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Abstract
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the model overcomes the curse of dimensionality associwitbdyeneral affine models. Using a panel
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1 Introduction

The development of the class of arbitrage-free dynamic stracture models (DTSMs) ranks as one of the
most important achievements of modern asset pricing thebnjs framework connects the cross-sectional
relation between bonds of different maturities to the etioiuof the term structure, while maintaining

considerable scope for variation in modelling choices. d&@mple the widely-used affine specifications,
first characterized by Duffie and Kan (1996), allow very gah&ictor structures to govern term structure
dynamicﬂ Theoretical advances in the study of these flexible, tréetaindels paved the way for an

explosion in empirical work, including exhaustive effottsexplore this class andg)in down appropriate

specifications in pioneering work such as Dai and Single2®Q) and Duffee (2002).

Despite these efforts, a large subset of DTSMs remainsivielatunexplored. In particular, high-
dimensional models — meaning roughly those having a largerher of factors than the traditional three
— are more difficult to investigate empirically because @& Well-known “curse of dimensionality.” For
example a generic affine three-factor DTSM calls for moran ttveenty parameters, and specification re-
quirements grow rapidly with the size of the state spaceh#dignensional models are therefore generally

difficult to identify and estimate.

In this paper, we studgiimension-invarianDTSMs in which the number of parameters is independent
of the size of the state space. We build on the idea that teegisitrate term structure responds to shocks of
many frequencies, as is evident from the numerous macroatenmonetary, and microstructure events
that impact bond prices. Many influential studies includiwgygy and Piazzesi (2003), Piazzesi (2005),
Gallmeyer, Hollifield, and Zin (2005), and Diebold, Rudetiusand Aruba (2006) document these links
and relate a wide range of economic time series to modelseotethm structurE. We pursue a standard
latent-state variables approach and build an empiricedigtéble model that permits an arbitrary number of
unobservable shocks, each operating at a different frexpeemd therefore impacting different parts of the

term structure.

Limportant early contributions in the dynamic term struetliterature include Vasicek (1977), Brennan and Schwad879),
Cox, Ingersoll, and Ross (1985), Constantinides (1992) Lamgstaff and Schwartz (1992). Duffie, Pan, and Single200Q) and
Duffie, Filipovic, and Schachermayer (2003) progresgigeneralize the class of affine models. Leippold and Wu (R@&dduce
the quadratic class of arbitrage-free dynamic term streanodels.

20ther notable empirical contributions include BalduzzasDForesi, and Sundaram (1996), Dai and Singleton (2082), a
Backus, Foresi, Mozumdar, and Wu (2001).

3See also Balduzzi, Bertola, and Foresi (1997), Rudebusii?2 Ang, Piazzesi, and Wei (2004), Bekaert, Cho, and Mmren
(2005), Hordahl, Tristanoi, and Vestin (2006), Rudebu&#wanson, and Wu (2006), Ang, Dong, and Piazzesi (2007)n@gér,
Hollifield, Palomino, and Zin (2005), Heidari and Wu (2008hd Lu and Wu (2009).



The basic building block of our model is a cascade for shatg-dynamics. We posit a lowest-frequency
component that provides a central tendency to which thelogsdst factor mean reverts. The dynamics of
the remaining factors, which may be arbitrary in numbemtfoiow a recursion whereby each component
mean-reverts around the next-lowest frequency in the dasdd/e take the highest-frequency element of
this cascade to be the short rate, which implies that all tdvegjuency factors act as state variables for the
term structure. The approach thus substantially extentuBai, Das, and Foresi (1998), who develop a

two-factor stochastic central tendency model.

The cascade offers several benefits in implementing higtedsional models. First, factors naturally
separate according to their rates of mean-reversion, reditinig the need to rotate factors and normalize
parameters as is typical in general affine moBeSecond, by adding additional functional form assump-
tions to specify the progression of mean-reversion ratafilities, and risk premia across frequencies, the
number of parameters required for identification is indejeen of the number of factors. In the simplest
case, which we take as our base model, the mean-reversguefieies follow a geometric progression. As
few as five parameters then govern the term structure angritsnalics, irrespective the number of factors.
This dimension-invariance feature allows us to estimatedod high-dimensional models with equal ease

and accuraay.

