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1 Introduction

The development of the class of arbitrage-free dynamic termstructure models (DTSMs) ranks as one of the

most important achievements of modern asset pricing theory. This framework connects the cross-sectional

relation between bonds of different maturities to the evolution of the term structure, while maintaining

considerable scope for variation in modelling choices. Forexample the widely-used affine specifications,

first characterized by Duffie and Kan (1996), allow very general factor structures to govern term structure

dynamics.1 Theoretical advances in the study of these flexible, tractable models paved the way for an

explosion in empirical work, including exhaustive effortsto explore this class and pin down appropriate

specifications in pioneering work such as Dai and Singleton (2000) and Duffee (2002).2

Despite these efforts, a large subset of DTSMs remains relatively unexplored. In particular, high-

dimensional models – meaning roughly those having a larger number of factors than the traditional three

– are more difficult to investigate empirically because of the well-known “curse of dimensionality.” For

example a generic affine three-factor DTSM calls for more than twenty parameters, and specification re-

quirements grow rapidly with the size of the state space. High-dimensional models are therefore generally

difficult to identify and estimate.

In this paper, we studydimension-invariantDTSMs in which the number of parameters is independent

of the size of the state space. We build on the idea that the interest rate term structure responds to shocks of

many frequencies, as is evident from the numerous macroeconomic, monetary, and microstructure events

that impact bond prices. Many influential studies includingAng and Piazzesi (2003), Piazzesi (2005),

Gallmeyer, Hollifield, and Zin (2005), and Diebold, Rudebusch, and Aruba (2006) document these links

and relate a wide range of economic time series to models of the term structure.3 We pursue a standard

latent-state variables approach and build an empirically tractable model that permits an arbitrary number of

unobservable shocks, each operating at a different frequency and therefore impacting different parts of the

term structure.
1Important early contributions in the dynamic term structure literature include Vasicek (1977), Brennan and Schwartz (1979),

Cox, Ingersoll, and Ross (1985), Constantinides (1992), and Longstaff and Schwartz (1992). Duffie, Pan, and Singleton (2000) and
Duffie, Filipović, and Schachermayer (2003) progressively generalize the class of affine models. Leippold and Wu (2002) introduce
the quadratic class of arbitrage-free dynamic term structure models.

2Other notable empirical contributions include Balduzzi, Das, Foresi, and Sundaram (1996), Dai and Singleton (2002), and
Backus, Foresi, Mozumdar, and Wu (2001).

3See also Balduzzi, Bertola, and Foresi (1997), Rudebusch (2002), Ang, Piazzesi, and Wei (2004), Bekaert, Cho, and Moreno
(2005), Hördahl, Tristanoi, and Vestin (2006), Rudebusch, Swanson, and Wu (2006), Ang, Dong, and Piazzesi (2007), Gallmeyer,
Hollifield, Palomino, and Zin (2005), Heidari and Wu (2009),and Lu and Wu (2009).
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The basic building block of our model is a cascade for short-rate dynamics. We posit a lowest-frequency

component that provides a central tendency to which the next-lowest factor mean reverts. The dynamics of

the remaining factors, which may be arbitrary in number, then follow a recursion whereby each component

mean-reverts around the next-lowest frequency in the cascade. We take the highest-frequency element of

this cascade to be the short rate, which implies that all lower-frequency factors act as state variables for the

term structure. The approach thus substantially extends Balduzzi, Das, and Foresi (1998), who develop a

two-factor stochastic central tendency model.

The cascade offers several benefits in implementing high-dimensional models. First, factors naturally

separate according to their rates of mean-reversion, eliminating the need to rotate factors and normalize

parameters as is typical in general affine models.4 Second, by adding additional functional form assump-

tions to specify the progression of mean-reversion rates, volatilities, and risk premia across frequencies, the

number of parameters required for identification is independent of the number of factors. In the simplest

case, which we take as our base model, the mean-reversion frequencies follow a geometric progression. As

few as five parameters then govern the term structure and its dynamics, irrespective the number of factors.

This dimension-invariance feature allows us to estimate low and high-dimensional models with equal ease

and accuracy.5

To assess empirical performance, we use 13 years of data on a broad cross-section of interest-rate se-

curities: six U.S. dollar LIBOR series with maturities fromone to 12 months and nine swap rates with

maturities from two to 30 years. We estimate cascade models with from one to 15 factors, and find that the

15-factor model significantly outperforms lower-dimensional models both statistically and economically.

Notably, the high-dimensional model overcomes several important challenges that have been observed in

prior literature. First, Dai and Singleton (2002) show thatstandard three-factor models generate substan-

tially higher cross-correlations between bonds of different maturities than are observed in the data, implying

4Dai and Singleton (2000) provide a complete discussion of factor rotation and normalizations in empirical implementation of
DTSMs.

5Ease of implementation has not historically been a hallmarkof empirical research on DTSMs. For recent discussion of the
issues commonly faced, see Duffee and Stanton (2007) and Duffee (2009). Of particular importance is the need to carry outa
highly nonlinear optimization over a large parameter spacethat in many cases is poorly identified. Recently, Joslin, Singleton, and
Zhu (“JSZ,” 2010) provide a normalization that permits convenient two-step estimation of general affine models. Their approach
concentrates out of the likelihood parameters that can be isolated in the mean and autoregressive dynamics of observable factors
under the objective density. The method offers the greatestcomputational benefit when there are no restrictions on riskpremia or
objective-density factor dynamics, since in this case the mean and autoregressive parameters under the risk-neutral and objective
densities are unrelated. In our case where risk premia and factor dynamics are constrained in order to obtain dimension-invariance of
the parameter vector, estimation is already straightforward and there is no particular computational benefit of the JSZnormalization.
Their approach thus provides an advance in the implementation of maximally flexible affine DTSMs, among other contributions,
while we develop dimension-invariant specifications and study empirically tractable high-dimensional DTSMs.
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that sources of cross-sectional variation are not captured. Our high-dimensional DTSMs overcome this dif-

ficulty, accurately reflecting the cross-correlations observed in the data. Second, Duffee (2002), Ang and

Piazzesi (2003), Bali, Heidari, and Wu (2009) and others show that in many cases traditional DTSMs fore-

cast future interest rates no better than a simple random walk. The 15-factor model significantly outperforms

both the random walk and an autoregressive specification in predicting interest rate movements from one to

twelve-month maturities. Third, the mean absolute pricingerrors of the 15-factor model are less than one

basis point, an order of magnitude smaller than its three-factor counterpart and very close to the range of

common bid-ask spreads.

The cascade model is unique in the literature in offering a cross-sectional fit that is for all practical

purposes perfect, while also maintaining dynamic consistency and arbitrage-free pricing. In comparison,

while the fitting errors of traditional three-factor modelscan be small relative to observed yields, they are

nonetheless typically large relative to the tiny bid ask spreads in the highly liquid fixed income markets.

In many applications such as fixed-income option pricing, this mismatch is problematic because derivative

contracts are written on observed rather than model-implied interest rates. As a consequence the option-

pricing performance of standard arbitrage-free DTSMs is poor as shown by Dai and Singleton (2002), Li

and Zhao (2006), and Heidari and Wu (2009). Alternative approaches, such as the forward rate models of

Ho and Lee (1986), Hull and White (1993), and Heath, Jarrow, and Morton (1992), take observed interest

rates as given and price options based exclusively on the volatility specification. The forward-rate models

begin by fitting the current cross-section perfectly, but typically imply strong restrictions on dynamics

leading to frequent recalibrations when the implications are not realized. Ideally, one would like a single

unified framework to match the cross-section perfectly while also maintaining dynamic consistency. The

high-dimensional cascade achieves these objectives.6

One particularly important application of our model is yield-curve “stripping.” In the fixed income

markets, financial institutions including banks and the Federal Reserve use stripping procedures to obtain

the zero-coupon term structure and forward-rate curve fromobserved Treasury or swap rates. Stripped

forward curves are a necessary building block for pricing a variety of instruments, and are needed for

example as an input when using a forward-rate model. Common methods of stripping include ad hoc piece-

wise linear approximation and the “yield-curve models,” developed by McCulloch (1975), Nelson and

Siegel (1987), Svensson (1995) and others. A problem, however, is that standard yield-curve models are

6We show how the model can be combined with volatility specifications in the final section of the paper, but leave empirical
investigation of this extension for future research.
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not consistent with absence of arbitrage (Filipović (1999)). Recent literature therefore places new emphasis

on arbitrage-free approaches to yield-curve stripping, asin Christensen, Diebold, and Rudebusch (2008).

An additional difficulty for standard stripping proceduresis that the loss of information from compressing a

large number of maturities into a low-dimensional factor structure can be significant (Cochrane and Piazzesi

(2008)). Our cascade model overcomes these problems, and istherefore an ideal candidate to provide

stripped forward-rate curves. The high dimensionality accommodates flexibility and near-perfect fit across

the diverse term-structure shapes encountered in the data.Moreover, the smooth stripped term structure and

forward rates of the model are consistent with absence of arbitrage.

Relating to prior work, the extreme parsimony of our model and invariance of the number of parameters

to the size of the state space builds on Calvet and Fisher (2001, 2004, 2007, 2008). This earlier research

models the volatility term structure using a multiplicative cascade, whereas the additive stochastic-tendency

cascade we develop here fits interest rate dynamics and provides analytical tractability.

Our paper advances the concept of “dimension-invariance” in two ways. First, we develop term-

structure models in which the number of parameters is invariant to the number of factors. Second, we

provide conditions under which, for a givenfixedparameter vector, the sequence of DTSMs obtained by in-

creasing the number of factorsn weakly converges to a well-defined, infinite-dimensional DTSM. We thus

build a bridge between standard, finite-dimensional DTSMs and the non-degenerate, infinite-dimensional

term structures developed using the mathematics of random fields by Kennedy (1994, 1997), Goldstein

(2000), and Santa-Clara and Sornette (2001).7 Our models are therefore simple and parsimonious, but yet

can approximate arbitrarily closely the rich dynamics of infinite-state frameworks.

The remainder of the paper is organized as follows. Section 2develops the general cascade term struc-

ture model. Section 3 provides assumptions that produce dimension invariance. Section 4 describes the

data, estimation methodology, and estimation results. Section 5 compares the performance of low- and high-

dimensional models. Section 6 carries out a variety of specification tests. Section 7 discusses dimension-

invariant extensions to stochastic volatility and time-varying risk premia. Section 8 concludes. All proofs

are in the Appendix.

7See also Collin-Dufresne and Goldstein (2003). Related empirical applications include Longstaff, Santa-Clara, and Schwartz
(2001) and Han (2007).
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2 A Cascade Model of the Interest Rate Term Structure

We consider a filtered complete probability space{Ω,F ,P,(Ft)t≥0} that satisfies the usual technical con-

ditions. LetP(t,τ) denote the time-t value of a zero-coupon bond with one dollar par value and expiry date

t + τ and letrt denote the instantaneous interest rate defined by continuity:

rt ≡ lim
τ↓0

− lnP(t,τ)
τ

. (1)

2.1 The multifrequency cascade

We model the short-term interest rate under the statisticalmeasureP via ann-factor cascade. LetWt =

(W1,t , · · · ,Wn,t)
⊤ denote a standard Wiener process with independent components, and letθr denote the

long-run level of the short rate. We specify the factors byx0,t = θr and the cascade of diffusions:

dxj ,t = κ j (x j−1,t −x j ,t)dt+σ jdWj ,t , j = 1,2, · · · ,n. (2)

The first componentx1,t is a standard mean-reverting diffusion, revolving around the long-run meanθr .

Each levelx j ,t higher in the cascade mean-reverts around the levelx j−1,t below. The short interest rate is set

equal to the last factor:

rt = xn,t. (3)

The parametersκ j control the speed of adjustment of the factors. We assume that κ1 < κ2 < · · · < κn, so the

factors have shorter degrees of persistence asj increases.

We denote byXt ≡ (x1,t · · ·xn,t)
⊤ the n-dimensional state vector. The statistical dynamics in matrix

notation are

dXt = κ(θ−Xt)dt+Σ1/2dWt , (4)

where the mean-reversion speed matrixκ has diagonal elementsκ j , j = κ j , the off-diagonal elementsκ j , j−1 =

−κ j , and all other elements are zero. The long-run mean vectorθ has identical elements equal toθr , andΣ

is the diagonal matrix with elementsσ2
1, ...,σ2

n. We consider stochastic volatility extensions in Section 7.

