatility of consumption growth. A decrease in the probability

of the bad state, which has higher consumption growth volatility, could be o¤set by an increase in the
consumption volatility in the good state, �1, keeping the total conditional volatility of consumption growth
constant.
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Figure 5 - Quarterly Expected Consumption Growth
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Figure 5: The top panel shows the quarterly conditional expected consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2-
and 3-state switching regime models. The middle plot shows the same for the Look-ahead prior.
The lower plot shows the expected quarterly conditional consumption growth for both priors after
model uncertainty has been integrated out. The sample period is 1947:Q2 - 2009:Q1.
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expansions is about 0.6%. Since business cycles are relatively persistent, these �uctuations

in conditional consumption growth are a source of long-run consumption risk, akin to that of

Bansal and Yaron (2004). However, the lower frequency �uctuations we observe in expected

consumption growth, which is due to parameter learning, constitute "truly" long-run risk,

as shocks to parameter beliefs are permanent.

Turning to the conditional volatility of quarterly consumption growth, Figure 6 shows

that for both priors there is a downward trend in consumption growth volatility through

the sample, with marked increases during recessions for the non-i.i.d. models. Again, the

bottom panel shows the belief about conditional standard deviation for each prior when

model uncertainty is integrated out. Model probabilities could be driven by unexpected

volatility, but this does not appear to be a primary determinant. Conditional consumption

growth volatility is not particularly a¤ected by model uncertainty, since both the two and

the 3-state models have similar volatility patterns, and since the i.i.d. model is essentially

phased out in the �rst third of the sample.

The secular decline is largely driven by downward revisions in estimates of the volatility

parameters as realized consumption growth was less volatile in the second half of this century.

This is particularly strong for the historical prior, as the conditional volatility of consumption

growth decreases from about 1% per quarter to about 0.5%. Interestingly, the look-ahead

prior has a similar trend, after a short burn-in period, as the prior�s low consumption growth

volatility is quickly unlearned, though the size of the e¤ect is about half as large. This is the

Great Moderation - the fact that consumption volatility has decreased also over the post-war

sample. In the models considered here, the agent learning in real-time perceives this decrease

to happen gradually, in contrast to studies that �nd ex post evidence of structural breaks or

regime shifts at certain dates.

Every recession is associated with higher consumption growth volatility, although the

size of the increase varies. The largest increase, on a percentage basis, occurs with the

�nancial crisis of 2008. The increase is largest in the 3-state model, as the mean state belief

at this time approaches the third state, which has a very high volatility. There is little

updating about the volatility of the disaster state through the sample, since there have been

no prolonged visits to this state. Thus, this re�ects the fear that prevailed in the fall of 2008

that the economy was potentially headed into a depression not seen since the 1930s. This

econometric result squares nicely with anecdotes from the crisis.

Figure 7 shows the time-series of conditional consumption growth skewness for the both
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Figure 6 - Quarterly Consumption Growth Standard Deviation
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Figure 6: The top panel shows the quarterly conditional standard deviation of consumption growth,
computed using the Historical Prior, from the three benchmark models: the "i.i.d. model", and
hidden 2- and 3-state switching regime models. The middle plot shows the same for the Look-ahead
prior. The lower plot shows the expected quarterly conditiona standard deviation of consumption
growth for both priors after model uncertainty has been integrated out. The sample period is
1947:Q2 - 2009:Q1.
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Figure 7 - Quarterly Consumption Growth Skewness
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Figure 7: The top panel shows the quarterly conditional skewness of consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2-
and 3-state switching regime models. The middle plot shows the same for the Look-ahead prior.
The lower plot shows the expected quarterly conditional skewness of consumption growth for both
priors after model uncertainty has been integrated out. The sample period is 1947:Q2 - 2009:Q1.
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priors, again with the model averaged estimates in the bottom panel. The time-variation

in the conditional skewness is dominated by business cycle variation for the two and 3-

state models, and there is a slight downward trend, as the probability of a disaster and

recession decrease. When the economy is in a recession, consumption growth is naturally

less negatively skewed for two reasons: (1) there is a high probability that the economy jumps

to a higher (i.e. better) state and (2) expected consumption volatility is high, which tends

to decrease skewness. Note that in terms of skewness, the 3-state model, with its severe

recession (disaster) state, is quite di¤erent from the 2-state model. Thus model uncertainty

plays a larger role for the agent�s overall consumption beliefs in terms of the skewness. The

3-state model, especially for the Historical prior, strongly impacts the total perception of

conditional consumption growth skewness as given in the bottom panel.

Figure 8 shows the time-series of conditional consumption growth kurtosis for the both

priors. Conditional kurtosis is lower in bad states as these states are the least persistent

and volatility is highest. Large, rare, outcomes are more likely when the economy is in the

good state. This has potentially interesting option pricing implications (see, e.g., Backus,

Chernov, and Martin (2009)), as the skewness and kurtosis will be related to volatility

smiles. It is worth noting that parameter uncertainty gives an extra �kick�to conditional

skewness and kurtosis measures relative to the case of �xed parameters, where the skewness

and kurtosis both move little over time (the �xed parameter case is not reported here for

brevity). Both for skewness and kurtosis, there is clear evidence of parameter learning over

the business cycle: the skewness becomes more negative and the kurtosis higher the longer

an expansion last, re�ecting updating of the transition probabilities, which re�ect business

cycle dynamics. Similar to skewness, there are now relatively large di¤erences between the

2- and 3-state models. The 3-state model has signi�cantly higher conditional kurtosis than

the 2-state model, due to the presence of the disaster-state. Interestingly, the di¤erences

are greater in expansions than in recessions, again due to the �rare� nature of recessions

and, especially, disasters. In terms of the conditional kurtosis after model uncertainty is

integrated out (bottom panel), the 3-state model has large impact on kurtosis even at the

end of the sample where the probability of this model being the right model is low. Thus,

among the models considered here, model uncertainty and its dynamic behavior is likely to

have the strongest implications for assets such as out-of-the-money options that are more

sensitive to the tail behavior of consumption growth.
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Figure 8 - Quarterly Consumption Growth Kurtosis
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Figure 8: The top panel shows the quarterly conditional expected consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2-
and 3-state switching regime models. The middle plot shows the same for the Look-ahead prior.
The lower plot shows the expected quarterly conditional skewness of consumption growth for both
priors after model uncertainty has been integrated out. The sample period is 1947:Q2 - 2009:Q1.

25



4 Does learning matter for asset prices?

4.1 A new test for the importance of learning

The previous results indicate that the agent�s beliefs � about parameters, moments, and

models � vary substantially at both very low frequencies and over the business cycle. If

learning is an important determinant of asset prices, changes in beliefs should be a signi�cant

determinant of asset returns. This is a fundamental test of the importance of learning about

the consumption dynamics. For example, if agents learn that expected consumption growth

is higher than previously thought, this revision in beliefs will be re�ected in the aggregate

wealth-consumption ratio (if the elasticity of intertemporal substitution is di¤erent from one).

In particular, if the substitution e¤ect dominates, the wealth-consumption ratio will increase

when agents revise their beliefs about the expected consumption growth rate upwards (see,

e.g., Bansal and Yaron (2004)). As another example, if agents learn that aggregate risk

(consumption growth volatility) is lower than previously thought, this will generally lead to

a change in asset prices as both the risk premium and the risk-free rate are a¤ected. In the

Bansal and Yaron (2004) model, an increase in the aggregate volatility leads to a decrease

in the stock market�s price-dividend ratio.

To test this, we regress excess quarterly stock market returns (obtained from Kenneth

French�s web site) on changes in beliefs about expected consumption growth and expected

consumption growth variance. This is a particularly stringent test of learning, which to our

knowledge has not been done in the previous literature. We use the beginning of period

timing for the consumption data here and elsewhere in the paper.24 The regressors are the

shocks, Et (�ct+1)� Et�1 (�ct+1) and �t (�ct+1)� �t�1 (�ct+1). Notice that the only thing

that is changing is the conditioning information set as we go from time t� 1 to time t; the
regressors are revisions in beliefs. We calculate these conditional moments for each prior

integrating out state, model and parameter uncertainty. The �rst 10 years of the sample

are used as a burn-in period to alleviate any prior misspeci�cation (there is some excess

volatility in state and parameter beliefs in these �rst years).

Separate regressions are run for the historical and look-ahead priors, and we control for

24Due to time-averaging (see Working, 1960), Campbell (1999) notes that one can use either beginning of
period or end of period consumption in a given quarter as the consumption for that quarter. The beginning
of period timing yields stronger results than using the end of period convention (although the signs are
the same in the regressions). In principle, the results should be the same, so this is consistent with some
information being impounded in stocks before the consumption data is revealed to the Bureau of Economic
Analysis.

26



contemporaneous consumption growth and lagged consumption growth (the direct cash �ow

e¤ect). By controlling for realized consumption growth, we ensure that the results are driven

by model-based revisions in beliefs, and not just the fact that realized consumption growth

(a direct cash �ow e¤ect) was, for example, unexpectedly high. To separate out the e¤ects

of parameter from state learning, we use revisions in expected consumption growth beliefs

computed from the 3-state model with �xed parameters (set to their full-sample values) as

an additional control.25

Speci�cations 1 and 2 in Panel A (historical prior) and Panel B (look-ahead prior) in

Table 1 show that increases in expected conditional consumption growth are positively and

strongly signi�cantly associated with excess contemporaneous stock returns for both priors.