To assess empirical performance, we use 13 years of data mad tross-section of interest-rate se-
curities: six U.S. dollar LIBOR series with maturities froomme to 12 months and nine swap rates with
maturities from two to 30 years. We estimate cascade modtisnom one to 15 factors, and find that the
15-factor model significantly outperforms lower-dimemgibmodels both statistically and economically.
Notably, the high-dimensional model overcomes severabitapt challenges that have been observed in
prior literature. First, Dai and Singleton (2002) show tht@ndard three-factor models generate substan-

tially higher cross-correlations between bonds of différaaturities than are observed in the data, implying

4Dai and Singleton (2000) provide a complete discussionatbfarotation and normalizations in empirical implemeiutatof
DTSMs.

SEase of implementation has not historically been a hallneémpirical research on DTSMs. For recent discussion of the
issues commonly faced, see Duffee and Stanton (2007) anféd>(#009). Of particular importance is the need to carryaut
highly nonlinear optimization over a large parameter sghaein many cases is poorly identified. Recently, Joslingfiton, and
Zhu (“JSZ,” 2010) provide a normalization that permits cement two-step estimation of general affine models. Thgar@ach
concentrates out of the likelihood parameters that candiatesd in the mean and autoregressive dynamics of obserfattors
under the objective density. The method offers the greateaputational benefit when there are no restrictions onpisknia or
objective-density factor dynamics, since in this case teamand autoregressive parameters under the risk-nenttalbgective
densities are unrelated. In our case where risk premia atat fdynamics are constrained in order to obtain dimengieariance of
the parameter vector, estimation is already straightfahaad there is no particular computational benefit of thed@malization.
Their approach thus provides an advance in the implementafi maximally flexible affine DTSMs, among other contrilouis,
while we develop dimension-invariant specifications andgempirically tractable high-dimensional DTSMs.



that sources of cross-sectional variation are not captutad high-dimensional DTSMs overcome this dif-
ficulty, accurately reflecting the cross-correlations obseé in the data. Second, Duffee (2002), Ang and
Piazzesi (2003), Bali, Heidari, and Wu (2009) and othersvshat in many cases traditional DTSMs fore-
cast future interest rates no better than a simple randok Whk 15-factor model significantly outperforms
both the random walk and an autoregressive specificatioreligting interest rate movements from one to
twelve-month maturities. Third, the mean absolute pri@ngrs of the 15-factor model are less than one
basis point, an order of magnitude smaller than its thretsfacounterpart and very close to the range of

common bid-ask spreads.

The cascade model is unique in the literature in offeringassisectional fit that is for all practical
purposes perfect, while also maintaining dynamic consestend arbitrage-free pricing. In comparison,
while the fitting errors of traditional three-factor modetn be small relative to observed yields, they are
nonetheless typically large relative to the tiny bid askegpis in the highly liquid fixed income markets.
In many applications such as fixed-income option pricing, thismatch is problematic because derivative
contracts are written on observed rather than model-imptigerest rates. As a consequence the option-
pricing performance of standard arbitrage-free DTSMs isr@s shown by Dai and Singleton (2002), Li
and Zhao (2006), and Heidari and Wu (2009). Alternative apphes, such as the forward rate models of
Ho and Lee (1986), Hull and White (1993), and Heath, Jarrod, Morton (1992), take observed interest
rates as given and price options based exclusively on ttagilyl specification. The forward-rate models
begin by fitting the current cross-section perfectly, budidglly imply strong restrictions on dynamics
leading to frequent recalibrations when the implicatioresraot realized. Ideally, one would like a single
unified framework to match the cross-section perfectly /hilso maintaining dynamic consistency. The

high-dimensional cascade achieves these obje@ives.