In general hidden-state models such as the affine models of Duffie and Kan (1996) and the quadratic

models of Leippold and Wu (2002), the mean-reversion and covariance matrices are constrained only by

technical conditions. Many parameters are not easily identifiable, and factors can rotate making their eco-

nomic meaning ambiguous. As a consequence, researchers must carry out careful specification analysis as
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in Dai and Singleton (2000) to resolve identification issues. The cascade structure in (2), or equivalently the

block diagonal form ofκ in (4), eliminates factor rotation by ranking the factors based on their frequencies.

To understand how the different frequency components contribute to movements of the instantaneous

interest rate, we derive an alternative representation as asum of stochastic integrals.

Proposition 1 (Factor representation of the short rate). Under the n-factor cascade in (4), the instanta-

neous interest rate can be written as the sum of weighted integrals of previous shocks from the n frequencies,

rt = θr +
n

∑
j=1

a j(t)(x j ,0−θr)+
n

∑
j=1

σ j

∫ t

0
a j(t−s)dWj ,s. (5)

Each response function aj(τ) is the convolution product of exponential probability density functions:

a j(τ) = (K j ∗ ...∗Kn)(τ)/κ j , (6)

where∗ denotes the convolution operation, and Ki(τ) = κie−κiτ if τ ≥ 0 and Ki(τ) = 0 if τ < 0.

A response functiona j(τ) quantifies the impact of a unit shock from factorj at timet − τ on the instanta-

neous interest ratert = xn,t . We observe thata j(τ) depends on bothj andn, but for expositional simplicity

we keep this dependence implicit throughout the main text.

The response functionsa j(τ) are rescaled convolution products of exponential densities, and therefore

take positive values for everyτ∈ (0,∞). The functionan(τ) = e−κnτ, which quantifies the response to shocks

from the highest frequency componentWn,s, starts at one whenτ = 0 and decays exponentially with the time

horizon, where the decay speed is governed byκn. This property is consistent with the assumption that the

short rate is equal to thenth factor: rn,0 = xn,0.

The response to the(n−1)th factor is determined by convolving two exponential densities:

an−1(τ) =
(Kn−1∗Kn)(τ)

κn−1
=

κn

κn−κn−1

(
e−κn−1τ −e−κnτ) . (7)

The response atτ = 0 is zero,an−1(0) = 0, indicating that lower-frequency components are not immediately

incorporated into the short ratert = xn,t . The response function increases for a period of time, reaches a

maximum atτn−1 = (lnκn− lnκn−1)/(κn−κn−1), and then decreases toward zero.

The response functionsa j(τ) corresponding to shocks of lower frequencies are obtained through con-

volutions of more exponential densities, which can be solved in closed form.
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Proposition 2 (Response functions). For all j < n, the response functions aj(τ) are hump-shaped and

their maximum response horizons are monotonically decreasing with j. The functions satisfy the closed-

form expressions:

a j(τ) =
n

∑
i= j

αi, jκie
−κiτ, where αi, j =

κ j · · ·κn

κiκ j ∏n
k= j ,k6=i (κk−κi)

. (8)

Furthermore,

0≤
n

∑
j=1

a j(τ) ≤ 1 (9)

for all τ ≥ 0.

The humped shape of the response functionsa j(τ), j < n, is a direct result of the cascade. Instantaneously,

only the highest-frequency shockWn,t enters the short rate. A lower-frequency shock impacts the short-

rate only by first affecting dynamics of the next highest-frequency factor, which then must impact the next

component, and so on. As a consequence, lower levels of the cascade impact the short rate at progressively

longer horizons. Consequently, each factor should drive different segments of the term structure.

2.2 Risk premia and the term structure of interest rates

We assume that there are no arbitrage opportunities, which implies the existence of a risk-adjusted measure

Q under which zero-coupon bond values are given byP(t,τ) = E
Q
t [exp(−∫ t+τ

t rsds)]̇. We allow each factor

to have its own potentially time-varying price of riskγ j ,t, and specifyQ by the Radon-Nikodým derivative:

dQ

dP

∣∣∣∣
t

≡
n

∏
j=1

exp

(
−
∫ t

0
γ j ,sσ jdWj ,s−

1
2

∫ t

0
γ2

j ,sσ
2
j ds

)
.

The state dynamics of the factorsx j ,t under the risk-neutral measure are therefore:

dxj ,t = −γ j ,tσ
2
j dt+κ j (x j−1,t −x j ,t)dt+σ jdWQ

j ,t , (10)

following from Girsanov’s Theorem.

We permit risk premia to be affine inXt :

γ j ,t = γ j +λ⊤
j Xt , (11)

whereγ j is a scalar andλ j ann×1 column vector, which provides for convenient pricing. Thedynamics of

the stateXt can be written in vector notation:

dXt = (µ−κ∗Xt)dt+Σ1/2dWQ
t ,

7



whereµ= (κ1θr − γ1σ2
1,−γ2σ2

2, · · · ,−γnσ2
n)

⊤, Λ is a matrix with row vectorsλ⊤
1 , · · · ,λ⊤

n , andκ∗ = κ+ΣΛ.

The state dynamics can equivalently be written:

dXt = κ∗(θQ−Xt)dt+Σ1/2dWQ
t , (12)

whereθQ = (κ∗)−1µ is the long-run mean of the state vector underQ.

Bond prices are easily solved.

Proposition 3 (Zero-coupon bond prices). The price at date t of a zero-coupon bond with maturityτ is

given by

P(Xt ,τ) = exp[−b(τ)⊤Xt −c(τ)]. (13)

The coefficients b(τ) and c(τ) satisfy the system of ordinary differential equations:

b′ (τ) = en−κ∗⊤b(τ) , (14)

c′ (τ) = b(τ)⊤ κ∗θQ− 1
2

b(τ)⊤ Σb(τ) , (15)

with initial conditions b(τ) = 0 and c(τ) = 0, whereen denotes a vector with the value one in the nth

position and zeros elsewhere.

In the special case of constant risk premia:γ j ,t = γ j for all j, the functions bj(τ) and c(τ) are given by

b j (τ) =
∫ τ

0
a j(τ)dτ =

n

∑
i= j

αi, j

(
1−e−κiτ

)
, (16)

c(τ) = θrκ1

n

∑
i=1

αi,1

(
τ− 1−e−κiτ

κi

)
−

n

∑
j=1

γ jσ
2
j

n

∑
i= j

αi, j

(
τ− 1−e−κiτ

κi

)

−
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

αi, jαk, j

(
τ− 1−e−κiτ

κi
− 1−e−κkτ

κi
+

1−e−(κi+κk)τ

κi +κk

)
. (17)

Furthermore, the long-run level of the state vector underQ is θQ =(θr −γ1σ2
1/κ1,θr −γ1σ2

1−γ2σ2
2/κ2, ...,θr −

∑n
i=1 γiσ2

i /κi)
⊤.

The proposition provides simple pricing under general assumptions. In the general case we easily check

that the price loading satisfies:

b(τ) = (κ∗⊤)−1en− (κ∗⊤)−1e−τκ∗⊤
en.

The interceptc(τ) can then be computed by numerical integration of (15).
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When risk premia are constant, the bond price is available analytically.8 The price loadingsb j (τ) on the

factorsx j ,t are integrals of the response functionsa j(τ), consistent with the fact that the response functions

describe the effect of a shock tox j ,t on future short rates. The interceptc(τ) has three components. The first

is proportional to the long-run meanθr of the state vector. The second depends on the risk premiaγ j and

therefore represents risk adjustments. The final term is driven by convexity adjustments, appearing as the

quadratic form in equation (15). We show in the Appendix thatthe functionc(τ) simplifies to

c(τ) = y∞τ+
n

∑
i=1

ci
1−e−κiτ

κi
−

n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

αi, jαk, j
1−e−(κi+κk)τ

κi +κk
, (18)

where

y∞ = θr −
n

∑
j=1

σ2
j

κ2
j

(
γ jκ j +

1
2

)
(19)

andci = −θrκ1αi,1 + ∑i
j=1αi, jσ2

j

(
γ j +1/κ j

)
. In the absence of risk premia (γ j = 0), the yield on a zero-

coupon bond with a distant maturity,y∞ = limτ→+∞[b(τ)⊤Xt + c(τ)]/τ, is lower than the long-run level of

the short rate,θr = limτ→+∞ rt+τ, due to the convexity termsσ2
j /(2κ2

j ); the average yield curve is corre-

spondingly downward-sloping. If the risk premium coefficients γ j are sufficiently negative, however, the

long run yieldy∞ is larger thanθr , and the average term structure is upward sloping.

The instantaneous forward rate is affine in the state vector:

f (Xt ,τ) ≡−∂ lnP
∂τ

(Xt ,τ) = b′ (τ)⊤Xt +c′(τ). (20)

In the case of constant risk premia, we know from Proposition3 that the forward rate loadings and the

short-rate response coefficients are identical:b′(τ) = a(τ), indicating a tight correspondence between the

cross-section of the forward rate curve and time-series dynamics of the short rate.9 If on the other hand

we allow the presence of time-varying risk premiaΛ 6= 0, the coefficientb′(τ) = e−τκ∗⊤
en generally differs

from a(τ) = e−τκ⊤
en. The correlation between forward rates and expected futureshort rates is therefore

8As is noted in the proof of the proposition, closed form pricing is more generally available when the affine risk premiaγ j,t
defined in (11) depend only on lower-frequency state variablesxi,t , i ≤ j .

9As in standard dynamic term structure models, this result isconsistent with the fact that a form of the expectations hypothesis
holds when risk premia are constant. Similar to Fama and Bliss (1987), consider regressing the future short ratert+τ on a constant
and the instantaneous forward rateft,τ, i.e.

rt+τ = φ0 +φ1 ft,τ +ξt .

The expectations hypothesis holds ifφ0 = 0 andφ1 = 1 and the biased expectations hypothesis holds ifφ0 6= 0 with φ1 = 1. In our
model, the forward rate and the expected short rate satisfy:

E(rt+τ|Xt) = a(τ)⊤Xt +[1− ι⊤a(τ)]θr ,

ft+τ = b′(τ)Xt +c′(τ)

whereι = (1, ...,1)⊤. When risk premia are constant, we know thatb′(τ) = a(τ) and thereforeφ1 = 1. The interceptφ0 generally
differs from zero due to both convexity terms and risk premia. See Piazzesi (2010) for a general discussion.
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imperfect. Our framework thus allows for considerable flexibility in the link between forward rates and

expected future spot rates, depending on the specification of risk premia. Identifying risk premia typically

requires longer time series as in Cochrane and Piazzesi (2005), and therefore the benefits of including this

added richness in the model will generally depend on the particular application.

3 Dimension-Invariant Term Structures

This section develops a version of the cascade model in whicha fixed and finite parameter vector describes

the dynamics of the term-structure for an arbitrary number of factors.

3.1 A Dimension-Invariant Specification

When the rates of mean reversionκ j , volatilities σ j , and risk premiaγ j are specific to each factor, then-

factor cascade requires 3n+1 parameters:(θr ,κ1, · · · ,κn,σ1, · · · ,σn,γ1, · · · ,γn). In order to obtain a model

where the number of parameters is independent of the size of the state space, we choose parsimonious

functional forms to describe howκ j , σ j , andγ j depend on the positionj in the cascade.

To guide our choice of the frequency specification, we note that the progression of the most liquid

maturities observed in the market is approximately geometric. For example, the most commonly quoted

maturities for interest rate swaps are at two, three, five, ten, fifteen, and thirty years, with increasingly

wider spacing at longer maturities. That is, each liquid maturity is a multiple of between 1.5 and 2 times

the next lowest liquid maturity. Given that these most liquid maturities endogenously arise in the market,

we may presume that their spacing in some sense reflects an optimal allocation that balances the capture

of information across different parts of the yield curve. This in turn suggests that a geometric spacing of

frequencies in the cascade could be effective.

Our base model therefore assumes that the sequence of mean reversion rates follows a geometric pro-

gression:

κ j = κ1b
j−1, j = 1,2, · · · ,n, (21)

whereκ1 determines the mean reversion speed of the lowest frequencycomponentx1,t and the coefficient

b > 1 controls the spacing between different frequency components. Two parameters thus control the mean

reversion speeds of all factors.