This result holds controlling for contemporaneous and lagged consumption growth (the direct

cash �ow e¤ect), and so we can conclude that revisions in beliefs are signi�cantly related to

shocks to the price-dividend ratio. This is a very strong result, pointing to the importance

of a learning-based explanation for realized stock returns. These results could be driven by

parameter or state learning.

Speci�cation 3 shows that the updates in expected consumption growth derived from the

model with �xed parameters (that is, a case with state learning only) are also signi�cantly

related to realized stock returns. The R2, however, is lower than for the case of the full

learning model, and when we include the revisions in beliefs about expected consumption

growth from both the full learning model and the �xed parameters benchmark model in

the regression (speci�cation 4), the updates in expected consumption growth that arise in a

model with �xed parameters are insigni�cant, while the belief revisions from the full learning

model remain signi�cant. That is, updates in expectations when learning about about pa-

rameters, states, and models are more closely related to realized stock market returns than

the corresponding updates in expectations based on a single model with known parameters

but hidden states estimated on the full sample. To our knowledge, this is the �rst direct

comparison of learning about models and parameters versus the traditional implementation

of the rational expectation explanations in terms of explaining the time-series of realized

stock returns using the actual sequence of realized macro shocks.

This result is driven by the nonlinear process of jointly learning about parameters and

states. In particular, speci�cation 5 shows that updates in beliefs from the i.i.d. model can-

not be distinguished from the direct cash �ow e¤ect. The i.i.d. model captures parameter

uncertainty about the long-run mean and variance, but not the state dynamics. The �xed

25Using the �xed parameter 2-state model as the control instead does not change the results.
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Table 1 - Updates in Beliefs versus Realized Stock Returns

Table 1: The table shows the results from regressions of innovations in agents�expectations of fu-
ture consumption growth (Et+1[�ct+2]�Et[�ct+2]) and conditional consumption growth variance
(�2t+1[�ct+2]� �2t [�ct+2]) versus contemporaneous excess stock market returns. In calculating the
expectations, the parameter and model uncertainty is integrated out. The controls are lagged and
contemporaneous realized log consumption growth, as well as the innovation in expected consump-
tion growth derived from the 3-state model with �xed parameters (i.e., no model or parameter
uncertainty), as well as the i.i.d. model with uncertain parameters. Panel A shows the results for
the Historical priors, while Panel B shows the results for the Look-ahead priors. Heteroskedasticity
and autocorrelation adjusted (Newey-West; 3 lags) standard errors are used. � denotes signi�cance
at the 10% level, �� denotes signi�cance at the 5% level, and ��� denotes signi�cance at the 1%
level. The sample is from 1947:Q2 until 2009:Q1. In the below regressions, we have removed the
�rst 40 observations (10 years), as a burn-in period to alleviate misspeci�cation of the priors.

Dependent variable: rm;t+1 � rf;t+1 (excess market returns)
Panel A: Historical prior 1 2 3 4 5 6 7

Et+1 [�ct+2]� Et [�ct+2] 40:43��� 26:00�� 42:41��

(9:36) (11:44) (18:97)

�2t+1 [�ct+2]� �2t [�ct+2] �36:34��� �13:83
(10:90) (10:14)

Controls:

�ct+1 2:02 7:94�� 3:76���

(1:51) (3:12) (1:37)

�ct 2:31� 1:73 2:05

(1:41) (1:43) (1:43)

[Et+1 [�ct+2]� Et [�ct+2]]
3 - s t a t e m o d e l
� k n ow n 24:98��� �1:76

(9:36) (12:82)

�449:17
[Et+1 [�ct+2]� Et [�ct+2]]

i . i . d . m o d e l
� u n k n ow n (392:94)

R2
adj 8:8% 10:9% 5:9% 8:4% 9:5% 5:0% 9:7%

Panel B: Look-ahead prior 1 2 3 4 5 6 7

Et+1 [�ct+2]� Et [�ct+2] 52:44��� 29:05�� 39:63��

(11:71) (13:62) (18:42)

�2t+1 [�ct+2]� �2t [�ct+2] �46:10��� �23:26�
(12:53) (13:43)

Controls:

�ct+1 2:77� 7:78�� 3:51��

(1:56) (3:18) (1:42)

�ct 2:25� 1:74 2:16

(1:38) (1:43) (1:39)

[Et+1 [�ct+2]� Et [�ct+2]]
3 - s t a t e m o d e l
� k n ow n 24:98��� 8:77

(9:36) (10:62)

[Et+1 [�ct+2]� Et [�ct+2]]
i . i . d . m o d e l
� u n k n ow n �427:05

(400:75)

R2
adj 7:3% 10:5% 5:9% 7:2% 9:5% 5:3% 10:2%

28



parameter model (speci�cation 4) captures the transitory state learning, but not the para-

meter dynamics.26 Thus, it is the updates in beliefs stemming from the more complicated,

non-i.i.d. models�learning problem that drives the increased correlation with stock returns,

relative to the direct cash �ow e¤ect. Recall also that our agent quickly learned that the

i.i.d. model is not likely, relative to the other speci�cations.

For the variance (regression speci�cations 6 and 7 in Table 1) we get the opposite result,

as one would expect (at least with a high elasticity of intertemporal substitution, as we will

use later in the paper): unexpected increases in conditional consumption growth variance are

associated with negative contemporaneous stock returns. This result is not signi�cant at the

5% level when including contemporaneous and lagged consumption growth in the regressions

(speci�cation 7). This does not mean there is no e¤ect; we just cannot distinguish it from

the direct cash �ow e¤ect when learning from consumption data alone.

To summarize, we �nd strong evidence that the updates in beliefs elicited from our

model/prior combinations are associated with actual updates in agent beliefs at the time,

as proxied by stock market returns. Again, it is important to recall that no asset price data

was used to generate these belief revisions.

4.2 Learning from additional macro variables

Agents have access to more than just aggregate consumption growth data when forming

beliefs. Here we provide one approach for incorporating this additional information and

apply this methodology to learning from quarterly GDP growth, in addition to consumption.

Suppose xt represents the common growth factor in the economy and evolves via:

xt = �st + �st"t; (3)

where "t
i:i:d:� N (0; 1), and st is the state of the economy, which follows the same Markov

chains speci�ed earlier. Consumption growth�c and J additional variables Yt = [y1t ; y
2
t ; :::; y

J
t ]
0

are assumed to follow:

�ct = xt + �c"
c
t ; (4)

where
26One can show analytically that in a simple i.i.d. model, updates in expectations of consumption growth

are very close to linear in the realized consumption growth.
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yjt = �j + �jxt + �j"
j
t ; for j = 1; 2; :::; J (5)

and "ct
i:i:d:� N (0; 1), and "jt

i:i:d:� N (0; 1) for any j. Note that the coe¢ cients in equation (5)
are not state dependent, which implies that the additional variables will primarily aid in

state identi�cation. The speci�cation allows for the additional observation variables to be

stronger or weaker signals of the underlying state of the economy than consumption growth.

For the case of GDP growth, this captures the idea that investment is more cyclical than

consumption, which makes GDP growth a better business cycle indicator. The linearity of

the relationship is an assumption that is needed for conjugate priors.

The similar conjugate priors for the parameters are applied. For each state st = i,

p(�ij�2i )p(�2i ) � NIG(ai; Ai; bi; Bi), where NIG is the normal/inverse gamma distribution.
�c is assumed to follow an inverse gamma distribution IG(bc; Bc), and for each j = 1; 2; :::; J ,

p([�j; �j]
0j�2j)p(�2j) � NIG(aj; Aj; bj; Bj), where p([�j; �j]

0j�2j) is a bivariate normal distri-
bution N (aj; Aj�2j), aj is a 2 � 1 vector and Aj is a 2 � 2 matrix. Particle �ltering is
straightforward to implement in this speci�cation by modifying the algorithm described in

the Appendix.

To analyze the implications of additional information, we consider learning using real,

per capita U.S. GDP growth as an additional source of information. This exercise generates

a battery of results: time series of parameter beliefs, conditional moments, and model prob-

abilities. We report only a few interesting statistics in the interests of parsimony. Figure 9

shows that the state beliefs do not change dramatically, although GDP growth is typically

thought of as more informative about business cycle �uctuations than consumption growth.

To characterize how the additional data aids in state identi�cation, we compute posterior

standard deviations for the states, std [stjMk; y
t], again integrating out parameter uncer-

tainty. The top Panel of Figure 10, shows that indeed the uncertainty about the state is

much lower (about half) than what was the case when using consumption growth as the only

source of information. Thus, adding GDP growth to the agent�s information set increases

the precision of the state identi�cation.27 The increased certainty about the state improves

parameter identi�cation also, which is con�rmed in the two lower Panels in Figure 10. Here

the uncertainty about the good and bad states mean consumption growth rates is lower, after

a 10-year burn-in, than in the case using consumption as the only source of information.