One particularly important application of our model is gieurve “stripping.” In the fixed income
markets, financial institutions including banks and thedfallReserve use stripping procedures to obtain
the zero-coupon term structure and forward-rate curve fotaserved Treasury or swap rates. Stripped
forward curves are a necessary building block for pricingadety of instruments, and are needed for
example as an input when using a forward-rate model. Comnathads of stripping include ad hoc piece-
wise linear approximation and the “yield-curve models,Veleped by McCulloch (1975), Nelson and

Siegel (1987), Svensson (1995) and others. A problem, henvessthat standard yield-curve models are

6We show how the model can be combined with volatility speatfams in the final section of the paper, but leave empirical
investigation of this extension for future research.



not consistent with absence of arbitrage (Filipovit (199Becent literature therefore places new emphasis
on arbitrage-free approaches to yield-curve strippingndshristensen, Diebold, and Rudebusch (2008).
An additional difficulty for standard stripping procedureshat the loss of information from compressing a
large number of maturities into a low-dimensional factonsture can be significant (Cochrane and Piazzesi
(2008)). Our cascade model overcomes these problems, ahdrefore an ideal candidate to provide
stripped forward-rate curves. The high dimensionalityomemodates flexibility and near-perfect fit across
the diverse term-structure shapes encountered in thelataover, the smooth stripped term structure and

forward rates of the model are consistent with absence dfagke.

Relating to prior work, the extreme parsimony of our model ewariance of the number of parameters
to the size of the state space builds on Calvet and Fished (ZID4, 2007, 2008). This earlier research
models the volatility term structure using a multiplicativascade, whereas the additive stochastic-tendency

cascade we develop here fits interest rate dynamics anddeoanalytical tractability.

Our paper advances the concept of “dimension-invarianeceio ways. First, we develop term-
structure models in which the number of parameters is iamario the number of factors. Second, we
provide conditions under which, for a givéiredparameter vector, the sequence of DTSMs obtained by in-
creasing the number of factonsveakly converges to a well-defined, infinite-dimensionaldM. We thus
build a bridge between standard, finite-dimensional DTSkt the non-degenerate, infinite-dimensional
term structures developed using the mathematics of randalds fby Kennedy (1994, 1997), Goldstein
(2000), and Santa-Clara and Sornette (ZED(D)Jr models are therefore simple and parsimonious, but yet

can approximate arbitrarily closely the rich dynamics dinite-state frameworks.

The remainder of the paper is organized as follows. Sectev2lops the general cascade term struc-
ture model. Section 3 provides assumptions that producer@ian invariance. Sectién 4 describes the
data, estimation methodology, and estimation resultstic@®#8 compares the performance of low- and high-
dimensional models. Sectidh 6 carries out a variety of $igation tests. Section 7 discusses dimension-
invariant extensions to stochastic volatility and timey¥ag risk premia. Sectionl8 concludes. All proofs

are in the Appendix.

’See also Collin-Dufresne and Goldstein (2003). Relatedrmapapplications include Longstaff, Santa-Clara, anth@artz
(2001) and Han (2007).



2 A Cascade Model of the Interest Rate Term Structure

We consider a filtered complete probability spd€e 7, P, (% )i>0} that satisfies the usual technical con-
ditions. LetP (t, 1) denote the timé-value of a zero-coupon bond with one dollar par value andrgxjzite

t+ 1 and letr; denote the instantaneous interest rate defined by continuit

. —InP(t,1)

2.1 The multifrequency cascade

We model the short-term interest rate under the statistiedsureP via ann-factor cascade. Lad =
(Way, -+ ,Wht) " denote a standard Wiener process with independent comigoreerd letd, denote the

long-run level of the short rate. We specify the factors¢py= 6, and the cascade of diffusions:
dXH = Kj(Xj_lﬁ—XLt)dt—}—O'jd\Nj’t, j:1,2,---,n. (2)

The first componenky; is a standard mean-reverting diffusion, revolving aroumel long-run mear,.
Each levek; higher in the cascade mean-reverts around the lgve| below. The short interest rate is set

equal to the last factor:
- = Xnt. 3)

The parametens; control the speed of adjustment of the factors. We assume&thak, < --- <Ky, so the

factors have shorter degrees of persistenceiasreases.