10



To verify our intuition about the regions of the term structure that each factor will affect under (21),

we examine the response functionsa j(τ). These have a particularly appealing form, as shown in Figure 1

for a numerical example withn = 15 components having durations ranging from one week to 30 years.

Except for the highest frequency which has exponential decay, all response functions are hump-shaped

with maxima progressively increasing and approximately evenly spaced on a log scale, consistent with the

progression of liquid maturities observed in the market. Inthe Appendix we explain in greater detail why

thea j(τ) are approximately translated versions of each other in log scale.

Building on the idea that each of the factors in the model should carry a roughly equal amount of

information relative to its neighbors, our second assumption is that factor volatilities are constant across

components. Given this choice, it is natural to also assume that risk premia are identical:

σ j = σ1, and γ j = γ1 for all j = 2, · · · ,n. (22)

The long-run level of the first factor under the risk-adjusted measure isθQ
r = θr − γ1σ2

1/κ1. In the empirical

work, we find it convenient to estimateθQ
r and back out the price of risk

γ1 = κ1(θr −θQ
r )/σ2

1.

The term structure and its dynamics are fully determined foran arbitrary number of factors by five parame-

ters
(

κ1,b,σ1,θr ,θQ
r

)
∈ (0,∞)× (1,∞)× (0,∞)×R2.

We investigate the empirical performance of this model in Sections 4-5, and test the functional form as-

sumptions in Section 6. In Section 7, we discuss dimension-invariant extensions that permit time-varying

risk premia and stochastic volatility.

Under these assumptions, the long-term forward rate

f∞ = y∞ = θr −
σ2

1

κ2
1

[
γ1κ1

1−b−n

1−b−1
+

1−b−2n

2(1−b−2)

]
, (23)

is higher than the short rate if the risk premiumγ1 is sufficiently negative to overcome the convexity effect,

−γ1 > (1+b−n)/[2κ1(1+b−1)]. We also observe that for largen,

f∞ −→ θr −
σ2

1

κ2
1

[
γ1κ1

1−b−1
+

1
2(1−b−2)

]
.

This suggests that the cascade converges, as we now investigate.
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3.2 Limiting Behavior

We give conditions under which both the short rate and term structure weakly converge as the number of

factorsn grows. Using the property of the response functions in (9), we know thata j(τ) ≤ 1 and thus

a2
j (τ) ≤ a j(τ). The unconditional variance of the instantaneous interestrate therefore satisfies:

Var(rt) =
n

∑
j=1

σ2
j

∫ ∞

0
a2

j (s)ds≤
n

∑
j=1

σ2
j

∫ ∞

0
a j(s)ds=

n

∑
j=1

σ2
j

κ j
. (24)

Using (21) and (22), we can rewrite the upper bound as

Var(rt) ≤
σ2

1

κ1

1−b−n

1−b−1
. (25)

Therefore, as long asκ1 > 0 andb> 1, the unconditional variance of the instantaneous interest rate remains

bounded asn → ∞. Consider an arbitraryT > 0, and letL2 denote the Hilbert space of adapted square

integrable processes defined on[0,T].

Proposition 4 (Convergence of the term structure). Consider a fixed set of parameters(κ1,b,σ1,θr).

When the number of factors in the cascade n→ ∞, the sequence of short rate processes rn,t = xn,t converges

in L2 to a limit process with continuous sample paths and a finite variance. When the parameterθQ
r is also

fixed, the term structure of zero-coupon bond yields also converges in L2 as n→ ∞.

Convergence holds more generally when the volatilitiesσ2
j are heterogeneous across frequencies and satisfy

∑∞
j=1σ2

j/κ j < ∞, under the maintained assumptions that (21) holds andγ j = γ for all j.

We emphasize two implications of the convergence result. First, the proposition builds a bridge be-

tween standard, finite-factor DTSMs and the infinite-factormodels described using the mathematics of ran-

dom fields by Kennedy (1994,1997), Goldstein (2000), and Santa-Clara and Sornette (2001). This bridge

is useful because our model can be implemented using very simple empirical methods, yet approximates

arbitrarily closely the rich dynamics of genuinely infinite-state term structures. Second, convergence guar-

antees that as we add factors a non-degenerate limit does in fact exist. Thus in empirical work, we expect

that our parameter estimates and estimated likelihood willconverge as we increase the number of factors.

We are now in position to estimate with confidence our first dimension-invariant DTSM.
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4 Data and Estimation

We estimate the model on a panel of U.S. dollar LIBOR and swap rates downloaded from Bloomberg. The

LIBOR have maturities of one, two, three, six, nine, and 12 months, and the swap rates have maturities

of two, three, four, five, seven, ten, 15, 20, and 30 years. Thedata are weekly (Wednesday) closing mid-

quotes spanning 13 years from January 4, 1995 to December 26,2007. This gives a total of 678 weekly

observations for each series.

4.1 Summary statistics of LIBOR and swap rates

The LIBOR are simple interest rates that relate to the zero-coupon bond prices by

LIBOR(Xt ,τ) =
100

τ

(
1

P(Xt,τ)
−1

)
, (26)

where the maturityτ follows actual/360 day-count convention, starting two business days forward. The

swap rates relate to the zero-coupon bond prices by

SWAP(Xt ,τ) = 100h× 1−P(Xt,τ)
∑hτ

i=1P(Xt , i/h)
, (27)

whereτ denotes the swap maturity in years andh denotes the number of payments per year. The swap

contracts make semi-annual payments (h = 2) and follow 30/360 day-count convention.

In Table 1, we report for each series the sample mean, standard deviation, skewness, kurtosis, and

weekly autocorrelations of order 1, 5, 10, and 20. The average term structure is upward-sloping. The

interest rates of all maturities exhibit small skewness andexcess kurtosis. They are also highly persistent

with first-order autocorrelations ranging from 0.9885 to 0.999.

Panel A of Figure 2 illustrate the time series of the interestrates. The short-term LIBOR started at 6%

in 1995, varied between 5 and 6% in the 1990s, dropped to about1% in 2003, and moved upward from

mid-2004 to 2006. Panel B plots the term structure of the LIBOR/swap rates at different dates, showing a

wide variety of shapes including upward- and downward-sloping, hump-shaped, and flat. The data should

therefore provide a meaningful challenge.

4.2 Estimation and likelihood tests

We cast the dimension-invariant DTSM into a state space formand estimate the parameters using quasi-

maximum likelihood. The state propagation equation is a discrete-time analog of the statistical dynamics
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(4):

Xt+1 = A+ΦXt +
√

Σxεt+1, (28)

where∆t = 1/52, Φ = exp(−κ∆t), In denotes ann-dimensional identity matrix,A = (In−Φ)θ, {εt+1} is

i.i.d. N (0, In), andΣx = σ2
1∆tIn.

The measurement equations are built from observations of LIBOR and swap rates:

yt = h(Xt)+et, (29)

whereyt denotes the data,h(Xt) denotes model values of the LIBOR and swap rates as a functionof the state

Xt , andet denotes a vector of measurement errors. We assume that the measurement errors are normally

distributed iid random variables with zero mean and varianceσ2
e.

In systems where the state variables are Gaussian and the measurement equations are linear, the Kalman

(1960) filter provides efficient least-squares updating. Inour application, the state propagation equation (28)

satisfies Gaussian linearity, but the measurement equations are nonlinear functions of the state variables. We

therefore use the unscented Kalman filter as described in theAppendix to obtain quasi-maximum likelihood

estimates of the parameter vector(κ1,b,σ1,θr , ,θQ
r ,σ2

e)
⊤, composed of the five model parameters and the

pricing error varianceσ2
e.

Using this procedure, we estimate models in which the numberof frequency componentsn range from

one to fifteen. Table 2 reports parameter estimates, standard errors, and the maximized log likelihood for

the 15 models. Withn = 1 the model is equivalent to Vasicek (1977) and has no scalingparameterb. All

other models have the same number of parameters regardless of the number of frequencies. Comparing

the parameter estimates asn varies helps to build intuition about the model. The estimates for the mean-

reversion speed of the lowest frequency componentκ1 are similar acrossn. The estimation thus identifies

low-frequency movements first, and as we add factors higher frequencies are captured as well. The es-

timated scaling parameterb falls with n, implying a finer frequency spacing as we add factors, which is

intuitive. Finally, the measurement error varianceσ2
e declines withn, suggesting that fit improves as we add

factors. Confirming this result, the log likelihood (L) rises monotonically with the number of frequencies.

The likelihood increase is rapid initially but levels off aswe add more factors, consistent with the weak

convergence demonstrated in Section 3.

Focusing on the best-performing 15-factor model, the lowest frequency isκ1 = 0.0572, corresponding

to a time horizon (1/κ1) of about 17.5 years. The scaling coefficientb = 1.74 gives the highest frequency
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a mean-reversion speed of about two days. The estimate for the statistical long-run mean is close to zero,

and the risk-neutral mean is 5.59%. Given the parsimony of the model and the large amount of data, all

parameters are estimated with small standard errors in all specifications.

To assess the statistical significance of the improvement infit shown by the 15-factor model, we use

the Vuong (1989) test, a standard method to assess the significance of the likelihood difference between

two non-nested models. The Appendix provides details of thetest. We calculate the Vuong statistic for the

difference in likelihood between the 15-factor model and each of the other 14 models, and report the results

in the last column of Table 2. Asymptotically, the statistichas a standard normal distribution, and the large

values of the statistics indicate rejection at the 1% level of the hypothesis that the 15-factor model has a

lower likelihood than the comparison models. The fit of the 15-factor model is thus significantly better than

for all lower-frequency models.

5 Comparing High- versus Low-Dimensional Models

We compare other aspects of the performance of high- versus low-dimensional specifications, both in- and

out-of-sample. To simplify exposition, we will refer to the15-factor cascade as the high-dimensional model

and the three-factor cascade as the low-dimensional benchmark.

5.1 In-sample fit and yield curve stripping

Table 3 reports the summary statistics of the pricing errorsfrom the two representative models. The sum-

mary statistics of the pricing errors from the three-factormodel in panel A are similar to those reported

in the literature for typical three-factor models. The rootmean squared error averages over 6 basis points.

Since the bid-ask spreads for swap rates average around halfto one basis point, these pricing errors although

small are economically significant. By contrast, the 15-factor model fits observed interest rates to near per-

fection, with a root mean squared pricing error of less than one basis point and explained variations close

to 100% for all series.

An important practical application of our model is to generate stripped yield curves from swaps and

coupon bonds. Typically, constructing a forward-rate curve from a discrete number of observations of

coupon bonds or swap rates involves choosing a functional form to link the forward rates across and between

different observed maturities. Common basis functions include polynomials (Chambers, Carleton, and
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Waldman (1984)), cubic splines (McCulloch (1975) and Litzenberger and Rolfo (1984)), step functions

(Ronn (1987)), piece-wise linear specifications (Fama and Bliss (1987)), and exponentials (Nelson and

Siegel (1987) and Svensson (1995)).

Among these approaches, the exponential functional forms of Nelson and Siegel (1987) and Svensson

(1995) have become popular choices in the literature and arewidely used to generate data used in a variety

of studies (e.g., Gurkaynak, Sack, and Wright (2006)). A difficulty, however, is that the original Nelson-

Siegel basis functions cannot be made consistent with absence of arbitrage under any interest rate dynamics

(Filipović (1999)). In using data generated by such a stripping procedure, Cochrane and Piazzesi (2008)

therefore offer the strong caveat that, “this functional form cannot be generated by standard yield curve

models. Since the asymptotic (n→∞) forward rate and yield vary over time, there is an asymptotic arbitrage

opportunity.”

Christensen, Diebold, and Rudebusch (2008) propose a modification of the original Nelson and Siegel

approach to make it consistent with a three-factor dynamic term structure model. While the three-factor

structure does capture major variations of the yield curve (Diebold and Li (2006)), the remaining fitting

errors can be economically significant and the functional forms overly restrictive in some instances. Indeed,

Cochrane and Piazzesi (2008) argue that the loss of information can be substantial even when using the

six-factor Svensson model to compress the original data points described by fifteen separate maturities.10

They further explain that because the fit is approximate, “Yield curves will be evaluated by how well they

match the functional form, not necessarily how well they match the underlying data.”

Our approach solves all of these problems, permitting near-perfect arbitrage-free yield-curve stripping

for an arbitrary number of factors. Following the forward rate expression (20), the basis functions for the

forward rate curve are the response functions{a j(τ)}n
j=1. The factors{x j ,t}n

j=1 act as time-varying weights

for the basis functions, and the rich state space provides the flexibility to match closely virtually all observed

term structure shapes.