27It is technically feasible to impose cointegration between consumption and GDP by including the log
consumption to GDP ratio on the right hand side of Equation (5). We thank Lars Hansen for pointing this
out.
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Figure 9 - Mean State Beliefs (GDP)
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Figure 9: The �gures show the means of agents�beliefs about the state of the economy at each
point in time. "1" is an expansion good state, "2" is a recession state, and "3" is a disaster state.
The models have either 2 or 3 states as indicated on each plot, and the time t state beliefs are
formed using the history of both consumption and GDP up until and including time t. The sample
is from 1947:Q2 until 2009:Q1.
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Figure 11 shows that the model speci�cation results are similar, as the data again favors

the 2-state model, leaving the 3-state model with a very low probability at the end of the

sample. It is noteworthy, however, that the probability of the 3-state (disaster) model again

increases at the onset of the �nancial crisis in 2008.

Adding GDP growth also results in a greater di¤erence in expected consumption growth

across the states. Figure 12 shows that the di¤erence in the expected consumption growth

rate in recessions versus expansions is about 0.6% per quarter, versus about 0.3% in the case

of consumption information only (see Figure 5). The dynamic behavior of the conditional

standard deviation of consumption growth is not signi�cantly changed (not reported for

brevity).

Table 2 shows the regressions of contemporaneous stock returns and updates in agent

beliefs about conditional expected consumption growth and consumption growth variance,

as calculated from this extended model. The results are similar, but in fact overall stronger

than the results using only consumption growth. Updates in agent expectations about these

moments from the full learning model are signi�cantly related to stock returns, also after

controlling for contemporaneous and lagged consumption growth and updates in expected

consumption growth derived from a model with �xed parameters. Again, this evidence

indicates that learning about parameters and models is an important feature of the data.

4.3 Additional asset pricing implications

We now embed the beliefs of our learning agent in a general equilibrium asset pricing model.

There are considerable computational and technical issues that need to be dealt with when

considering such an exercise. First, the state space is prohibitively large. The 3-state model,

as an example, have 12 parameters governing the exogenous consumption process, and the

beliefs over each parameter are governed by 2 hyper-parameters. Thus, there are 24 state

variables, in addition to beliefs over the state of the economy and the corresponding para-

meter and state beliefs for the i.i.d. and the general 2-state models. Second, as pointed out

by Geweke (2001) and Weitzmann (2007), some parameter distributions must be truncated

in order for utility to be �nite. This introduces additional nuisance parameters.

Given the computational impediments, we follow Sargent and Cogley (2008) and Piazzesi

and Schneider (2010) and apply the principle of "anticipated utility" to the pricing exercise

(originally suggested by Kreps (1998)). Under this assumption, the agents maximize utility
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Figure 10 - Uncertainty about state (GDP)
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Figure 10: The top Palen shows the standard deviation of the posterior belief about the states for
the case of Look-ahead priors when the consumption dynamics are estimated using consumption
data only versus the consumption and GDP data. The two lower Panels show the standard deviation
of posterior beliefs about the mean in the expansion and the recession states, respectively, for the
2-state model, Look-ahead prior. The solid line gives the case where agents learn from consumption
growth only, while the dashed line shows the case of learning from both consumption and GDP
growth. The sample is from 1947:Q2 until 2009:Q1.
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Figure 11 - Model Probabilities(GDP)
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Figure 11: The top panel shows for the case of the Historical prior the evolution of the probability
of each model being the true model, where the models at the beginning of the sample are set to
have an equal probability, and where state and parameter uncertainty have been integrated out.
In this case, agents also use GDP growth to learn about the state of the economy. The lower plot
shows the same for the Look-ahead prior. The sample period is 1947:Q2 - 2009:Q1.
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Figure 12 - Conditional expected consumption growth (GDP)
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Figure 12: The top panel shows the quarterly conditional expected consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2- and
3-state switching regime models. In this case, agents also use GDP growth to learn about the state
of the economy. The middle plot shows the same for the Look-ahead prior. The lower plot shows
the expected quarterly conditional consumption growth for both priors after model uncertainty has
been integrated out. The sample period is 1947:Q2 - 2009:Q1.
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Table 2 - Updates in Beliefs versus Realized Stock Returns (GDP)

Table 2: The table shows the results from regressions of innovations in agents�expectations of fu-
ture consumption growth (Et+1[�ct+2]�Et[�ct+2]) and conditional consumption growth variance
(�2t+1[�ct+2]� �2t [�ct+2]) versus contemporaneous excess stock market returns. In calculating the
expectations, the parameter and model uncertainty is integrated out. The controls are lagged and
contemporaneous realized log consumption growth, as well as the innovation in expected consump-
tion growth derived from the 3-state model with �xed parameters (i.e., no model or parameter
uncertainty). Both consumption and GDP data is used to estimate the models, as described in
the main text. Panel A shows the results for the Historical priors, while Panel B shows the results
for the Look-ahead priors. Heteroskedasticity and autocorrelation adjusted (Newey-West; 3 lags)
standard errors are used. � denotes signi�cance at the 10% level, �� denotes signi�cance at the 5%
level, and ��� denotes signi�cance at the 1% level. The sample is from 1947:Q2 until 2009:Q1. In
the below regressions, we have removed the �rst 40 observations (10 years), as a burn-in period to
alleviate misspeci�cation of the priors.

Dependent variable: rm;t+1 � rf;t+1 (excess market returns)
Panel A: Historical Prior 1 2 3 4 5

Et+1 [�ct+2]� Et [�ct+2] 40:68��� 40:52��� 39:77��

(6:62) (8:99) (19:13)

�2t+1 [�ct+2]� �2t [�ct+2] �56:94��� �46:25���
(10:79) (22:37)

Controls:

�ct+1 �0:70 1:02

(1:56) (1:52)

�ct 1:93 2:36�

(1:33) (1:41)

[Et+1 [�ct+2]� Et [�ct+2]]3-state model� known 0:60

(10:47)

R2adj 15:4% 15:6% 15:0% 11:9% 13:3%

Panel B: Look-ahead Prior 1 2 3 4 5

Et+1 [�ct+2]� Et [�ct+2] 33:48��� 30:84��� 28:41��

(5:56) (7:24) (14:03)

�2t+1 [�ct+2]� �2t [�ct+2] �67:93��� �48:59��
(13:76) (17:94)

Controls:

�ct+1 0:01 1:88

(1:40) (1:69)

�ct 2:11� 2:50�

(1:33) (1:41)

[Et+1 [�ct+2]� Et [�ct+2]]3-state model� known 3:89

(9:20)

R2adj 14:5% 15:0% 14:1% 9:3% 11:9%
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at each point in time assuming that the parameters and model probabilities are equal to

the agents�current mean beliefs and will remain constant forever. Of course, at time t + 1

the mean parameter beliefs will in general be di¤erent due to learning. While parameter

and model uncertainty are not priced risk factors in this framework, they are nonetheless

important for the time-series of asset prices as updates in mean parameter and model beliefs

lead to changes in prices. We do integrate out state uncertainty in the pricing exercise, so

state uncertainty is a priced risk factor (as in, e.g., Lettau, Ludvigson, and Wachter (2008)).

The anticipated utility approach reduces the number of state variables to three (the belief

about the state in the general 2-state model, and the 2-dimensional belief about the state in

the 3-state model).28

The purpose of the pricing exercise is to examine what features of the post-WW2 U.S.

aggregate consumption and asset price data a realistic, general learning problem can help

explain. Since we do not integrate out the parameter and model uncertainty in the pricing

exercise, we focus on two aspects of the model that are likely to be robust to the introduction

of priced parameter and model uncertainty.

1. Ex-ante versus ex post

With learning ex ante expectations need not in general equal average ex post outcomes,

which is the assumption in the typical rational expectations implementation. In the

following, we argue that substantial components of the observed equity premium, excess

return volatility, the degree of in-sample excess return predictability, and the time-

series of the aggregate price-dividend ratio can be explained by the (nonstationary)

time-path of mean parameter beliefs.

2. Permanent versus transitory shocks

The shocks to mean parameter beliefs are permanent shocks to investor information

sets. This has implications for, for instance, the volatility of long-run bond yields,

and is di¤erent from a model with transitory shocks to state variables (such as our

state beliefs, the long-run risk variable in Bansal and Yaron (2004), or the surplus

consumption ratio in Campbell and Cochrane (1999)).

28It would be computationally feasible to account for model uncertainty or to focus on parameter uncer-
tainty over one of the parameters, but we leave such considerations for future research.
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4.3.1 The model

The model is solved at the quarterly frequency, and the representative agent is assumed to

have Epstein and Zin (1989) preferences, which are de�ned recursively as:

Ut =

�
(1� �)C

1�1= 
t + �

�
Et
�
U1�
t+1

�� 1�1= 
1�


� 1
1�1= 

; (6)

where Ct is the consumption,  6= 1 is the intertemporal elasticity of substitution (IES) in
consumption, and 
 6= 1 is the coe¢ cient of relative risk aversion. These preferences imply
the stochastic discount factor:

Mt+1 = �

�
Ct+1
Ct

��
 �
�
PCt+1 + 1

PCt

� 1= �

1�1= 

; (7)

where PCt is the wealth-consumption ratio �that is, the price-dividend ratio for the claim

to the stream of future aggregate consumption. The �rst component of the pricing kernel is

that which obtains under standard power utility, while the second component is present if

the agent has a preference for the timing of the resolution of uncertainty (i.e., if 
 6= 1= ). As
mentioned earlier, we consider an anticipated utility approach to the pricing problem in terms

of parameter and model uncertainty, while state uncertainty is priced.29 This corresponds to

a world where investors understand and account for business cycle �uctuations, but where

they simply use their best guess for the parameters governing these dynamics.