We denote byX; = (x1t---%.t) ' the n-dimensional state vector. The statistical dynamics inrimat
notation are
dX =K (6 —X)dt+Z¥2dw, (4)

where the mean-reversion speed matrhas diagonal elements ; = K, the off-diagonal elements ;1 =
—Kj, and all other elements are zero. The long-run mean v@dtas identical elements equal@g andx

is the diagonal matrix with element, ..., a2. We consider stochastic volatility extensions in Section 7

In general hidden-state models such as the affine models fiel2und Kan (1996) and the quadratic
models of Leippold and Wu (2002), the mean-reversion anérmawce matrices are constrained only by
technical conditions. Many parameters are not easily ifleblie, and factors can rotate making their eco-

nomic meaning ambiguous. As a consequence, researchersanysout careful specification analysis as



in Dai and Singleton (2000) to resolve identification isstd® cascade structure [d (2), or equivalently the

block diagonal form ok in (4), eliminates factor rotation by ranking the factorsédon their frequencies.

To understand how the different frequency components ibortdr to movements of the instantaneous

interest rate, we derive an alternative representatiorsasneof stochastic integrals.

Proposition 1 (Factor representation of the short rate). Under the n-factor cascade ihl(4), the instanta-

neous interest rate can be written as the sum of weightegriateof previous shocks from the n frequencies,

n n t
rt:9r+Zaj(t)(xj,0—er)+20j/o aj(t—s)dW s. (5)
=1 =1

Each response function @) is the convolution product of exponential probability diégnfunctions:
8j(1) = (Kj ... x Kn) (1) /Kj, (6)

wherex denotes the convolution operation, and® = ke *" if T > 0and K(t) =0if T < 0.

A response functiom;(t) quantifies the impact of a unit shock from facfoat timet — 1 on the instanta-
neous interest rate = X,;. \We observe thad;(1) depends on botfandn, but for expositional simplicity

we keep this dependence implicit throughout the main text.

The response functioreg (1) are rescaled convolution products of exponential deissitiad therefore
take positive values for everye (0, ). The functiora, (1) = e %', which quantifies the response to shocks
from the highest frequency compon#¥ts, starts at one when= 0 and decays exponentially with the time
horizon, where the decay speed is governedpyThis property is consistent with the assumption that the

short rate is equal to th@" factor: o = %n0-

The response to thi@ — 1)t factor is determined by convolving two exponential dessiti

(Kn—l* Kn) (T) Kn —Kn_1T —KnT
an_1(T) = = e "t e '), 7
1( ) Kn-1 Kn —Kn-1 ( ) ( )

The response at= 0 is zeroa,_1(0) = 0, indicating that lower-frequency components are not imakedly
incorporated into the short rate= x,;. The response function increases for a period of time, resaghe

maximum aft,_; = (Ink, — InK,_1)/(Kn — Kn_1), and then decreases toward zero.

The response functiorsg (1) corresponding to shocks of lower frequencies are obtaimedigh con-

volutions of more exponential densities, which can be sbineclosed form.

6



Proposition 2 (Response functions). For all j < n, the response functiong (@) are hump-shaped and
their maximum response horizons are monotonically deangasith j. The functions satisfy the closed-
form expressions:

Kj- Kn
KiKj [Tk iz (Kk—Ki)

(8)

n
aj(1) = Zai‘jKieiKiT, where a; ;=
=]
Furthermore,
n
0< Y a(r<1 (9)
&

forall T > 0.

The humped shape of the response functais), j < n, is a direct result of the cascade. Instantaneously,
only the highest-frequency shotl,; enters the short rate. A lower-frequency shock impacts tioets
rate only by first affecting dynamics of the next highesttrency factor, which then must impact the next
component, and so on. As a consequence, lower levels of stadaimpact the short rate at progressively

longer horizons. Consequently, each factor should driferént segments of the term structure.