Some of the features of a standard stripping approach versusour procedure can be seen in Figure 3. In

Panel A, we show the standard method used in industry of assuming a piece-wise constant step function for

the forward rate and backing out the levels of the steps sequentially from low to high maturity. The stripped

forward rates from our model are shown in Panel B, calculatedusing the forward-rate functionf (X̂t ,τ),
10They comment, “Regressions using 15 maturities on the righthand-side, generated from a six-factor model, are obviously

hopeless.” Further, “because excess return forecasts imply multiple differences of the underlying price data... small amounts of
smoothing have the potential to lose a lot of information in forecasting exercises.”
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whereX̂t denotes the filtered state values at each datet. While both approaches match the observed LIBOR

and swap rates well, our model-generated curves offer important advantages over the piece-wise constant

approach. In particular, our forward curves are dynamically consistent and exclude arbitrage opportunities.

The piece-wise constant assumption by design matches observed rates exactly. However, the discontinuities

in the forward curves indicate potentially large mispricing for any maturities not explicitly used in the

construction of the forward curves. These discontinuitiescan induce instabilities when used as inputs to

the forward rate model of Heath, Jarrow, and Morton (1992). In this sense, our dynamic term structure

model provides a good starting point for the interest-rate option pricing literature by generating smooth,

dynamically consistent forward rate curves that match to near perfection the cross-section of observed

LIBOR and swap rates.

5.2 Cross-correlations among different interest rate series

When measuring the cross-correlations between changes in non-overlapping forward rates, Dai and Sin-

gleton (2003) find that low-dimensional term structure models typically imply much higher correlations

than those estimated from the data. Intuitively, a low-dimensional model captures the systematic, common

movements in the interest rate term structure. By design, interest rate fair values built purely from these

common movements show high cross-correlation. With a high-dimensional structure, our model has the

promise of generating interest rate fair values that match the cross-correlations observed in the data.

To measure cross-correlations between non-overlapping forward rates, one must first strip the swap

rates. The estimates would thus depend on the particular stripping method and the basis functional forms.

To avoid such contamination, we measure cross-correlations between the observed LIBOR and swap rates.

Their overlapping nature dictates that their cross-correlations can be much higher than between non-overlapping

forward rates. Nevertheless, our objective is to investigate whether high-dimensional model can match what

is observed in the data.

Our 15 interest rate series generate a 15×15 correlation matrix. For ease of exposition, we take the

six-month LIBOR as the basis instrument and measure its correlation with other LIBOR and swap rates.

Figure 4 reports the correlation estimates between the weekly changes of the six-month LIBOR and weekly

changes in other LIBOR and swap rates across different maturities. Circles denote the cross-correlation

estimates from data. The solid and dashed lines respectively represent correlation estimates from then= 15

andn= 3 factor model implied values. We observe that the correlations from the 15-factor model match the
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data well, while the 3-factor model generates correlationsthat are too high, consistent with prior evidence.

Thus, by using a high-dimensional structure, we readily overcome a major limitation of low-dimensional

DTSMs.

5.3 Interest rate forecasting

Several studies, e.g., Duffee (2002), Ang and Piazzesi (2003), and Bali, Heidari, and Wu (2009), find

that low-dimensional DTSMs fare little better, and often worse, than a simple random walk in forecast-

ing interest rate movements. We hypothesize that two limitations of typical DTSMs inhibit forecasting

performance. First, general three-factor models involve over twenty parameters, many of which cannot

be estimated with statistical significance. Therefore, no matter how well a traditional three-factor model

fits the data in-sample, we should expect the out-of-sample performance to deteriorate substantially due

to parameter instability. Second, traditional three-factor models do not fit observed interest rates closely

in-sample. The fitting errors carry over to out-of-sample forecasts, because all model-based forecasts use

as a starting point the fitted yield curve.

The random walk (RW) hypothesis implies that the best forecast of a future spot rate is the current spot

rate of the same maturity. While naive, the RW has the advantage of starting from the correct value of the

current spot rate. Over a short enough forecasting horizon,it is therefore likely to outperform any model

that does not match well the current term structure. Furthermore, the RW hypothesis involves no parameter

estimation, so there is no distinction between in- and out-of-sample performance.

The 15-factor cascade seems to address the two main difficulties traditional three-factor DTSMs face

in forecasting. First, the cascade is parsimonious and well-identified. This should improve out-of-sample

stability, and cause less degradation between in-sample and out-of-sample performance. Second, our high-

dimensional cascade fits the yield curve nearly exactly in-sample, and its forecasts start at essentially the

same place as the random walk. For these reasons, our cascadeis likely to be a strong performer out-of-

sample.

To verify these ideas, we compare our fifteen-factor cascadeto: (i) its three-factor counterpart,(ii) the

random walk, and(iii ) a first-order autoregression (AR). To demonstrate the differential effects of in-sample

fit versus out-of-sample stability on forecasting performance, we first calculate the prediction errors of each

model using in-sample parameter estimates, and then investigate out-of-sample performance.

18



In-sample analysis. In this subsection, the entire sample period is used to both estimate parameters and

calculate prediction errors. For the AR strategy we estimate an AR(1) regression for each interest rate series

j for each forecasting horizonh,

y j ,t+h = a+byj ,t +ej ,t+h, j = 1, · · · ,15, (30)

wherey j ,t denotes the time-t observed value of thej-th interest rate (LIBOR or swap rate) series, and the

forecasting horizons areh = 1,2,3, and 4 weeks. We run separate regressions for different maturities j and

horizonsh, so that the estimated coefficientsa andb depend on bothj andh. Given the full-sample estimates

(â, b̂), we generate predicted valuesy j ,t+h = â+ b̂yj ,t, and define the errors as ˆej ,t+h = y j ,t+h−y j ,t+h.

For the cascade, we use the filtered state values at each dateX̂t and the statistical factor dynamics to

predict future values of the state over different horizonsh,

Xt+h = Ah +ΦhX̂t , (31)

with Φh = exp(−κh∆t), Ah = (I −Φh)θ, and∆t = 1/52 denoting the length of each period. We predict

values of the LIBOR and swap rates according to (26) and (27),using the predicted the state vectorXt+h.

We compare the in-sample prediction errors ˆej ,t+h of each strategy to the errors from the random walk

hypothesis,y j ,t+h−y j ,t. We measure the performance difference using the predictive variation (PV), defined

as one minus the ratio of mean squared predicting error to mean squared interest rate change:

PVj = 1− ∑N−h
t=1 (êj ,t+h)

2

∑N−h
t=1 (y j ,t+h−y j ,t)

2 . (32)

The predictive variation is positive when the strategy has smaller in-sample prediction errors than the ran-

dom walk.

In Table 4, we report the in-sample predictive variation estimates. Panel A shows the predictive vari-

ations for the AR strategy, which are all positive because the AR strategy nests the random walk. The

predictive variations range from 17.53% to 68.12% for the LIBOR series, and are about 10% for the less-

predictable swap series. By contrast, Panel B shows that thethree-factor model performs worse than the

random walk at the one-week horizon for all LIBOR and swap rates, with mixed results at two to four week

horizons. Panel C reports predictive variations from the 15-factor model. These are close to zero for the

random-walk-like swap rates, but show significant improvements on the random walk for all LIBOR series

across all four forecasting horizons.
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Thus, even in-sample the 3-factor model cannot match predictions from the random walk over short

intervals. Since out-of-sample predictive variations canonly be worse than in-sample predictive variations

because of parameter instability, the results in Table 4 aresufficient to discard the three-factor model as

a viable candidate to outperform the random-walk in out-of sample forecasts. The term-structure model

will suffer some degradation of performance out-of-sampledue to parameter instability while the random

walk hypothesis involves no parameter estimation. By contrast, both the AR specifications and the 15-factor

cascade provide better in-sample prediction errors than the random walk. However, overfitting may be more

of a concern with the AR specifications as we estimate a total of thirty parameters for the 15 interest-rate

series, whereas the 15-factor cascade ties together the dynamics of the entire term-structure of interest rates

using only five parameters. We therefore continue to evaluate the out-of-sample forecasting performances

of both the AR model and the 15-factor cascade relative to therandom walk.

Out-of-sample performance.We re-estimate the autoregressive coefficients and the model parameters at

each datet using the data up to that date, starting from January 7, 1998.We generate forecasts based on the

coefficient estimates on the datet. Table 5 reports the out-of-sample results.

Panel A reports the predictive variation of the AR(1) regression. Although the AR strategy showed

the best performance in-sample, its predictive power deteriorates dramatically out-of-sample, indicating

parameter instability and in-sample overfitting. The out-of-sample performance is worse than the random

walk hypothesis across all interest rate series and over allfour forecasting horizons.

Panel B reports the out-of-sample performance of the 15-factor model, showing substantial improve-

ments over the random walk for all LIBOR series over all forecasting horizons. To help explain this good

performance, we note that the out-of-sample predictive variations are very close to the corresponding in-

sample estimates. This confirms that parameter instabilityis not a problem for our specification, which uses

only five parameters to control the dynamics and term structure of the 15 interest rate series.

To obtain a broader perspective on this forecasting analysis, consider the idea of exploiting information

in the cross-section of interest rates by using a general VAR(1). While this approach has a natural appeal,

by our prior results we can already see that there is little prospect of finding success in this approach.

Overfitting and parameter instability was shown to be a substantial difficulty even when using a set of

AR(1) regressions, which dramatically restricts the general VAR approach by shutting down all off-diagonal

elements. Obviously, a general VAR(1) system would have toomany free parameters to be estimated with

any accuracy, and out-of-sample instability would be an even larger problem than with the simple AR(1)
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approach.11 By contrast, our model essentially builds a VAR(1) system onthe forward rates that exploits

information from the whole term structure, but the model requires only five parameters. The ability to

parsimoniously incorporate information from the entire term-structure is a necessity for generating good

forecasts, and drives our results.

The 15-factor model succeeds because it is parsimonious with parameters, yet flexibile due to its rich

state space. This combination differs from existing literature, which typically specifies few factors with

many parameters. From this perspective, our approach reflects an effort to be as simple as possible in

aspects that permit it, but not simpler than required to accurately match the data. The combination of a

DTSM that is rich in states but thrifty with parameters is thus important to producing excellent in-sample

fit and improved out-of sample forecasts.

6 Specification Analysis

In this section, we investigate the empirical validity of the key assumptions in our benchmark dimension-

invariant model.

6.1 The frequency specification

To verify the empirical validity of our assumed geometric progression of mean reversion rates in (21), we

estimate an extended version of the 15-factor model by letting κ j be a free parameter for each frequency

j. The total number of parameters increases from the original6 to 19. In Figure 5, we plot the logarithm

of theκ j estimates in circles, and as a solid line the linear relationimplied by (21) withκ1 = 0.0572 and

b = 1.74. The estimates for the free parametersκ j vary around the solid line, suggesting that our frequency

specification holds reasonably well.

Using a likelihood ratio test to refine this analysis, restriction (21) is strongly rejected.12 Nevertheless,

the added freedom does not improve forecasting performance. When we try to perform rolling estimation

of the unrestricted model, we often experience convergenceissues. When we use the in-sample parameter

estimates instead to study prediction errors, the grand average of the percentage predicted variation on the

11This intuition is consistent with Ang and Piazzesi (2003), who show that an unconstrained VAR(1) performs poorly in forecst-
ing relative to the simple random walk hypothesis.

12The maximized log likelihood values of the unrestricted model is 29,997, whereas the restricted log likelihood is 29,376, which
produces a rejection at the 1% level given 13 degrees of freedom.
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six LIBOR rates over the 13 different horizons is 26.80%. In comparison the restricted model gives an

improvement in predictive variation relative to the randomwalk of 26.98%, marginally better. Thus, in

practical applications the cascade that assumes a geometric progression of frequencies performs at least as

well as the cascade with unconstrained frequencies.

6.2 Risks and risk premia

Following the idea that our specification of mean-reversionratesκ j approximately matches the near-geometric

progression of maturities in the most widely quoted fixed-income instruments, our base model makes use of

the additional simplifying assumption that the volatilitiesσ j are identical across factors. This assumption

builds on the idea that each factor in the cascade model should carry a roughly equal amount of information

relative to its neighbors. Given this choice, we also assumein our base specification that risk premia are

identical across components:γ j = γ1.