Our goal in this section is to, for reasonable preference parameters, understand how

learning a¤ects pricing relative to the benchmark case of �xed parameters. Given that

the consumption dynamics are not ex post calibrated (in particular in the historical prior

case) but estimated in real-time, we also do not calibrate preference parameters to match

any particular moment(s). Instead, we simply use the preference parameters of Bansal and

Yaron (2004). Thus, 
 = 10,  = 1:5, and � = 0:998^3.

Following both Bansal and Yaron (2004) and Lettau, Ludvigson, and Wachter (2008), we

29The model is solved numerically through value function iteration at each time t in the sample, conditional
on the mean parameter beliefs at time t, which gives the time t asset prices. The state variables when solving
this model are the beliefs about the hidden states of the economy for each model under consideration. For
a detailed description of the model solution algorithm, please refer to the Appendix.
Cogley and Sargent (2009) argue that anticipated utility approach is a close approximation to the true

Bayesian approach, although their analysis is with respect to time-separable preferences. Piazzesi and
Schneider (2010) is an example of a recent application of an anticipated utility pricing framework with
Epstein-Zin preferences.
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price a levered claim to the consumption stream with a leverage factor � of 4:5. The annual

consumption volatility over the post-war sample is only 1:34%, and so the systematic annual

dividend volatility is therefore about 6%. Quarterly log dividend growth is de�ned as:

�dt = ��ct + "d;t; (8)

where "d;t
i:i:d:� N

�
�1
2
�2d; �

2
d

�
is the idiosyncratic component of dividend growth. �d is chosen

to match the observed annual 11:5% volatility of dividend growth reported in Bansal and

Yaron (2004). With these choices of � and �d we also in fact closely match the sample

correlation they report between annual consumption and dividend growth (0:55).30

Unconditional Moments Table 3 reports realized asset pricing moments in the data, and

also those generated by our learning models over the same sample period. The �rst 10 years

are removed as a burn-in period to reduce concerns with regards to prior misspeci�cation.

We consider cases with and without parameter learning.

The models with parameter uncertainty match the observed equity premium reasonably

well: 4:7% in the data versus 3:8% and 3:4% for the consumption only historical and look-

ahead priors, respectively. The models where GDP is used as an additional signal, which

as reported earlier have a more severe recession state, have average sample excess equity

returns of 4:2% and 4:0% for the historical and the look-ahead priors, respectively. This

compares favorably to the benchmark �xed parameters two and 3-state models which sample

equity premiums are 1:5% and 1:8%, respectively. Thus, allowing for parameter uncertainty

more than doubles the sample risk premiums, despite the fact that parameter and model

uncertainty are not priced risk factors in the anticipated utility pricing framework. The high

sample equity premium arises because of the speci�c time path of beliefs, which we discuss

next.

The table also reports the average ex ante equity risk premium (ET
�
E
�
Rexcess
m;t+1 jIt

��
,

where It denotes the information set (beliefs) of agents at time t and ET [�] denotes the
sample average). The cases with parameter and model learning have about the same ex

ante risk premium. This implies that more than half of the excess returns achieved in these
30The dividend dynamics imply that consumption and dividends are not cointegrated, which is a com-

mon assumption (e.g., Campbell and Cochrane (1999), and Bansal and Yaron (2004)). One could impose
cointegration between consumption and dividends, but at the cost of an additional state variable. Further,
it is possible to also learn about � and �2d. However, quarterly dividends are highly seasonal, which would
severely complicate such an analysis. Further, data on stock repurchases is mainly annual. We leave a
rigorous treatment of these issues to future research.
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Table 3 - Asset Price Moments

Table 3: The table reports the asset pricing implications of the models with an anticipated utility
version of the Epstein-Zin preferences under di¤erent priors, as well as the �xed parameters cases.
For all the models, 
 = 10, � = 0:994,  = 1:5, � = 4:5. The volatility of the idiosyncratic
component of dividend growth (�d;t) is calibrated to match the historical standard deviation of
dividend growth, as reported in Bansal and Yaron (2004). The statistics are annualized. The
expectation operator with a T subscript, ET , denotes the sample average, while the volatility
operator, �T denotes the sample standard deviation. �Cons. only�denotes the model results in the
case where only consumption growth is used to update beliefs, while �Cons. + GDP�denotes the
model results in the case where both consumption and GDP growth are used to update beliefs.
The full sample period is from 1947:Q2 until 2009:Q1. However, we have removed the �rst 40
observations (10 years), as a burn-in period to alleviate misspeci�cation of the priors. Similar
results are obtained with no burn-in or with 80 quarter burn-in.

Data Historical prior Look-ahead prior Fixed parameters
1957:Q2- Cons. Cons. + Cons. Cons. + 2-state 3-state

Moments 2009:Q1 only GDP only GDP model model

The real risk-free rate:

ET (r
f
t ) 1:6% 3:8% 3:7% 3:7% 3:7% 3:7% 3:7%

�T (r
f
t ) 1:6% 0:8% 0:9% 0:6% 0:8% 0:7% 0:8%

The dividend claim: dt = �ct + "d;t

ex post:
ET (rt � rft ) 4:7% 3:8% 4:2% 3:4% 4:0% 1:5% 1:8%

�T (rt � rft ) 17:1% 15:6% 15:7% 15:5% 15:4% 12:2% 12:4%
Sharpe ratio 0:27 0:24 0:27 0:22 0:26 0:12 0:14
�T (pdt) 0:38 0:26 0:28 0:26 0:29 0:06 0:07

CorrT (pd
Model
t ; pdDatat ) n=a 0:37 0:53 0:31 0:52 0:24 0:25

ex ante:
ET [Et(rt+1 � rft+1)] n=a 1:5% 1:7% 1:4% 1:6% 1:5% 1:8%

models occur due to ex post positive surprises in updates of beliefs. This is one of the

primary implications of learning for this sample. Interestingly, after the burn-in period,

this e¤ect is also strong in the look-ahead prior. With parameter and model uncertainty,

agents beliefs quickly deviate from their full sample estimates, highlighting the di¢ culty of

learning in real-time, similar to the problem faced by an econometrician. In particular, the

sequence of shocks realized over the post-war sample generate a times series of beliefs that

have a systematic time series pattern: the initial low mean and high volatility of consumption

growth causes an upward revision in the mean growth rates and a negative revision in the

volatility parameters, as described in Section 3. Fama and French (2002) reach a similar
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conclusion in terms of the ex post versus the ex ante risk premium when looking at the time-

series of the aggregate price-earnings and price-dividend ratios. Sargent and Cogley (2008)

assume negatively biased beliefs in their model to highlight the same mechanism. The

results we present here are consistent with their conclusions, but our models are estimated

from fundamentals alone.

The equity return volatility is, in all the cases permitting parameter and model uncer-

tainty, close to the 17:1% annual return volatility in the data (from 15:4% to 15:7%). In

contrast, the equity return volatility in the models with �xed parameters is about 12%, which

is almost all cash �ow volatility as the annual dividend growth volatility is 11:5%. Thus,

the sample variation in discount and growth rates arising from updates in agents�beliefs

cause excess return volatility (Shiller, 1980). This is re�ected in the sample volatility of the

log price-dividend ratio, which is 0:38 in the data. In the cases with parameter and model

uncertainty the volatility of the log price-dividend ratio lies between 0:26 and 0:29.31 While

this is only about three quarters of its volatility in the data, it is 4 to 5 times the volatility

of the log price-dividend ratio in the benchmark �xed parameters models (here the volatility

of the log price-dividend ratio is 0:06 for the 2-state model and 0:07 for the 3-state model).

The sample correlation between the log price-dividend ratios from the model versus the

data, is 0:53 and 0:52 for the models using both GDP and consumption to estimate beliefs

and 0:31 and 0:37 for the models using consumption only to estimate beliefs. The models

with �xed parameters have lower correlations, 0:24 for the 2-state model and 0:25 for the

3-state model. As an alternative measure of the �t between the time-series of the sample

price-level in the data versus those in the models considered here, the highest covariance

between the price-dividend ratio in the data and the models with parameter and model

uncertainty is 0:0573, whereas the highest covariance between the price-dividend ratio in

the data and the models with �xed parameters is 0:0067 �a di¤erence close to an order of

magnitude. Thus, with parameter and model learning the model tracks the aggregate stock

market price level (normalized by dividends) much more closely than either of the models

we consider with �xed parameters. The price-level, a �rst order moment, is arguably even

more important than matching the second order moments that usually are the focus in asset

pricing.