2.2 Risk premia and the term structure of interest rates

We assume that there are no arbitrage opportunities, winiphigs the existence of a risk-adjusted measure
Q under which zero-coupon bond values are givePbyT) = E2[exp(— [T rsds)]. We allow each factor

to have its own potentially time-varying price of rigk;, and specifyQ by the Radon-Nikodym derivative:

dQ n < /t 1/t 2 )
= [1exp| — . 0. dW, ——/ ©.o5ds ).
. JI:II Y 0 yJ,s J ],S 2 0 yis j

dP
The state dynamics of the factoqg under the risk-neutral measure are therefore:

dx;; = —y;,07dt+K;j (Xj_10 — X} ) dt + cjdV\/j(% (10)
following from Girsanov’'s Theorem.
We permit risk premia to be affine i:
Vie =Y HA) X%, (11)

wherey; is a scalar and; ann x 1 column vector, which provides for convenient pricing. Tyaamics of

the stateX; can be written in vector notation:
dX = (U—K*X)dt+ =Y 2dWC,

7



whereu = (k16; —y,02, —Y,03,--- ,—y,02) ", A is a matrix with row vectora, ,--- A, , andk* = K 4 ZA.

The state dynamics can equivalently be written:
dx = k* (82 — X)dt+ =1/2dw?, (12)
where8? = (k*)~'uis the long-run mean of the state vector un@er

Bond prices are easily solved.

Proposition 3 (Zero-coupon bond prices). The price at date t of a zero-coupon bond with maturiig
given by
P(X,T) =exg—b(1)" X —c(1)]. (13)

The coefficients fx) and ¢(1) satisfy the system of ordinary differential equations:

b (1)
) = b(r)TK*G@—%b(I)TZb(r), (15)

e — K Tb(T), (14)

with initial conditions b(t) = 0 and c(1) = 0, whereg, denotes a vector with the value one in the nth

position and zeros elsewhere.

In the special case of constant risk premye; = y; for all j, the functions (1) and 1) are given by
T n
b (1) = / a(Tdt=S oy (1—e %), (16)
j o ; i ( )

n 1— gkt n 2 n 1—e Kt
C(T) — erKl ;al,l <T— K > - leyjcj IZZJ(L,J <T— K; )

( 1— e Kt 1— e K 1— e(Ki+Kk)r>
11— .

17
Ki Ki Ki + Kk ( )

Furthermore, the long-run level of the state vector uri@és 62 = (8, —y;0%/K1,8; —y;,0% —y,03/K, ..., 0, —

Yravior/ki) "
The proposition provides simple pricing under general aggions. In the general case we easily check
that the price loading satisfies:
b('[) _ (K*T)flen N (K*T)fleer*Ten.
The intercept(t) can then be computed by numerical integratiori of (15).

8



When risk premia are constant, the bond price is availatﬂQ/&oallyH The price loading; (1) on the
factorsx; are integrals of the response functiagét), consistent with the fact that the response functions
describe the effect of a shockxg; on future short rates. The intercegft) has three components. The first
is proportional to the long-run medh of the state vector. The second depends on the risk prgnaiad
therefore represents risk adjustments. The final term v@drby convexity adjustments, appearing as the
quadratic form in equation_(15). We show in the Appendix thatfunctionc(t) simplifies to
n 1— e (KitkiT

n
lzzalj Kj—— K+Kk ) (18)

i=Jk=]

1—e KT

n
= Yol + ZC. J;

N[,

where
n _ 1
Z 2 <VJK + = ) (19)
=K
andc = —6,K10i1 + ZJ 1040 (yJ +1/K; ) In the absence of risk premig; (= 0), the yield on a zero-
coupon bond with a distant maturity, = lim;_, ;. [b(T) "X + ¢(1)]/1, is lower than the long-run level of
the short ratef, = lim_, » 't ¢, due to the convexity termsJZ/(ZKJZ); the average yield curve is corre-

spondingly downward-sloping. If the risk premium coeffitiey; are sufficiently negative, however, the

long run yieldy,, is larger tharb,, and the average term structure is upward sloping.