To investigate the specification of risks and risk premia across frequencies, we extend the dimension-

invariant model to permit separate scaling parameters for volatilities and the market premia across factors.

We specify the instantaneous variance of the components as

σ2
j = σ2

1b
( j−1)sσ, (33)

and we accommodate a more flexible risk premium specificationby

γ j ,tσ
2
j = γ0, jσ

2
j − γ1, jσ

2
j x j−1,t + γ2, jσ

2
j x j ,t, (34)

where the three components satisfy

γ0, jσ2
j = γ0σ2

1b
(i−1)s0,

γ1, jσ2
j = γ1σ2

1b
( j−1)s1,

γ2, jσ2
j = γ2σ2

1b
( j−1)s2.

(35)

This relaxed specification adds two more risk premium coefficients (γ1,γ2) and four additional scaling pa-

rameters(sσ,s0,s1,s2). A zero estimate for a scaling exponent, saysσ, indicates thatσi does not vary across

frequencies, while a positive estimate indicates that the component is larger for higher frequency factors.

Table 6 reports the additional parameter estimates for the model with flexible volatilities and risk premia

across factors. All three risk premium coefficients are negative, suggesting that the risk premium increases

in the deviation ofx j ,t from its lower-frequency neighborx j−1,t. The estimates for the scaling exponent
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on the instantaneous variance are negative, suggesting that the instantaneous variance is smaller at higher

frequencies. However, the estimates are much smaller than one in absolute magnitude. Thus, the instanta-

neous variance changes much more slowly across frequenciesthan the mean reversion speed. The estimate

of s0 is positive, implying that the risk premium is larger in absolute magnitude for higher-frequency fac-

tors. Again, however, the estimate is much smaller than one.The estimate ofs1 is virtually zero, ands2 is

negative, suggesting that the risk premium depends on the risk level, but this dependence becomes small at

high frequencies.

Overall, the risks and risk premiums do not vary nearly as much across frequencies as does the mean

reversion speed. The assumption of stability across frequencies can thus be viewed as a convenient sim-

plification that can be relaxed in particular applications,but offers the benefits of parsimony and robust

identification.

6.3 Positive interest rates

The linear Gaussian structure of the benchmark model provides analytical tractability but permits interest

rates to have positive probabilities of becoming negative.To exclude negative interest rates, we consider

two alternative dimension-invariant specifications.

First, we specify the instantaneous volatility of each factor to be proportional to the square root of the

corresponding factor itself,σ j = σ1
√

x j ,t. The one-factor version of this model thus corresponds to Cox,

Ingersoll, and Ross (1985). We further assume that the market price of risk is proportional to the square

root of the risk levelγ1
√

x j ,t so that the risk premium is proportional to the risk level, and κQ
j , j = κ j , j +γ1σ2

1.

The spot-rate loading coefficients can no longer be solved analytically, but can be solved numerically from

the following set of ordinary differential equations,

b′(τ) = en− (κQ)⊤b(τ)− 1
2σ2

1 [b(τ)∗b(τ)] ,

c′(τ) = b1(τ)κ1θr ,
(36)

starting atb(0) = 0 andc(0) = 0, where∗ denotes element-by-element multiplication. When we estimate

this alternative specification with 15 factors, the maximized log likelihood is 29,377, almost identical to the

likelihood of the benchmark linear Gaussian model. The in-sample prediction errors from the six LIBOR

rates generates a grand average of 21.16%, again similar to the value from the benchmark linear Gaussian

specification (21.10%).

The second alternative maintains the linear Gaussian structure of the factors but sets the instantaneous
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interest rate to the square of the highest-frequency component rt ≡ x2
n,t, implying that zero-coupon bond

prices become exponential quadratic functions of the factors as in Leippold and Wu (2002). Bond prices

are given by

P(Xt ,τ) = exp[−X⊤
t B(τ)Xt −b(τ)⊤Xt −c(τ)],

where the coefficients solve the system of ordinary differential equations:

B′ (τ) = Zn−B(τ)κ−κ⊤B(τ)−2B(τ)2σ2
1,

b′ (τ) = 2B(τ)κθQ−κ⊤b(τ)−2B(τ)b(τ)σ2
1,

c′ (τ) = b(τ)⊤ κθQ + tr[B(τ)]σ2
1−

σ2
1

2
b(τ)⊤b(τ) ,

starting atB(0) = 0,b(0) = 0, andc(0) = 0, whereZn is a matrix of zeros with a one in the(n,n)th position

andtr denotes the trace operator. When we estimate this model with15 factors, we obtain a log likelihood

of 29,742, slightly higher than the linear Gaussian benchmark model. The in-sample predictive variation

from the six LIBOR rates over all horizons generates a grand average of 21.05%, slightly lower than the

benchmark linear Gaussian specification.

Since both of these alternative specifications generate very similar performance to the benchmark linear

Gaussian model, we recommend the benchmark model for its simplicity and analytical tractability. When

the possibility of negative interest rates is an important concern, either of the two alternatives can be chosen

while maintaining the same dimension-invariance properties as the base model.

7 Dimension-Invariant Extensions: Stochastic Volatilityand Time-varying
Risk Premia

It is natural to view our efforts in this paper as the first stepin a more general dimension-invariant approach.

We now extend it to accommodate volatility and risk premium dynamics, allowing future applications to

interest rate options and the analysis of excess bond returns.

7.1 Stochastic volatility and fixed-income option pricing

Prior literature shows that the stochastic volatility impacting interest rates is largely “unspanned” by bond

prices themselves (e.g., Collin-Dufresne and Goldstein, 2003). The specification of stochastic volatility

should therefore not have a large impact on the term structure, and our benchmark model therefore assumes
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constant volatilities for simplicity. For other applications, such as the pricing of interest rate options, the

specification of stochastic volatility is critical. For example, current practice for interest rate option pricing

takes observed interest rates as given and focuses on modelling volatility dynamics.

The following candidate specification provides a natural dimension-invariant extension of our term

structure model to include an analogous stochastic volatility cascade suitable for option pricing:

d(σ2
j ,t) = κv

j(σ
2
j−1,t −σ2

j ,t)dt+ωσ j ,tdZj ,t, j = 1, ...,n, (37)

σ2
0,t = θv, (38)

κv
j = β j−1κv

1, β > 1, (39)

ρ = E[dWj ,tdZj ,t]/dt. (40)

The specification thus permits anm-dimensional stochastic volatility cascade in which each component

mean reverts at a geometrically increasing rate around the next-lowest frequency component. In addition to

the geometric progression of mean-reversion speeds, the specification achieves dimension invariance by as-

suming a constant and identical coefficientω describing the volatility of volatility, and identical correlations

between the interest rate and variance innovations.

We leave empirical investigation of option pricing for future research. One possible procedure for

estimation can be as follows. One first estimates our five-parameter term structure model with as many

frequency components as needed to match observed interest rates. Then one can take the estimates of

the five parameters as fixed, use the model to strip the forwardrate curve, and proceed to estimate the

parameters governing variance dynamics using interest rate options data. This estimation procedure extracts

the interest-rate frequency components from the first step and the volatility factors from the second step.

7.2 Time-varying bond risk premia

Extending the concept of a dimension-invariant term structure to time-varying risk premia is straightfor-

ward. For example, Cochrane and Piazzessi (2005, 2008) suggest that risk premia affecting bonds of dif-

ferent maturities are all driven by a single factor, approximated by a tent-shaped function of forward rates.

Within our framework this idea can be captured by allowing that λ j = l jλ, j = 1, · · · ,n wherel j are scalars

andλ is ann×1 column vector, where theλ j are the risk-premium loadings on the factors defined in (11).

Alternatively, a more direct approach to investigating bond risk premia is to use our dynamic term

structure model to extract the complete set of frequency components{x j ,t}n
j=1 and use the variance dynamics
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specified in (37-40) to extract the variance components{vk,t}m
k=1 from interest rate options. One can then

easily investigate how bond returns over different investment horizons depend on the level of these different

frequency components:

Excess Returnt+∆t = a+
n

∑
j=1

b jx j ,t +
m

∑
k=1

ckvk,t +et+∆t .

Through such regression analysis, one can analyze whether the coefficients{b j} are tent-shaped, whether

the excess returns also depend on the interest rate variances, and how the dependence structure varies across

different maturities and investment horizons.

8 Conclusion

We develop a class of dynamic term structure models that are extremely parsimonious, with parameter re-

quirements that are independent of the number of factors. Our base model uses merely five parameters to

govern the time-series and cross-section of interest rates. The approach eliminates the well-known curse of

dimensionality in general specifications, and allows us to estimate with equal ease and accuracy specifica-

tions with arbitrarily large numbers of factors.

We show that genuinely high-dimensional specifications improve on the traditional three-factor struc-

ture that predominates in the existing literature. A 15-factor model achieves near perfect fit to a broad cross-

section of LIBOR and swap rates, is dynamically consistent,accurately matches the correlation between

bonds of different maturities, and generates superior out-of-sample forecasts relative to lower-dimensional

specifications.

The dimension-invariant approach we develop in this paper can naturally be extended to accommodate

stochastic volatility, allowing the pricing of interest-rate options, and time-varying risk premia. We leave

empirical investigations of these extensions for future research.
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A Appendix

Throughout the appendix, we make explicit the dependence ofthe response function on the number of

factorsn.

A.1 Proof of Proposition 1

We prove the proposition by induction. Consider the one-factor case (n = 1). We infer from Ito’s lemma

thatd(eκ1tx1,t) = κ1eκ1tx1,tdt+eκ1td(x1,t). Sinced(x1,t) = κ1(θr −x1,t)dt+σ1dW1,t , we have

d(eκ1tx1,t) = eκ1t(κ1θrdt+σ1dW1,t).

Integrating both sides and then dividing byeκ1t , we obtain equation (5) forn = 1.

We now assume that property (5) holds for an(n−1)-factor structure,

xn−1,t = θr +
n−1

∑
j=1

(x j ,0−θr)a j ,n−1(t)+
n−1

∑
j=1

σ j

∫ t

0
a j ,n−1(t−s)dWj ,s, (41)

wherea j ,n−1 = (K j ∗ ...∗Kn−1)/κ j . Ito’s lemma impliesd(eκntxn,t) = κneκntxn−1,tdt+σneκntdWn,t . Integrating

both sides and then dividing both sides byeκnt , we have

xn,t = e−κntxn,0 +

∫ t

0
κne

−κn(t−s)xn−1,sds+σn

∫ t

0
e−κn(t−s)dWn,s.

Substitute outxn−1,s according to equation (41),

∫ t

0
κne−κn(t−s)xn−1,sds = θr(1−e−κnt)+

n−1

∑
j=1

(x j ,0−θr)
∫ t

0
κne

−κn(t−s)a j ,n−1(s)ds

+
n−1

∑
j=1

σ j

∫ t

0
κne

−κn(t−s)

[∫ s

0
a j ,n−1(s−u)dWj ,u

]
ds.

Let an,n(t) = e−κnt , anda j ,n(t) =
∫ t

0 κne−κn(t−s)a j ,n−1(s)dsfor all j ≤ n−1. We observe that

∫ t

0
κne

−κn(t−s)

[∫ s

0
a j ,n−1(s−u)dWj ,u

]
ds =

∫ t

0

[∫ t

u
κne

−κn(t−s)a j ,n−1(s−u)ds

]
dWj ,u

=
∫ t

0

[∫ t−u

0
κne

−κn(t−u−s′)a j ,n−1(s
′)ds′

]
dWj ,u

=

∫ t

0
a j ,n(t−u)dWj ,u

Thus, the proposition holds for then-factor structure, and we conclude that it holds for alln.
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The coefficients are defined recursively bya j ,n = Kn∗a j ,n−1 starting witha j , j = K j/κ j for t > 0. Hence

a j ,n = Kn∗ ...∗K j+1∗a j , j = Kn∗Kn−1∗ · · ·K j/κ j , (42)

which proves equation (6) holds.

A.2 Proof of Proposition 2

Property 1. If τ > 0 is a local optimum of the response function aj ,n, then a′′j ,n(τ) = κ j+1a′j+1,n(τ).