As a formal test of the learning model�s match of the aggregate stock price level (the log

31The price-dividend ratio in each model is calculated as the corresponding in the data by summing the
last four quarters of payouts to get annual payout. The price-dividend ratio from the data includes share
repurchases in its de�nition of total dividends.
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D/P ratio) relative to the �xed parameter benchmark model, we run the following regression:

dpdatat = �+ �1dp
ParModUnc
t + �2dp

FP3
t + "t; (9)

where dpdatat refers to the historical quarterly log dividend price ratio of the market portfolio,

dpParModUnc
t refers to the log dividend price ratio from the model with parameter and model

uncertainty, and dpFP3t refers to the log dividend price ratio from the �xed parameters, 3-

state model. The �rst four columns of Table 4 shows that the regression coe¢ cient on the

model with parameter and model uncertainty (�1) is signi�cant at the 1% level for both the

historical and look-ahead priors, as well as whether learning is from realized consumption

growth only or also including realized GDP growth. The R2 ranges from 12% to 26% and is

the lowest for the look-ahead prior with learning from consumption only, and the highest for

the historical prior with learning from both consumption and GDP growth. As before, the

results are shown after a 10-year burn-in period, from 1957 to 2009. The coe¢ cient on the

dividend yield from the �xed parameters model is insigni�cant in all of these cases. The �fth

column of Table 4 shows the regression with only the dividend yield from the �xed parameters

model. It is signi�cant in this case, but the R2 is only 6%. Finally, the last column of the

table shows the regression with both the dividend yield from the �xed parameter model and

the dividend yield from the historical prior with learning from both GDP and consumption

growth, but where the dividend yield from the model with parameter and model learning has

been orthogonalized with respect to the dividend yield from the �xed parameter model. The

coe¢ cient on the orthogonalized dividend yield (�1) is still signi�cant at the 1% level which

implies that including the dividend yield from the model with parameter and model learning

leads to a statistically signi�cant (at the 1% level) increase in the R2, relative to the �xed

parameters benchmark case. The increase in �t from the full learning models stems from a

better match of the business cycle �uctuations in the dividend yield, as well as low-frequency

�uctuations. In particular, with parameter learning the dividend yield displays a downward

trend over the sample, similar to that found in the data as documented by, for instance,

Fama and French (2002).

In sum, including parameter and model uncertainty leads to not only better �t of the

unconditional asset pricing moments, but a signi�cantly better �t of the realized aggregate

stock price level in the post-WW2 era.
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Table 4 - Dividend Yield Regression

Table 4: The table reports the results of regressions where the log aggregate stock market dividend
price ratio is the independent variable and contemporaneous log dividend price ratios from the
model with parameter and model uncertainty (dpParModUnc), and the benchmark 3-state model
with �xed parameters (dpFP3). The standard errors are corrected for heteroskedasticity and given
in parantheses under the coe¢ cient estimates. Each column corresponds to a di¤erent prior and
learning information set (Consumption only, or both consumption and GDP), The �nal column
shows a regression where the log dividend price ratio from the model with parameter and model
uncertainty has been orthogonalized with respect to the log dividend price ratio from the model
with �xed parameters. � denotes signi�cance at the 10% level, �� denotes signi�cance at the 5%
level, and ��� denotes signi�cance at the 1% level. The full sample period is from 1947:Q2 until
2009:Q1. However, we have removed the �rst 40 observations (10 years), as a burn-in period to
alleviate misspeci�cation of the priors. Similar results are obtained with no burn-in or with 80
quarter burn-in.

Historical Prior Look-ahead Prior Fixed parameters Historical Prior
Cons. Cons. Cons. Cons. 3-state model Cons. + GDP

V ariables only + GDP Only + GDP only (orthogonal)

constant 0:82 0:19 1:25 0:16 1:86 1:86
(1:82) (1:72) (1:91) (1:71) (2:06) (1:86)

pdParModUnc 0:47��� 0:79��� 0:37��� 0:61��� 0:79���

(0:13) (0:14) (0:12) (0:11) (0:14)
pdFP3 0:73 0:28 0:92� 0:40 1:45��� 1:45���

(0:46) (0:43) (0:49) (0:43) (0:56) (0:51)

R2 15:0% 25:8% 11:7% 20:0% 6:2% 25:8%

Permanent shocks and the volatility of long-run yields. With parameter and

model uncertainty, the updates in mean beliefs constitute permanent shocks to expectations

about consumption growth rates, consumption growth volatility, and higher order moments.

This is a distinguishing feature of models with learning about constant quantities relative

to learning about or observing a stationary underlying process (such as our state of the

Markov chain, long-run risk in Bansal and Yaron (2004), or the surplus consumption ratio

in Campbell and Cochrane (1999)). The latter models have transitory variables only in

marginal utility growth. Shocks to a transitory state variable eventually die out, and so

(very) long-run expectations are constant. Shocks to, for instance, the mean belief about

the unconditional growth rate of consumption are, on the other hand, permanent, leading to

permanent shocks to marginal utility growth. This has implications for all asset prices, but

can be most clearly seen when considering the volatility of long-run default-free real yields,

which can be readily calculated from our model. Table 5 shows the volatility of annualized
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yields for default-free real, zero-coupon bonds at di¤erent maturities. The data column gives

the volatility of yields on U.S. TIPS, calculated from monthly data for the longest available

sample, 2003 to 2011, from the Federal Reserve Board, along with the standard error of

the volatility estimates. In the remaining columns, the corresponding model-implied yield

volatilities, calculated from each of the models considered in this paper over the post-WW2

sample, are given.

First, the yield volatilities for the models with parameter and model uncertainty are

substantially higher than the yield volatilities from the models with �xed parameters. The

2-year yields are twice as volatile, while the 10-year yields are an order of magnitude more

volatile. This is a direct consequence of the permanent shocks to expectations resulting

from parameter learning, whereas the models with �xed parameters have constant long-run

consumption growth mean and volatility. Notably, the long maturity yields in the data have

about the same yield volatility as in the models with parameter uncertainty, and so this

is another dimension along which learning about parameters and models can help explain

historical asset pricing behavior.

Table 5 - Real risk-free yield volatilities

Table 5: The table reports the sample standard deviation of annualized real risk-free yields at
di¤erent maturities as computed from each of the models considered in the paper over the post-
WW2 sample (1957 �2009). The data column reports the standard deviation of annualized yields
from the available data on TIPS from the Federal Reserve, which is monthly from January 2003 to
February 2011.

TIPS Data Consumption Consumption;GDP Fixed Parameters
(2003 �2011) (s:e:) Historical Lookahead Historical Lookahead 2-state 3-state

5-yr yield 0:75% 0:35% 0:30% 0:44% 0:39% 0:17% 0:19%
(0:18%)

10-yr yield 0:45% 0:31% 0:27% 0:42% 0:36% 0:09% 0:10%
(0:11%)

20-yr yield 0:30% 0:30% 0:26% 0:42% 0:35% 0:05% 0:06%
(0:06%)

30-yr yield n=a 0:30% 0:25% 0:42% 0:35% 0:03% 0:03%

Return Predictability Lastly, we consider excess market return forecasting regression

using the dividend yield as the predictive variable. These regressions have a long history

in asset pricing and remain a feature of the data that asset pricing models typically aim

to explain (e.g., Campbell and Cochrane (1999), Bansal and Yaron (2004)). However, the
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strength of the empirical evidence is under debate (see, e.g., Stambaugh (1999), Ang and

Bekaert (2007), Boudoukh, Richardson andWhitelaw (2008), and Goyal andWelch (2008) for

critical analyses). Here we run standard forecasting regressions overlapping at the quarterly

frequency using the sample of market returns and dividend yields as implied by each of the

models. Note that, as before, we are not looking at population moments or average small-

sample moments, but the single sample generated by feeding the models the actual sample

of realized consumption growth.

Table 6 shows the forecasting regressions over di¤erent return forecasting horizons from

the data. We use both the market dividend yield and the approximation to the consumption-

wealth ratio, cay, of Lettau and Ludvigson (2001) to show the amount of predictability

implied by these regressions in the data. We then run the same regressions using model

implied returns and dividend yields. The benchmark models with �xed parameters (bottom

right in the table) show no evidence of return predictability at the 5% signi�cance level

and the R2�s are very small. These models do, in fact, feature time-variation in the equity

risk premium, but the standard deviation of the risk premiums are only about 0:5% per

year and so the signal-to-noise ratio in these regressions is too small to result in signi�cant

predictability in a sample of the length we consider here. The models with parameter

uncertainty, however, display signi�cant in-sample return predictability and the regression

coe¢ cients and the R2�s are large and increasing in the forecasting horizon similar to those

in the data. The ex ante predictability in these models is in fact similar to that in the

�xed parameters cases, but since the parameters are updated at each point in time, there

is signi�cant ex post predictability. For instance, an increase in the mean parameters of

consumption growth leads to high returns and lower dividend yield. Thus, a high dividend

yield in sample forecasts high excess returns in sample. This is the same e¤ect of learning

as that pointed out in Timmermann (1993) and Lewellen and Shanken (2002). The models

here show that the signi�cant regression coe¢ cients in the classical forecasting regressions

show up in the sample only in the model where there is parameter learning which generates

a signi�cant di¤erence between ex ante expected returns and ex post realizations. Thus, the

model predicts that the amount of predictability is much smaller out-of-sample, consistent

with the empirical evidence in Goyal and Welch (2008) and Ang and Bekaert (2007).
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Table 6 - Return Forecasting Regressions

Table 6: This table presents quarterly excess market return forecasting regressions over various
forecasting horizons (q quarters; 1 to 16). The top right shows the results when using market
data and a measure of the log aggregate dividend yield; the cay-variable of Lettau and Ludvigsson
(2001) and the CRSP aggregate log dividend yield (ln Dt

Pt
where dividends are measured as the

sum of the last four quarters�dividends. The rest of the table shows the results using the returns
and dividend yield generated within the models based on the Historical priors, the Look-ahead
priors, and the �xed parameter case. "Cons. only" denotes the model results in the case where
only consumption growth is used to update beliefs, while "Cons. and GDP" denotes the model
results in the case where both consumption and GDP growth are used to update beliefs. Newey-
West autocorrelation and heteroskedasticity adjusted standard errors are given in parentheses (the
number of lags is equal to the number of overlapping observations). � denotes signi�cance at the
10% level, �� denotes signi�cance at the 5% level, and ��� denotes signi�cance at the 1% level.
The full sample period is from 1947:Q2 until 2009:Q1. However, we have removed the �rst 40
observations (10 years), as a burn-in period to alleviate misspeci�cation of the priors.

rt;t+q � rf;t;t+q = �q + �q;dp ln (Dt=Pt) + "t;t+q

Data Historical prior

ln (Dt=Pt) := cayt ln (Dt=Pt) := ln
�3j=0D

Mkt:
t�j

PMkt:
t

Cons. only Cons. and GDP

q �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj

1 1:19��� 4:67% 0:03� 1:6% 0:04 1:4% 0:03 1:3%
(0:31) (0:02) (0:03) (0:02)

4 4:29��� 15:65% 0:11�� 6:6% 0:18�� 8:3% 0:14�� 6:8%
(1:18) (0:05) (0:07) (0:06)

8 7:60��� 28:1% 0:17� 8:5% 0:38��� 19:2% 0:28��� 13:7%
(1:72) (0:10) (0:09) (0:08)

16 12:31��� 41:6% 0:22�� 9:5% 0:61��� 28:4% 0:44��� 17:9%
(1:82) (0:11) (0:15) (0:13)

Look-ahead prior Fixed parameters
Cons. only Cons. and GDP 2-state model 3-state model

q �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj

1 0:03 1:3% 0:03 0:9% �0:01 0:0% 0:004 0:0%
(0:02) (0:03) (0:062) (0:062)

4 0:18�� 7:7% 0:15�� 5:4% 0:19 1:0% 0:20 1:2%
(0:07) (0:07) (0:17) (0:16)

8 0:38��� 18:3% 0:29�� 10:8% 0:37� 2:3% 0:41� 2:7%
(0:12) (0:09) (0:24) (0:23)

16 0:64��� 28:9% 0:42�� 13:0% 0:26 0:7% 0:28 0:8%
(0:17) (0:17) (0:31) (0:30)
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5 Conclusion

This paper studies the statistical problem and asset pricing implications of learning about

parameters, states, and models in a standard class of models for consumption dynamics.

Our approach is empirical, focuses on the speci�c implications generated by learning about

U.S. consumption dynamics during the post World War II period, and contributes to a

growing empirical literature documenting the importance of learning for asset prices (e.g.,

Malmendier and Nagel (2011), and Pastor and Veronesi (2003)).

We �nd broad support for the importance of learning about parameters and models.

Agents�beliefs about consumption growth dynamics are strongly time-varying, nonstation-

ary, and help explain the realized time-series of equity returns and price-dividend ratio.

In particular, the new and signi�cant relationship we document between contemporaneous

realized returns and revisions in beliefs is strong support for the importance of learning. In-

corporating learning and our estimated time-series of beliefs in a general equilibrium model

uniformly improves the model �t with respect to the standard asset pricing moments.

Taken together, this evidence questions the typical implementations of rational expecta-

tions consumption-based exchange economy models, in which agents know with certainty the

data generating process for aggregate consumption growth. Further, the nonstationary dy-

namics induced by learning about �xed quantities such as parameters and models translates

to nonstationary dynamics in marginal utility growth and asset valuation ratios. This, in

turn, implies that standard econometric approaches to model tests and parameter estimation

should be used with caution (see also Cogley and Sargent (2008)).

The procedure implemented in this paper can in a straightforward way be implemented

for other countries or markets, or extended to multi-country or multi-asset settings. For

instance, learning about the joint dynamics of dividends and consumption is an interesting

exercise abstracted away from in this paper. In terms of other countries, it is clear that

the post World War II experience of Japan would lead to a very di¤erent path of beliefs.

Learning about the joint dynamics of, say, the U.S. and Japan�s economies would have

interesting implications, not only for their respective equity markets, but also for the real

exchange rate dynamics. It will in future research be interesting to consider priced parameter

uncertainty with Epstein-Zin preferences. Parameter and model uncertainty will be major

sources of anxiety for agents with preferences for early resolution of uncertainty as these risks

are nonstationary and thus truly "long-run." As in Bansal and Yaron (2004), these sources

of uncertainty will likely command high risk prices.
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6 Appendix

6.1 Existing literature and alternative approaches for parameter,

state, and model uncertainty.

Our paper is related to a large literature studying the asset pricing implications of para-

meter or state learning. Most of this literature focuses on learning about a single unknown

parameter or state variable (assuming the other parameters and/or states are known) that

determines dividend dynamics and power utility. For example, Timmerman (1993) considers

the e¤ect of uncertainty on the average level of dividend growth, assuming other parame-

ters are known, and shows in simple discounted cash-�ow setting that parameter learning

generates excess volatility and patterns consistent with the predictability evidence (see also

Timmerman 1996). Lewellen and Shanken (2002) study the impact of learning about mean

cash-�ow parameters with exponential utility with a particular focus on return predictability.
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Veronesi (2000) considers the case of learning about mean-dividend growth rates in a

model with underlying dividend dynamics with power utility and focuses on the role of

signal precision or information quality. Pastor and Veronesi (2003, 2006) study uncertainty

about a �xed dividend-growth rate or pro�tability levels with an exogenously speci�ed pricing

kernel, in part motivated in order to derive cross-sectional implications. Weitzman (2007)

and Bakshi and Skoulakis (2009) consider uncertainty over volatility.

Cogley and Sargent (2008) consider a 2-state Markov-switching model, parameter un-

certainty over one of the transition probabilities, tilt beliefs to generate robustness via pes-

simistic beliefs, and use power utility. After calibrating the priors to the 1930s experience,

they simulate data from a true model calibrated to the post War experience to show how

priced parameter uncertainty and concerns for robustness impact asset prices, in terms of

the �nite sample distribution over various moments.

A number of papers consider state uncertainty, where the state evolves discretely via a

Markov switching model or smoothing via a Gaussian process. Moore and Shaller (1996) con-

sider consumption/dividend based Markov switching models with state learning and power

utility. Brennen and Xia (2001) consider the problem of learning about dividend growth

which is not a �xed parameter but a mean-reverting stochastic process, with power utility.

Veronesi (2004) studies the implications of learning about a peso state in a Markov switching

model with power utility. David and Veronesi (2010) consider a Markov switching model

with learning about states.

In the case of Epstein-Zin utility, Brandt, Zeng, and Zhang (2004) consider alternative

rules for learning about an unknown Markov state, assuming all parameters and the model

is known. Lettau, Ludvigson, and Wachter (2008) consider information structures where

the economic agents observe the parameters but learn about states in Markov switching

consumption based asset pricing model. Chen and Pakos (2008) consider learning about the

mean of consumption growth which is a Markov switching process. Ai (2010) studies learning

in a production-based long-run risks model with Kalman learning about a persistent latent

state variable. Bansal and Shaliastovich (2008) and Shaliastovich (2010) consider learning

about the persistent component in a Bansal and Yaron (2004) style model with sub-optimal

Kalman learning.

Additionally, some papers consider combinations of parameter or model uncertainty and

robustness, see, e.g., Hansen and Sargent (2000,2009) and Hansen (2008).
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6.2 Econometrics

This section brie�y reviews the mechanics of sequential Bayesian learning and introduces

the econometric methods needed to solve the high-dimensional learning problem. For ease of

exposition, we abstract here from the problem of model uncertainty and drop the dependence

on the model speci�cation. Model uncertainty can be dealt with easily in a fashion analogous

to the problem considered here.

The agent begins with initial beliefs over the parameters and states, p (�; st) = p (stj�) p (�),
and then updates via Bayes�rule. If at time t the agent holds beliefs p (�; stjyt), then updat-
ing occurs in a two step process by �rst computing the predictive distribution, p (�; st+1jyt),
and then updating via the likelihood function, p (yt+1jst+1; �):

p
�
�; st+1jyt+1

�
/ p (yt+1j�; st+1) p

�
�; st+1jyt

�
.