Proof. Sincea j ,n = (K j ∗ · · · ∗Kn)/κ j , we infer that

a j ,n(τ) =
κ j+1

κ j

∫ τ

0
K j(τ−s)a j+1,n(s)ds.

We differentiate this relation with respect toτ

a′j ,n(τ) =
κ j+1

κ j

[∫ τ

0
−κ jK j(τ−s)a j+1,n(s)ds+K j(0)a j+1,n(τ)

]
.

This implies the relations:a′j ,n(τ) = κ j+1a j+1,n(τ)−κ ja j ,n(τ) and

a′′j ,n(τ) = κ j+1a
′
j+1,n(τ)−κ ja

′
j ,n(τ).

An interior local optimum ofa j ,n therefore satisfiesa′′j ,n(τ) = κ j+1a′j+1,n(τ) sincea′j ,n(τ) = 0. �

We now show by backward induction that for allj = n−1, · · · ,1, the functiona j ,n(τ) is single peaked

and reaches a maximum atτ̄ j ,n. Furthermore,̄τ1,n ≥ ·· · ≥ τ̄n,n.

The property holds forj = n−1. The functiona j ,n−1(τ) = κn
κn−κn−1

(e−κn−1τ −e−κnτ) is hump-shaped and

reaches a maximum whenτ = τ̄n−1,n = ln(κn/κn−1)/(κn−κn−1).

Assume that the property holds forj + 1. Let τ̄ j ,n denote the smallest local maximum ofa j ,n. We

know thata′′j ,n(τ̄ j ,n) ≤ 0, and thata′′j ,n(τ̄ j ,n) = κ j+1a′j+1,n(τ̄ j ,n). Hencea′j+1,n(τ̄ j ,n) ≤ 0, which implies that

τ̄ j ,n ≥ τ̄ j+1,n. If the function is nonmonotonic, there exists a local minimum τ > τ̄ j ,n. Sinceτ > τ̄ j ,n ≥ τ̄ j+1,n,

we know thata′′j ,n(τ) = κ j+1a′j+1,n(τ) < 0, which is a contradiction. We conclude thata j ,n is single peaked

and reaches a maximum atτ̄ j ,n ≥ τ̄ j+1,n.

The analytical solutions and proofs for the convolutions ofexponential density functions are given,

among other places, in Akkouchi (2008).
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Inequality (9) can be proved by a forward recursion. Starting atn= 1, the condition holds sincea1,1(t) =

e−κ1t ≤ 1 for t ≥ 0. We now assume that the inequality holds for an(n−1)-factor structure. We infer that

n

∑
j=1

a j ,n(t) = e−κnt +
n−1

∑
j=1

∫ t

0
κne

−κn(t−s)a j ,n−1(s)ds

= e−κnt +
∫ t

0
κne

−κn(t−s)
n−1

∑
j=1

a j ,n−1(s)ds.

Since∑n−1
j=1 a j ,n−1(s) ≤ 1 for all s≥ 0, we have

n

∑
j=1

a j ,n(t) ≤ e−κnt +

∫ t

0
κne

−κn(t−s)ds= 1.

We conclude that the inequality holds for alln.

A.3 Proof of Proposition 3

Derivation of the system of ordinary differential equations (14)− (15). Ito’s lemma implies that the

expected return on the bond underQ is:

EQ

(
1
Pt

dPt

dt

)
= −bn(τ)⊤κ∗(θQ −Xt)+

1
2

bn(τ)⊤Σbn(τ)+c′n(τ)+b′n(τ)
⊤Xt .

Since this expectation is equal to the interest ratert = xn,t , we infer that

−bn(τ)⊤κ∗θQ +
1
2

bn(τ)⊤Σbn(τ)+c′n(τ) = 0, (43)

bn(τ)⊤κ∗Xt +b′n(τ)
⊤Xt = e⊤n Xt . (44)

Equation (43) is equivalent to (15). Equation (44) implies thatbn(τ)⊤κ∗ + b′n(τ)⊤ = e⊤n , and we conclude

that (14) holds.

Constant risk premia. When risk premia are constant:γ j ,t = γ j for all j, we can solve the system of

ordinary differential equations(14)− (15) in closed-form. By(14), the functionbn(τ) satisfies

b′1,n(τ) = −κ1b1,n(τ)+κ2b2,n(τ),
...

b′n−1,n(τ) = −κn−1bn−1,n(τ)+κnbn,n(τ),

b′n,n(τ) = 1−κnbn,n(τ).
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The last equation implies that

bn,n(τ) =

∫ τ

0
an,n(s)ds=

1−e−κnτ

κn
.

The penultimate equation implies that

d
dτ

[eκn−1τbn−1,n(τ)] = eκn−1τκnbn,n(τ).

Hencebn−1,n(τ) = (κn/κn−1)Kn−1(τ)∗bn,n(τ), and therefore

b′n−1,n(τ) =
κn

κn−1
Kn−1(τ)∗b′n,n(τ) =

κn

κn−1
Kn−1(τ)∗an,n(τ) = an−1,n(τ).

We infer that

bn−1,n(τ) =
∫ τ

0
an−1,n(s)ds.

More generally, we infer thatb j ,n = (κn/κ j)K j ∗ ...∗Kn−1∗bn,n and therefore (16) holds for allj ∈ {1, ...,n−
1}.

By (15), the functioncn(τ) satisfies

c′n(τ) = κ1θrb1,n(τ)−
n

∑
j=1

γ jσ
2
j b j ,n(τ)dsb− 1

2

n

∑
j=1

σ2
j b

2
j ,n(τ).

Hence

cn(τ) = κ1θr

∫ τ

0
b1,n(τ)dτ−

n

∑
j=1

γ jσ
2
j

∫ τ

0
b j ,n(s)ds− 1

2

n

∑
j=1

σ2
j

∫ τ

0
b2

j ,n(s)ds.

We infer from (16) that ∫ τ

0
b j ,n(s)ds=

n

∑
i= j

αi, j ,n

(
τ− 1−e−κiτ

κi

)
.

Similarly, (16) implies

∫ τ

0
b2

j ,n(s)ds =
n

∑
i= j

n

∑
k= j

αi, j ,nαk, j ,n

∫ τ

0
(1−e−κis)(1−e−κks)ds

=
n

∑
i= j

n

∑
k= j

αi, j ,nαk, j ,n

[
τ− 1−e−κiτ

κi
− 1−e−κkτ

κk
+

1−e−(κi+κk)τ

κi +κk

]
.

and we conclude that equation (17) holds.

We easily verify that

κ−1 =





κ−1
1 0 · · · 0

κ−1
1 κ−1

2
. . .

...
...

...
. . . 0

κ−1
1 κ−1

2 · · · κ−1
n




,
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and infer thatθQ = (θr − γ1σ2
1/κ1,θr − γ1σ2

1− γ2σ2
2/κ2, ...,θr −∑n

i=1 γiσ2
i /κi)

⊤.

Derivation of equation (18).Sincea j ,n = Kn∗Kn−1∗ · · ·K j/κ j , we infer that

∫ +∞

0
a j ,n(τ)dτ =

1
κ j

.

By (16),
n

∑
i= j

αi, j ,n =
1
κ j

.

Hence
n

∑
j=1

γ jσ
2
j

n

∑
i= j

αi, j ,n

(
τ− 1−e−κiτ

κi

)
=

(
n

∑
j=1

γ jσ2
j

κ j

)
τ−

n

∑
i=1

(
i

∑
j=1

αi, j ,nγ jσ
2
j

)
1−e−κiτ

κi
.

Similarly,

n

∑
i= j

n

∑
k= j

αi, j ,nαk, j ,n

(
τ− 1−e−κiτ

κi
− 1−e−κkτ

κk
+

1−e−(κi+κk)τ

κi +κk

)

=
τ

κ2
j

− 2
κ j

n

∑
i= j

αi, j ,n
1−e−κiτ

κi
+

n

∑
i= j

n

∑
k= j

αi, j ,nαk, j ,n
1−e−(κi+κk)τ

κi +κk
.

Equation (18) therefore holds.

Generalization. More generally, we note that we can solve the equation:

b′n(τ) = en−κ∗⊤bn(τ)+⊤ Xt

as long as the matrixκ∗⊤ is upper triangular. Sinceκ∗ = κ + ΣΛ, we conclude that we can solve forbn(τ)

explicitly whenΛ is lower triangular, that is if the risk premium of any factorj is only affected by factors

i ≤ j.

A.4 Proof that the response functions are translated versions of each other

Let {E j}∞
j=1 denote a sequence of independent, exponentially distributed random variables. The p.d.f. ofE j

is κ je−κ j x, whereκ j satisfies (21). The Fourier transform ofE j + ...+En is

Ee−2iπξ(E j+...+En) =
n

∏
ℓ= j

κℓ

κℓ +2iπξ
.

For a fixedj, we infer that

ψ j ,n(ξ) = ln
[
Ee−2iπξ(E j+...+En)

]
= −

n

∑
ℓ= j

ln

(
1+

2iπξ
κℓ

)
(45)
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has a limit whenn→ ∞ since∑∞
ℓ= j(1/κℓ) < ∞. The random variableE j + ...+En and its densityK j ∗· · ·∗Kn

therefore have well-defined limits asn→ ∞.

We note that

ψ j ,n(ξ) = −
n

∑
ℓ= j

ln

(
1+

2iπbξ
κ1b j

)
= ψ j+1,n+1(bξ).

The inverse Fourier transform ofψ j ,n(ξ) is κ ja j ,n(τ), while the inverse Fourier transform ofψ j+1,n+1(bξ) is

κ j+1a j+1,n+1(τ/b)/b= κ ja j+1,n+1(τ/b). Hence

a j ,n(τ) ≡ a j+1,n+1(τ/b).

Let A j = limn→∞ a j ,n(τ). We know thatA j(τ) = A j+1(τ/b), that is theA j(τ) are translated versions of each

other in log scale. We infer thata j ,n(τ) ≈ a j+1,n(τ/b) for largen.

A.5 Proof of Proposition 4

We denote by‖y‖2
2 = E

(∫ T
0 y2

t dt
)

the norm of an adapted square integrable processy∈L2. The convergence

proof is based on the relation:

xn,t = θr +
n

∑
j=1

σ j

∫ t

−∞
a j ,n(t −s)dWj ,s.

By Proposition 2, the factor loadings satisfya j ,n = ∑n
i= j αi, j ,nKi for all j ≥ 1, where

αi, j ,n =
κ j ...κn

κiκ j ∏n
k= j ,k6=i(κk−κi)

.

Whenκi = κ1bi−1, the coefficients can be rewritten as

αi, j ,n =
1
κ j

(−1)i− jb−(i− j)(i− j+1)/2

F(n− i)F(i− j)
,

whereF(0) = 1 andF(k) = (1−b−1)...(1− b−k) for all k ≥ 1. The sequence{F(k)} is decreasing and

converges to a strictly positive limitF∞. We observe that

F(k)−F∞ = F(k)

[
1−

+∞

∏
i=k+1

(
1−b−i

)
]
≤ F(k)

+∞

∑
i=k+1

b−i

and therefore
F(k)−F∞

F(k)
≤ b−k

b−1

for all k.
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As n goes to infinity, the coefficientαi, j ,n converges to

ᾱi, j =
1

κ jF∞

(−1)i− jb−(i− j)(i− j+1)/2

F(i− j)
.

We show:

Property 2. There exists a finite constant C such that∑+∞
i= j |ᾱi, j |‖Ki‖2 ≤C/b j/2 for all j .

Proof. Since||Ki ||2 ≤
√

κi, we infer that

+∞

∑
i= j

|ᾱi, j |‖Ki‖2 ≤
1

F2
∞
√κ j

+∞

∑
i= j

b−(i− j)(i− j+1)/2
√

κi

κ j
=

1
F2

∞
√κ j

+∞

∑
i= j

b−(i− j)(i− j−1)/2.

LettingC = F−2
∞
√

b/κ1 ∑+∞
i=0b−i(i−1)/2, we conclude that∑+∞

i= j |ᾱi, j |‖Ki‖2 ≤C/b j/2. �

The function ¯a j = ∑+∞
i= j ᾱi, jKi is therefore well-defined and square-integrable, and its norm satisfies

‖ā j‖2 ≤C/b j/2. We also show:

Property 3. There exists a finite constant C′ such that||a j ,n− ā j ||2 ≤C′b( j/2−n)for all j ≤ n.