The predictive distribution is

p
�
�; st+1jyt

�
=

Z
p (st+1jst; �) p

�
�; stjyt

�
dst;

which shows the recursive nature of Bayesian updating, as p (�; st+1jyt+1) is functionally
dependent on p (�; stjyt).
The main di¢ culty is characterizing p (�; stjyt) for each t, which is needed for sequential

learning. Unfortunately, even though st is discretely valued, there is no analytical form

for p (�; stjyt), as it is high-dimensional and the dependence on the data is complicated
and nonlinear. We use Monte Carlo methods called particle �lters to generate approximate

samples from p (�; stjyt). Johannes and Polson (2008) developed the general approach we
use, and it was extended and applied to Markov switching models by Carvalho, Johannes,

Lopes, and Polson (2010a, 2010b) and Carvalho, Lopes and Polson (2009). Details of the

algorithms are given in those papers.

The �rst step of the approach, data augmentation, introduces a conditional su¢ cient

statistics, Tt, for the parameters. Su¢ cient statistics imply that the full posterior distribution

of the parameters conditional on entire history of latent states and data takes a known

functional form conditional on a vector of su¢ cient statistics: p (�jst; yt) = p (�jTt), where
p (�jTt) is a known distribution. The conditional su¢ cient statistics are given by Tt+1 =
T (Tt; st+1; yt+1), where the function T (�) is analytically known, which implies the su¢ cient
statistics can be recursively updated. For Markov switching models, the su¢ cient statistics

55



contain random variables such as the number of times and duration of each state visit, the

mean and variance of yt in those visits, etc. This step requires conjugate priors.

The key is that it is easier to sample from p (�; Tt; stjyt) than p (�; stjyt), where

p
�
�; Tt; stjyt

�
= p (�jTt) p

�
Tt; stjyt

�
: (10)

By the de�nition of su¢ cient statistics and the use of conjugate priors, p (�jTt) is a known
distribution (e.g., normal). This transforms the problem of sequential learning of parame-

ters and states into one of sequential learning of states and su¢ cient statistics, and then

standard updating by drawing from p (�jTt). The dimensionality of the target distribution,
p (�; Tt; stjyt), is �xed as the sample size increases.
An N� particle approximation, pN(�; Tt; stjyt), approximates p (�; Tt; stjyt) via �particles�n

(�; Tt; st)
(i)
oN
i=1

so that:

pN(�; Tt; stjyt) =
1

N

NX
i=1

�(�;Tt;st)(i) ;

where � is a Dirac mass. A particle �ltering algorithmmerely consists of a recursive algorithm

for generating new particles, (�; Tt+1; st+1)
(i), given existing particles and a new observation,

yt+1. The approach developed in Johannes and Polson (2008) and Carvalho, Johannes,

Lopes, and Polson (2009a, 2009b) generates a direct or exact sample from pN(�; Tt; stjyt),
without resorting to importance sampling or other approximate methods. The algorithm is

straightforward to code and runs extremely quickly so that it is possible to run for large

values N , which is required to keep the Monte Carlo error low. These draws can be used to

estimate parameters and states variables.

In addition to sequential parameter estimation, particle �lters can also be used for

Bayesian model comparison. Bayesian model comparison and hypothesis testing utilizes

the Bayes factor, essentially a likelihood ratio between competing speci�cations. Formally,

given a number of competing model speci�cations, generically labeled as modelMk andMj,

the Bayesian approach computes the probability of model k as:

p
�
Mkjyt

�
=

p(ytjMk)p (Mk)PN
j=1 p(y

tjMj)p (Mj)
,
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where p (Mk) is the prior probability of model k;

p(yt+1jMk) = p(yt+1jyt;Mk)p
�
yt�1jMk

�
,

and

p(yt+1jyt;Mi) =

Z
p (yt+1j�; st;Mi) p

�
�; stjyt;Mi

�
d (�; st)

is the marginal likelihood of observation yt+1, given data up to time t in model k. Marginal

likelihoods are not known analytically and are di¢ cult to compute even using MCMC meth-

ods. Since our algorithm provides approximate samples from p (st; �jyt), it is straightforward
to estimate marginal likelihoods via

pN(yt+1jyt;Mk) =
1

N

NX
i=1

p
�
yt+1j (�; st)(i) ;Mk

�
:

For all of our empirical results, we ran particle �ltering algorithms with N = 10K

particles. We performed extensive simulations to insure that this number of particles insured

a low and negligible Monte Carlo error.

6.3 Priors

Table 7 shows the prior parameters for the three di¤erent models we consider. The historical

and look-ahead priors are di¤erent along some important dimensions. In particular, pre-

WW2 consumption data is a lot more volatile than the post-war data (annual standard

deviation of 4:8% in the pre-WW2 data versus 1:36% in post-WW2 data). This has been,

in part, attributed to inferior pre-war data that is more noisy and sample that contains a

more cyclical component of the economy (Romer, 1989). What is true, nevertheless, is that

recessions were more frequent and lasted longer in the pre-WW2 data, and that the Great

Depression was a worse recession than ever experienced afterwards, current crisis included.

This is re�ected in the disaster state in the 3-state models, in particular for the historical

prior, akin to the disaster risk considered in Barro (2008).

For the historical prior, we have estimated, respectively, the 2- and 3-state models starting

with very �at priors on the annual Shiller data. The posterior obtained at the end of the

pre-war sample is transformed into a prior for the quarterly post-WW2 sample by dividing

the average expected means and standard deviations within each regime by 4, and the

average transition probability matrix, �, is taken to the power of 1=4. This is of necessity
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somewhat ad hoc - �rst, a 2-state model on annual data does not imply a 2-state model on

quarterly data; second, one would usually divide standard deviations by 2 to go from annual

to quarterly. However, a large fraction of the pre-WW2 excess volatility is likely due to

noisy data, which is not what we intend to capture with our prior. What is more, applying

priors where the mean belief of the standard deviation of consumption growth within each

regime is counter-factually high, leads to a state identi�cation issue: the di¤erence in the

average beliefs of the mean within each state is too small relative to the volatilities and so

the procedure cannot identify the separate states.

The look-ahead priors have mean values equal to the posterior from the corresponding

historical priors in 2009:Q1. These are very close to what would be the maximum likelihood

estimates obtained from estimating the 2- and 3-state models using the post-WW2 quarterly

sample. The look-ahead priors have lower consumption growth volatility and higher persis-

tence of the good state relative to the historical priors. Thus, the look-ahead prior re�ects

an expectation in 1947:Q1 of the world having higher growth and lower volatility than in

the period before WW2. In terms of the tightness of the priors, the expansion state (always

state 1), which has occurred the most, has the tightest priors, the recession state (state 2)

has �atter priors as this state is visited less often, while the disaster state (state 3), for the

3-state models, has the �attest priors. This state is the one agents has the least information

about, as it is a rare event.

For the extended model with both consumption and GDP growth, the priors are set to

match the consumption-only model as much as possible to minimize the priors�e¤ect on

the comparison of the models. Since the means of the hidden state variable are equal to

the means of the consumption growth in each state, the priors of these means are the same

as in the consumption-only model. We also match the prior means of the total variance

of consumption growth with similar �atness. However, since the speci�cation allows for

idiosyncratic noise in consumption growth (�c"ct), we set both the mean of the variance of

the hidden state variable in each state and the mean of the variance of the noise component to

half of the prior mean of the total variance of consumption growth, with similar �atness. This

way, the total prior mean variance of consumption growth, is the same as in the consumption

only case. The priors for the transition probabilities are the same as in the consumption

only case. For � and � in the GDP growth equation, the prior mean is -0:2 for � and 1:2 for

�, and prior standard deviation is 0:45 for both. Finally, the prior mean of the idiosyncratic

component of the variance of GDP growth is set by matching the variance of the GDP growth
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APPENDIX: Table 7 - Priors

Table 7: The table shows the historical and look-ahead priors for the di¤erent models considered
in the paper. The parameters within a state (mean and variance) have Normal/Inverse Gamma
distributed priors, while the transition probabilities have Beta distributed priors. Note that �̂ij �
�ij
1��ij .