Proof of Property 3. The identitya j ,n− ā j = ∑n
i= j(αi, j ,n− ᾱi, j)Ki −∑+∞

i=n+1 ᾱi, jKi implies that

||a j ,n− ā j ||2 ≤
n

∑
i= j

|αi, j ,n− ᾱi, j |
√

κi +
+∞

∑
i=n+1

|ᾱi, j |
√

κi

We observe that

|αi, j ,n− ᾱi, j |
√

κi ≤ 1
√κ jF2

∞
b−(i− j)(i− j−1)/2F(n− i)−F∞

F(n− i)

≤ 1√κ jF2
∞

b−(i− j)(i− j−1)/2b−(n−i)

b−1
.

and therefore

n

∑
i= j

|αi, j ,n− ᾱi, j |
√

κi ≤
√

b
(b−1)

√
κ1F2

∞

n

∑
i= j

b−(i− j)(i− j−3)/2b( j/2−n) = C′
1b

( j/2−n).

whereC′
1 =

√
b
[
∑∞

i=0b−i(i−3)/2
]
/
[
(b−1)

√
κ1F2

∞
]
.

Similarly,

+∞

∑
i=n+1

|ᾱi, j |
√

κi ≤
1

F2
∞
√κ j

+∞

∑
i=n+1

b−(i− j)(i− j−1)/2≤ 1
F2

∞
√κ j

+∞

∑
i=n+1

b−(i− j−1)
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Recall that∑+∞
i=n+1b−(i− j−1) = b−(n− j)/(1−b−1), and defineC′

2 =
√

b/[(b−1)
√

κ1F2
∞]. We infer that

+∞

∑
i=n+1

|ᾱi, j |
√

κi ≤C′
2b

( j/2−n).

LettingC′ = C′
1 +C′

2, we conclude that||a j ,n− ā j ||2 ≤C′b( j/2−n). �

The process

x∞,t = θr +
+∞

∑
j=1

σ j

∫ t

−∞
ā j(t −s)dWj ,s.

is well-defined when∑+∞
j=1σ2

j/κ j < ∞. Since

xn,t −x∞,t =
n

∑
j=1

σ j

∫ t

−∞
(a j ,n− ā j)(t−s)dWj ,s−

+∞

∑
j=n+1

∫ t

−∞
ā j(t−s)σ jdWj ,s,

we know that

||xn−x∞||22 =
n

∑
j=1

σ2
j ||a j ,n− ā j ||22 +

+∞

∑
j=n+1

σ2
j ||ā j ||22

≤ C′2
n

∑
j=1

σ2
j b

( j−2n) +C2
+∞

∑
j=n+1

σ2
j

b j

Let [y] denote the integral part of a real numbery. If ∑∞
j=1σ2

j/κ j < ∞, we conclude that

||xn−x∞||22 ≤ C′2
[n/2]

∑
j=1

σ2
j

b j
b2( j−n) +C′2

n

∑
j=[n/2]+1

σ2
j

b j
b2( j−n) +C2

+∞

∑
j=n+1

σ2
j

b j

≤ C′2
(

∞

∑
j=1

σ2
j

b j

)
b−n +(C2 +C′2)

(
+∞

∑
j=[n/2]+1

σ2
j

b j

)

converges to zero whenn→ ∞. This establishes the convergence of the short rate process.

We next turn to the convergence of the zero-coupon bond yield:

yn(t,τ) =
∑n

j=1b j ,n(τ)x j ,t +cn(τ)
τ

asn→ ∞ for a fixed value ofτ > 0. We observe that
∥∥∥∥∥

n

∑
j=1

b j ,n(τ)x j ,t −
∞

∑
j=1

b̄ j(τ)x j ,t

∥∥∥∥∥
2

≤
(

n

∑
j=1

∣∣b j ,n(τ)− b̄ j(τ)
∣∣+

∞

∑
j=n+1

∣∣b̄ j(τ)
∣∣
)

sup
j
‖x j ,t‖2 .

Since
∣∣b̄ j(τ)

∣∣≤ 1/κ j and
∣∣b j ,n(τ)− b̄ j(τ)

∣∣≤
n

∑
i= j

|αi, j ,n− ᾱi, j | ≤
C′′

κn
,
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whereC′′ = ∑∞
i=0b−i(i−2)/[(b−1)F2

∞], we conclude that∑n
j=1b j ,n(τ)x j ,t/τ converges to∑∞

j=1 b̄ j(τ)x j ,t in L2.

We also infer from (19) thatcn(τ) converges to

c̄(τ) = θr −
∞

∑
j=1

σ2
j

κ2
j

(
γκ j +

1
2

)
+

∞

∑
i=1

c̄i
1−e−κiτ

κiτ
−

∞

∑
j=1

σ2
j

2

∞

∑
i= j

∞

∑
k= j

ᾱi, j ᾱk, j
1−e−(κi+κk)τ

(κi +κk)τ
,

wherec̄i =−θrκ1ᾱi,1+∑i
j=1 ᾱi, jσ2

j (γ+1/κ j) , and conclude that the yieldyn(t,τ) converges to
[
∑∞

j=1 b̄ j(τ)x j ,t + c̄(τ)
]
/τ.

A.6 Unscented Kalman filter, maximum likelihood estimation, and Vuong test

Since the measurement functionh(Xt) is nonlinear, one possibility is to rely on a Taylor expansion to

obtain extended forms of the Kalman Filter (e.g. Baadsgaard, Madsen, and Nielsen (2001), Chen and Scott

(2003), Duan and Simonato (1999), and Duffee and Stanton (2008)). Alternatively, Julier and Uhlmann

(1997) propose the unscented Kalman filter (UKF) to directlyapproximate the posterior density using a set

of deterministically chosen sample points (sigma points).The UKF is accurate to the second order for any

nonlinearity.

We use the UKF approach to filter the mean and covariance of thestates and measurement series.

Specifically, we start with the linear Gaussian prediction on the state vector,

Xt = A+ΦX̂t−1, Vx,t = ΦV̂x,t−1Φ⊤ +Σx, (46)

whereXt andVx,t are the time-(t −1) predicted value of the conditional mean and covariance matrix of the

state vector. Based on these predictions, we draw a set of 2n+1 sigma vectorsχi on the state,

χt,0 = Xt , χt,i = Xt ±
√

(k+δ)(Vx,t) j

with weights given byw0 = δ/(n+ δ) and for i > 0, wi = 1/[2(n+ δ)] whereδ is a parameter. We prop-

agate the sigma points through the nonlinear measurement equation to obtain a set of sigma points on the

measurements,ζt,i = h(χt,i). These allow us to generate the predicted meanyt and covariance matrixVy,t

of the measurement series, as well as the covariance matrix between the state vector and the measurement

Vxy,t :

yt = ∑2k
i=0wiζt,i ,

Vy,t = ∑2k
i=0wi

[
ζt,i −yt

][
ζt,i −yt

]⊤
+Σy,

Vxy,t = ∑2k
i=0wi

[
χt,i −Xt

][
ζt,i −yt

]⊤
.

(47)

Using these moment conditions, we apply the Kalman filter to obtain the filtered values of the mean̂Xt and

covariancêVy,t of the state vector:

X̂t = Xt +Kt (yt −yt) , V̂y,t = Vy,t −KtVy,tK
⊤
t , (48)
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whereKt = Vxy,t

(
Vy,t

)−1
denotes the Kalman gain.

Given the unscented Kalman filter forecasts on the conditional mean and covariance of the interest rate

series at each date, we build the quasi log likelihood:

lt(Θ) = −1
2

ln
∣∣Vy,t

∣∣− 1
2

(yt −yt)
⊤ (Vy,t

)−1
(yt −yt) . (49)

We choose model parametersΘ ≡ (κ1,b,σ1,θr , ,θQ
r ,σ2

e)
⊺ that maximizeL(Θ) ≡ ∑N

t=1 lt(Θ). We constrain

(θr ,θQ
r ) to be positive in the estimation.

The Vuong statistic is given by

Vn =
√

N(mn)/sn, ρn,t = l15,t − ln,t , n = 1,2, · · · ,14, (50)

wheremn = ΣN
t=1ρn,t/N denotes the sample mean of the weekly log likelihood differenceρn,t between the

15-factor model and the model withn factors. The sample standard deviation ofρn,t is denoted bysn.
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Table 1
Summary statistics of LIBOR and swap rates
The data consist of weekly observations (Wednesday closingmid-quotes) on LIBOR at maturities of one,
two, three, six, nine, and 12 months, and swap rates at maturities of two, three, four, five, seven, ten, 15,
20, and 30 years. Each series contains 678 weekly observations from January 4, 1995 to December 26,
2007. Entries report the sample average (Mean), standard deviation (Std), skewness (Skew), excess kurtosis
(Kurt), and weekly autocorrelations of orders one, five, 10,and 20, respectively, for each series.

Maturity Mean Std Skew Kurt Autocorrelation

1 5 10 20

1 m 4.335 1.798 -0.714 -1.050 0.998 0.988 0.971 0.922
2 m 4.370 1.803 -0.722 -1.038 0.998 0.989 0.972 0.923
3 m 4.405 1.808 -0.720 -1.025 0.998 0.989 0.971 0.921
6 m 4.475 1.803 -0.713 -0.970 0.998 0.986 0.967 0.916
9 m 4.547 1.789 -0.689 -0.910 0.997 0.983 0.962 0.908

12 m 4.631 1.769 -0.653 -0.854 0.996 0.979 0.954 0.898
2 y 4.877 1.570 -0.529 -0.699 0.994 0.966 0.932 0.865
3 y 5.093 1.414 -0.407 -0.663 0.992 0.957 0.916 0.842
4 y 5.260 1.298 -0.291 -0.693 0.991 0.950 0.904 0.823
5 y 5.395 1.209 -0.187 -0.748 0.990 0.944 0.893 0.808
7 y 5.595 1.091 -0.023 -0.850 0.988 0.937 0.880 0.787

10 y 5.798 0.994 0.126 -0.949 0.987 0.931 0.870 0.769
15 y 6.009 0.909 0.228 -1.020 0.986 0.928 0.865 0.762
20 y 6.103 0.870 0.254 -1.020 0.985 0.927 0.864 0.761
30 y 6.136 0.851 0.295 -0.949 0.986 0.926 0.862 0.756

Average 5.135 1.398 -0.316 -0.896 0.992 0.959 0.919 0.844



Table 2
Parameter estimates, standard errors, and log likelihoods.
Entries report the maximum likelihood estimates and their standard errors (in parentheses) of the model parameters. Each row represents one
set of parameter estimates under the assumption ofn frequency components, withn = 1,2, · · · ,15. The column underL reports the maximized
aggregate log likelihood value for each model. The last column underV reports the Vuong likelihood ratio test statistics betweenthe 15-factor
model and the other 14 models. Asymptotically, the statistic has a standard normal distribution.

n κ1 θr σ1 θQ
r b σ2

e L V

1 0.2092 ( 0.0009 ) 0.0436 ( 0.0003 ) 0.0065 ( 0.0001 ) 0.0688 ( 0.0001 ) 0.0000 ( 0.0000 ) 0.1574 ( 0.0009 ) 4086 47.91
2 0.0603 ( 0.0007 ) 0.0131 ( 0.0004 ) 0.0111 ( 0.0001 ) 0.0695 ( 0.0004 ) 6.1387 ( 0.0905 ) 0.0187 ( 0.0001 ) 13967 30.79
3 0.0526 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0101 ( 0.0000 ) 0.0662 ( 0.0001 ) 7.3138 ( 0.0393 ) 0.0047 ( 0.0000 ) 19928 20.70
4 0.0366 ( 0.0004 ) 0.0000 ( 0.0000 ) 0.0116 ( 0.0000 ) 0.0653 ( 0.0002 ) 4.2707 ( 0.0216 ) 0.0019 ( 0.0000 ) 23276 17.33
5 0.0441 ( 0.0005 ) 0.0000 ( 0.0000 ) 0.0125 ( 0.0000 ) 0.0507 ( 0.0003 ) 2.8266 ( 0.0108 ) 0.0010 ( 0.0000 ) 25551 15.99
6 0.0383 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0123 ( 0.0000 ) 0.0497 ( 0.0002 ) 3.0267 ( 0.0070 ) 0.0005 ( 0.0000 ) 27527 10.60
7 0.0283 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0129 ( 0.0000 ) 0.0419 ( 0.0003 ) 2.6150 ( 0.0047 ) 0.0004 ( 0.0000 ) 27898 11.93
8 0.0275 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0133 ( 0.0000 ) 0.0632 ( 0.0006 ) 2.5271 ( 0.0057 ) 0.0004 ( 0.0000 ) 28445 11.00
9 0.0278 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0141 ( 0.0000 ) 0.0650 ( 0.0006 ) 2.2351 ( 0.0046 ) 0.0003 ( 0.0000 ) 28801 9.18
10 0.0313 ( 0.0004 ) 0.0000 ( 0.0000 ) 0.0140 ( 0.0000 ) 0.0507 (0.0005 ) 2.2010 ( 0.0048 ) 0.0003 ( 0.0000 ) 28972 6.68
11 0.0305 ( 0.0002 ) 0.0000 ( 0.0000 ) 0.0144 ( 0.0000 ) 0.0966 (0.0006 ) 1.9603 ( 0.0046 ) 0.0003 ( 0.0000 ) 29036 6.06
12 0.0359 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0147 ( 0.0000 ) 0.0876 (0.0007 ) 1.9130 ( 0.0045 ) 0.0002 ( 0.0000 ) 29194 4.41
13 0.0383 ( 0.0003 ) 0.0000 ( 0.0000 ) 0.0149 ( 0.0000 ) 0.0833 (0.0007 ) 1.8953 ( 0.0041 ) 0.0002 ( 0.0000 ) 29283 3.33
14 0.0409 ( 0.0004 ) 0.0000 ( 0.0000 ) 0.0151 ( 0.0000 ) 0.0781 (0.0006 ) 1.8757 ( 0.0048 ) 0.0002 ( 0.0000 ) 29332 2.32
15 0.0572 ( 0.0004 ) 0.0000 ( 0.0000 ) 0.0156 ( 0.0000 ) 0.0559 (0.0004 ) 1.7400 ( 0.0041 ) 0.0002 ( 0.0000 ) 29377 —



Table 3
Summary statistics of pricing errors
Entries report the summary statistics of the pricing errorson the LIBOR and swap rates from the power-
law scaled cascade term structure models with three (panel A) and 15 (panel B) factors, respectively. The
pricing errors are measured as the difference in basis points between the observed interest rates and the
model-implied fair values. The statistics include the sample average of the error (Mean), root mean squared
error (Rmse), the first-order weekly autocorrelation of theerror (Auto), the maximum absolute error (Max),
and the explained variation (VR) (in percentages), defined as one minus the ratio of the pricing error variance
to the variance of the original interest rate series.

Model A. Three-factor model B. 15-factor model

Maturity Mean Rmse Auto Max VR Mean Rmse Auto Max VR

1 m -0.68 7.47 0.86 43.93 99.83 0.02 0.62 0.36 5.40 100.00
2 m 0.63 3.82 0.69 37.42 99.96 0.01 1.76 0.52 16.31 99.99
3 m 1.61 5.03 0.85 42.54 99.93 -0.11 1.79 0.60 18.96 99.99
6 m 0.39 6.78 0.93 24.05 99.86 0.04 1.06 0.59 8.78 100.00
9 m -1.74 6.88 0.89 32.06 99.86 0.38 0.92 0.69 4.31 100.00
12 m -3.06 6.74 0.79 33.00 99.88 -0.49 1.21 0.06 4.71 100.00
2 y 2.11 6.17 0.81 24.38 99.86 0.28 1.09 -0.02 4.52 100.00
3 y 1.97 6.90 0.88 34.12 99.78 -0.19 0.75 0.36 3.88 100.00
4 y 0.87 6.32 0.90 33.48 99.76 -0.04 0.81 0.16 8.08 100.00
5 y -0.21 5.85 0.90 27.63 99.76 0.07 0.73 0.20 4.60 100.00
7 y -1.89 5.55 0.92 17.32 99.77 0.08 0.70 0.35 6.86 100.00
10 y -2.35 5.17 0.89 18.65 99.78 -0.12 0.95 0.23 9.00 99.99
15 y 0.88 3.87 0.86 13.14 99.82 0.00 0.72 0.29 4.68 99.99
20 y 1.91 5.35 0.90 17.64 99.66 0.08 0.79 0.33 6.90 99.99
30 y -0.76 9.67 0.95 31.88 98.68 -0.09 0.71 0.23 4.82 99.99
Average -0.02 6.11 0.87 28.75 99.75 -0.00 0.98 0.33 7.45 99.99



Table 4
In-sample predictive variations
Entries reports the predictive variation (in percentage points) on each interest rate series over four predicting
horizons (h) at one, two, three, and four weeks from (i) a first-order autoregressive regression (panel A),
(ii) the three-factor cascade model (panel B), and (iii) the15-factor cascade model (panel C). The predictive
variation is defined as one minus the ratio of mean squared predicting error to mean squared interest rate
change, which can be regarded as the mean squared predictingerror under the random walk hypothesis. All
forecasting exercises are performed in sample. The autoregressive coefficients and the model parameters are
estimated using the whole sample period. The predicting error statistics are also computed over the whole
sample period from January 1995 to December 2007.

Model A. AR(1) B. Three-factor model C. 15-factor model

h (weeks) 1 2 3 4 1 2 3 4 1 2 3 4

LIBOR/swap maturity:
1 m 25.85 43.84 57.50 68.12 -0.71 32.92 42.84 47.58 21.71 40.82 52.16 58.02
2 m 23.83 36.65 47.28 55.05 -1.94 15.23 23.31 28.19 17.65 28.50 37.00 43.13
3 m 22.82 32.19 41.34 47.49 -50.31 -12.95 1.57 9.93 8.78 21.8629.17 33.70
6 m 20.85 25.00 31.90 36.31 -87.43 -42.16 -24.57 -13.88 5.77 12.56 16.94 19.30
9 m 20.22 19.35 23.79 27.10 -67.23 -38.76 -28.15 -20.99 1.30 4.99 7.06 7.95
12 m 21.45 17.53 20.58 22.84 -39.25 -26.45 -21.32 -17.32 6.853.71 3.07 2.53
2 y 4.26 7.93 9.65 11.53 -17.52 -5.21 -2.06 -0.99 -1.12 -1.44 -2.29 -3.05
3 y 3.64 6.81 8.64 10.30 -18.64 -4.28 -0.52 0.85 -1.25 -1.75 -2.30 -2.72
4 y 4.75 7.23 9.00 10.32 -15.20 -3.56 -0.49 0.32 0.53 -0.23 -0.76 -1.30
5 y 3.35 6.41 8.36 9.89 -16.34 -5.99 -3.09 -2.39 -0.48 -0.89 -0.91 -1.24
7 y 3.44 6.43 8.08 9.54 -20.20 -10.37 -8.14 -7.14 -0.56 -0.57 -0.87 -1.03
10 y 3.53 6.19 7.87 9.21 -20.23 -12.00 -10.41 -9.21 0.12 0.12 -0.12 -0.22
15 y 2.71 5.06 6.72 7.93 -11.47 -8.24 -7.60 -6.73 0.92 0.38 0.35 0.19
20 y 2.42 4.90 6.69 7.67 -17.91 -10.09 -7.78 -5.92 0.17 -0.24 -0.15 -0.28
30 y 3.09 5.44 7.16 8.25 -60.10 -25.86 -15.76 -9.32 -0.15 0.15-0.11 -0.01



Table 5
Out-of-sample forecasting
Panel A reports the out-of-sample predictive variation on each interest rate series over four forecasting hori-
zons from a first-order autoregressive regression. The predictive variation is defined as one minus the ratio of
mean squared predicting error to mean squared interest ratechange. Panel B reports the corresponding out-
of-sample predictive variation from the 15-factor model. It also reports thet-statistics on the performance
difference between the 15-factor model and the random walk hypothesis. In performing the out-of-sample
forecasting exercise, we start from January 7, 1998, re-estimate the model parameters and the autoregres-
sive coefficients at each datet using the data up to that date, and generate predictions based on estimates
on that date. The statistics are computed based on the out-of-sample predicting errors from January 1998 to
December 2008.

Model A. AR(1) B. 15-factor model

Statistics Predictive variation Predictive variation t-statistics

h (weeks) 1 2 3 4 1 2 3 4 1 2 3 4

LIBOR/swap maturity:
1 m -1.57 -3.50 -5.40 -7.75 24.24 42.22 52.64 58.47 1.73 3.49 4.81 6.34
2 m -1.50 -3.64 -5.77 -8.29 19.59 31.45 39.98 46.22 1.68 3.48 5.03 6.86
3 m -1.98 -4.19 -6.28 -8.94 9.80 24.77 32.47 37.76 1.69 4.75 6.33 7.34
6 m -3.36 -6.34 -8.62 -11.83 8.45 16.58 21.26 24.57 2.46 4.58 5.83 6.57
9 m -4.52 -7.90 -10.35 -14.11 4.71 8.56 11.15 13.06 2.26 3.53 4.15 4.54
12 m -4.90 -8.45 -10.93 -14.95 7.94 5.19 5.10 5.40 3.63 2.33 2.02 1.99
2 y -3.00 -5.91 -8.85 -12.21 -1.08 -1.19 -2.14 -2.87 -0.94 -0.90 -1.33 -1.62
3 y -2.44 -4.78 -7.26 -10.25 -0.92 -1.44 -2.18 -2.69 -1.11 -1.39 -1.79 -1.96
4 y -2.11 -4.13 -6.34 -9.02 0.22 -0.73 -1.25 -1.90 0.23 -0.73 -1.15 -1.62
5 y -1.84 -3.54 -5.49 -7.89 -0.76 -1.25 -1.33 -1.64 -1.10 -1.64 -1.56 -1.73
7 y -1.43 -2.74 -4.41 -6.39 -0.39 -0.53 -0.84 -1.04 -0.79 -1.15 -1.58 -1.72
10 y -1.07 -2.06 -3.43 -5.12 -0.40 -0.26 -0.61 -0.74 -0.70 -0.45 -1.00 -1.16
15 y -0.89 -1.68 -2.97 -4.49 0.30 -0.12 -0.21 -0.49 0.60 -0.28-0.44 -0.94
20 y -0.76 -1.52 -2.80 -4.25 0.56 -0.11 -0.39 -0.56 1.00 -0.26-0.80 -1.04
30 y -0.63 -1.30 -2.35 -3.65 0.02 -0.05 -0.40 -0.50 0.04 -0.11-0.81 -0.91



Table 6
Scaling in risks and risk premia
Entries report the maximum likelihood estimates and their standard errors (in parentheses) of the model
parameters that govern the scaling of risks and risk premiums across the different frequency components in
a 15-factor structure.

Θ Estimates Standard Errors

σ1 0.0276 ( 0.0001 )
γ0σ2

1 -0.0019 ( 0.0001 )
γ1σ2

1 -0.0520 ( 0.0004 )
γ2σ2

1 -0.1634 ( 0.0006 )
b 1.7276 ( 0.0032 )
sσ -0.2408 ( 0.0021 )
s0 0.2532 ( 0.0111 )
s1 0.0010 ( 0.0064 )
s2 -1.7617 ( 0.0038 )
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Figure 1
The instantaneous interest rate response to unit shocks from different frequency components.
Lines plot the response of the instantaneous interest rate to unit shocks from each of the 15 frequency
components across different time horizons. The solid line denotes response to shocks from the lowest
frequencydW1,t , the dashed line denotes response to shocks from the highestfrequencydW15,t . The dotted
lines represent responses to intermediate frequency components. The responses are computed with the
parametersκr = 1/30,b = 1.69, andn = 15.
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Figure 2
LIBOR and swap time series and term structure.
The top panel plots the time series of the 15 LIBOR/swap rate series. The bottom panel plots the term
structure at each date.
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Model-generated forward curves
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Figure 3
Term structure of forward rates stripped from LIBOR and swap rates
Lines plot the term structure of forward rates generated from the piece-wise constant assumption in the top
panel and from the estimated 15-factor model in the bottom panel.
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Figure 4
Cross-correlation between weekly changes in six-month LIBOR and other interest rate series.
Circles denote the cross-correlation estimates between weekly changes in the six-month LIBOR and weekly
changes in other interest rate series. The solid line denotes estimates from model values generated from
the 15-factor model. The dashed line denotes estimates frommodel values generated from the three-factor
model.
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Figure 5
The scaling ofκ j .
The circles are estimated as free parameters. The solid lineis generated from the benchmark model with the
scalingκi = κ1bi−1.
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