Historical priors
Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

� 0:9% 0:5% �1 1:0% 0:25% �1 1:0% 0:25%

�J �2:0% 0:5% �2 �0:5% 0:5% �2 �0:4% 0:5%

�3 �2:0% 1:5%

�2 (0:7%)2 (0:7%)2 �21 (0:5%)2 (0:5%)2 �21 (0:5%)2 (0:5%)2

�2J (1:0%)2 (1:0%)2 �22 (1:0%)2 (1:0%)2 �22 (1:0%)2 (1:0%)2

�23 (1:5%)2 (1:5%)2

� 0:05 0:05 �11 0:95 0:034 �11 0:95 0:034

�̂12 0:80 0:16

�̂21 0:80 0:16

�22 0:80 0:16 �22 0:75 0:19

�̂31 0:33 0:24

�33 0:40 0:20

Look-ahead priors
Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

� 0:63% 0:22% �1 0:68% 0:18% �1 0:68% 0:18%

�J �1:2% 0:25% �2 0:2% 0:5% �2 0:3% 0:5%

�3 �1:14% 0:5%

�2 (0:45%)2 (0:45%)2 �21 (0:36%)2 (0:36%)2 �21 (0:35%)2 (0:35%)2

�2J (0:55%)2 (0:55%)2 �22 (0:7%)2 (0:7%)2 �22 (0:7%)2 (0:7%)2

�23 (0:7%)2 (0:7%)2

� 0:05 0:05 �11 0:95 0:034 �11 0:95 0:034

�̂12 0:83 0:14

�̂21 0:67 0:24

�22 0:80 0:16 �22 0:75 0:19

�̂31 0:50 0:29

�33 0:33 0:24

in the post-war data.
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6.4 Time-Averaging of Consumption Data and Model Probabili-

ties

The aggregate consumption data is time-averaged, which has implications for the volatility

and autocorrelation structure of measured consumption growth. In particular, Working

(1960) shows that time-averaging of i.i.d. data leads to lower variance (the variance is

decreased by a factor of 1.5) and an autocorrelation of 0.25. Time-averaging can therefore

arti�cially lead us to conclude that consumption growth follows a non-i.i.d. process (e.g.,

as we would get in the 2-state model with persistent states). Further, Hall (1978) argues

theoretically and empirically that consumption growth is close to i.i.d. To ensure the rejection

of the i.i.d. model we document in the paper is not an artifact of the time-averaging, we

here assume the null hypothesis that consumption growth is in fact i.i.d., and remove the

autocorrelation induced by time-averaging by creating the following residuals:

�c;t = �ct � 0:25 ��ct�1: (11)

We then redo the �ltration exercise (parameters and models) and assign a prior probability

of the i.i.d. model of 0:95. Figure 13 shows that also in this case, even with the strong model

prior imposed, the i.i.d. model is rejected by the Bayesian agent about half-way through the

sample.

6.5 Model solution and pricing

Here we give the details for how the prices of the consumption and aggregate equity claim

in Section 4 are computed. At each point in time t, we price the equity claim given a set

of model parameters, which are set equal to the mean beliefs at the time. The i.i.d. 2-state

model, and the general 2- and 3-state models have parameters:

�(1) = f�1; �2; �1; �2; �11g
�(2) = f�1; �2; �1; �2; �11; �22g ;
�(3) = f�1; �2; �3; �1; �2; �3; �11; �12; �22; �23; �13; �33g ;

respectively. In addition, there is the probability that the i.i.d 2-state model is the correct

model, the probability that the general 2-state model is the correct model versus the residual

probability of the 3-state model being the correct model. We also set these probabilities as

60



Figure 13 - Model Probabilities and Time-Averaging of Consumption Data
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Figure 13: Model probabilities when assuming consumption growth is truly i.i.d. and removing the
e¤ect of time-averaging, as calculated by Working (1960).
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constants when the agent prices the equity claim. Denote these probabilities p1, p2, and

p3 = 1 � p1 � p2. Thus, there is a total of 25 parameters that all are estimated using the

particle �lter and realized consumption (and GDP) data in real time. These mean parameter

estimates will change at each time t, but we do not give the parameters time-subscripts to

highlight that they are assumed to be constant following the anticipated utility framework in

the pricing problem at each time t. In addition, there are the preference parameters 
;  ; �,

which are set to the values used in Bansal and Yaron (2004), and the leverage factor � and

the idiosyncratic dividend growth volatility �d. These parameters remain constant over the

sample. When solving for the price-dividend ratio, we can and do ignore the idiosyncratic

component of dividend growth.

First, we have to solve for the wealth-consumption ratio, PC. At each time t, the wealth-

consumption ratio is solved using the recursion:

PC
�
s
(2)
t ; ~s

(3)
t

�
= �E

�
e(1�
)�ct+1

�
1 + PC

�
s
(2)
t+1; ~s

(3)
t+1

���
jIt
�1=�

; (12)

where the wealth-consumption ratio at time t is a function of the state-variables s(2)t and

~s
(3)
t , and where It is the agent�s information set which includes the mean parameter values

used as constant parameters, as well as the mean state beliefs. The state-variable s(2)t is the

belief that the economy is in state 1 in the 2-state model. Remember that the states are still

hidden, even though all the parameters are set to constants, so this belief will have a support

of (0; 1). Similarly, ~s(3)t is the 2� 1 vector of state belief probabilities from the 3-state model
�the probability of being in state 1 and the probability of being in state 2.

In the model solution, the agent updates beliefs about s(2) and ~s(3) only by observing

realized consumption growth �he does not know which model is the true model, or which

state is the current state, so this uncertainty must be integrated out in the model solution.

Below is a conceptual algorithm for the model solution.32

1. Given a set of parameters, start with an initial guess of the function PC
�
s(2); ~s(3)

�
on

a grid for the 3 state variables, which all have support (0; 1).

2. For each value of s(2); ~s(3) on the grid, do points 3. �8. below:

32In actually solving the model, we employ numerical integration and not Monte Carlo simulation to �nd
the wealth-consumption ratio. We compute the price-dividend ratio by summing over zero-coupon dividend
claims. While we implement the model solution in this way for faster and more accurate model solution,
this additional level of detail is not necessary for conceptually understanding how prices are computed.
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3. Draw amodel (the i.i.d. 2-state mode, or the general 2-state or 3-state model) according

to the model probabilities p1, p2, and p3.

4. Draw the current state of this model (state 1, state 2 (or state 3)), using the state

belief for the current values in the grid for s(2)t or ~s(3)t . Note: this step is irrelevant for

the i.i.d. 2-state model.

5. Given the model and the state, draw a random standard normal shock "t+1, and com-

pute consumption growth as

�ct+1 = �M;j + �M;j"t+1; (13)

where the subscript M refers to the model and the subscript j refers to the state in

the same model. The parameters are assumed known and constant as discussed above.

6. Given observed log consumption growth (�ct+1) (the agent does not observe the shock

"), update the agent�s belief using Bayes�rule. When �nding s(2)t+1; condition on the

2-state model being the correct model, and when �nding ~s(3)t+1; condition on the 3-state

model being the correct model. See, e.g., Hamilton (1994) for how to update beliefs in

switching regime models such as the ones considered here. Note that one has to update

the belief for both models (s(2) and ~s(3)), even though in the simulation of consumption

growth we conditioned on one of the models, as the agent does not know the model.

7. Given s(2)t+1 and ~s
(3)
t+1 and the initial guess for PC, we have all we need to evaluate the

expression inside the expectation of Equation (12).

8. Repeat 3: � 7: many times and take the average of the di¤erent values calculated for
the expression inside the expectation of Equation (12). Use this average as an estimate

of the expectation in Equation (12). Store the resulting value for PC
�
s(2); ~s(3)

�
found

for the current place in the grid for s(2) and ~s(3).

9. Once 3. �8. has been implemented for all values of s(2) and ~s(3) on the grid, update

the function PC
�
s(2); ~s(3)

�
.

10. Iterate on 2. �9. until a suitable convergence criterion for the PC function has been

achieved.
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Points 1. �10. gives the wealth consumption ratio at time t. The pricing functional

PC
�
s
(2)
t ; ~s

(3)
t

�
must be computed in this way for each t, as the parameters will change at

each time t. This is the anticipated utility component of the pricing. Denote the price-

consumption ratio as a function of time t parameters as PCt
�
s
(2)
t ; ~s

(3)
t

�
.

The price-dividend ratio can be found similarly, by iterating on the below expression in

the same manner as above for each time t in the sample with its corresponding time t set of

parameter values:

PDt

�
s
(2)
t ; ~s

(3)
t

�
= E

24��e(��
)�ct+1(PCt
�
s
(2)
t+1; ~s

(3)
t+1

�
+ 1

PCt

�
s
(2)
t ; ~s

(3)
t

� )��1
�
1 + PDt

�
s
(2)
t+1; ~s

(3)
t+1

��
jIt

35 :
(14)

Finally, the returns to the equity claim are calculated as follows. For the return from

time t to time t+ 1:

1. Set s(2)t and ~s(3)t equal to the mean state beliefs at time t (after parameter uncertainty

is integrated out).

2. This gives the price dividend ratio at time t as Pt
Dt
= PDt

�
s
(2)
t ; ~s

(3)
t

�
.

3. Set s(2)t+1 and ~s
(3)
t+1 equal to the mean state beliefs at time t+ 1 (after parameter uncer-

tainty is integrated out).

4. This gives the price dividend ratio at time t+ 1 as Pt+1
Dt+1

= PDt+1

�
s
(2)
t+1; ~s

(3)
t+1

�
.

5. Next, using realized (in the data) consumption growth, obtain dividend growth as:

Dt+1

Dt

=

�
Ct+1
Ct

��
e�

1
2
�d+�d"t+1 ; (15)

where "t+1 is a draw from a standard normal distribution independent of everything

else. These simulated shocks are constrained to have mean zero and variance one over

the sample, such that ET
h
e�

1
2
�2d:t+1+�d"t+1

i
= 1 (in practice, extremely close to 1).

This is done to ensure that the level of the in-sample average equity return and equity

return volatility are not a¤ected by the (by chance) high or low draw of the idiosyncratic

component of dividends, or (by chance) high or low volatility of idiosyncratic dividend

growth.
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6. Given this, the return is calculated as:

Rt;t+1 =
Dt+1

Dt

�
Pt
Dt

��1�
1 +

Pt+1
Dt+1

�
. (16)
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