The instantaneous forward rate is affine in the state vector:

dlnP

Gr (%0 =1 (0 X+, (20)

f(X%,1)=—

In the case of constant risk premia, we know from Proposidhat the forward rate loadings and the
short-rate response coefficients are identitglt) = a(1), indicating a tight correspondence between the
cross-section of the forward rate curve and time-seriesuhjes of the short rate.If on the other hand
we allow the presence of time-varying risk premig# 0, the coefficient/(1) = e ™"'g, generally differs

from a(t) = e ®'q,. The correlation between forward rates and expected fistoet rates is therefore

8As is noted in the proof of the proposition, closed form pripis more generally available when the affine risk prev@’ila
defined in[(I1) depend only on lower-frequency state vee@b}, i < j.

9As in standard dynamic term structure models, this resaissistent with the fact that a form of the expectations kypsis
holds when risk premia are constant. Similar to Fama and B1i887), consider regressing the future short rateon a constant
and the instantaneous forward rdg, i.e.

eyt = @+ @ fro+§&;.

The expectations hypothesis holdgif= 0 andg, = 1 and the biased expectations hypothesis holgg # 0 with ¢, = 1. In our
model, the forward rate and the expected short rate satisfy:

E(reqlX) = a1 % +[1—1 a(1)6r,
fe = HOX4E

wherel = (1,...,1)T. When risk premia are constant, we know thidt) = a(t) and thereforep; = 1. The intercepty, generally
differs from zero due to both convexity terms and risk prerBiee Piazzesi (2010) for a general discussion.



imperfect. Our framework thus allows for considerable fidity in the link between forward rates and
expected future spot rates, depending on the specificatioskopremia. Identifying risk premia typically
requires longer time series as in Cochrane and Piazzesh)280d therefore the benefits of including this

added richness in the model will generally depend on theqodait application.

3 Dimension-Invariant Term Structures

This section develops a version of the cascade model in vehidted and finite parameter vector describes

the dynamics of the term-structure for an arbitrary numtéactors.

3.1 A Dimension-Invariant Specification

When the rates of mean reversip volatilities o, and risk premig; are specific to each factor, time
factor cascade requires 3 1 parameters(6,,Ks, -+ ,Kn, 01, -+ ,0n, Y1, ,Yq)- IN Order to obtain a model
where the number of parameters is independent of the sizZieeofthte space, we choose parsimonious

functional forms to describe howy, o}, andy; depend on the positiopin the cascade.

To guide our choice of the frequency specification, we no#t the progression of the most liquid
maturities observed in the market is approximately gedmekor example, the most commonly quoted
maturities for interest rate swaps are at two, three, five, fifteen, and thirty years, with increasingly
wider spacing at longer maturities. That is, each liquidurigt is a multiple of between 1.5 and 2 times
the next lowest liquid maturity. Given that these most libmiaturities endogenously arise in the market,
we may presume that their spacing in some sense reflects immabptlocation that balances the capture
of information across different parts of the yield curve.isTim turn suggests that a geometric spacing of

frequencies in the cascade could be effective.

Our base model therefore assumes that the sequence of veasior rates follows a geometric pro-
gression:
Kj :Klbj_lv J :1727"' , N, (21)

wherek; determines the mean reversion speed of the lowest frequemeponenk; ; and the coefficient
b > 1 controls the spacing between different frequency compisndwo parameters thus control the mean

reversion speeds of all factors.

10



To verify our intuition about the regions of the term struetthat each factor will affect unddr (21),
we examine the response functia$t). These have a particularly appealing form, as shown in Eidur
for a numerical example with = 15 components having durations ranging from one week to a@sye
Except for the highest frequency which has exponential Weah response functions are hump-shaped
with maxima progressively increasing and approximatebndyw spaced on a log scale, consistent with the
progression of liquid maturities observed in the marketthim Appendix we explain in greater detail why

thea;(t) are approximately translated versions of each other indages

Building on the idea that each of the factors in the model khearry a roughly equal amount of
information relative to its neighbors, our second assuonpig that factor volatilities are constant across

components. Given this choice, it is natural to also asstaierisk premia are identical:
0j=01, and y; =y, forall j=2-.-,n (22)

The long-run level of the first factor under the risk-adjdsteeasure i99 = 0, —y,0%/K1. In the empirical

work, we find it convenient to estima6® and back out the price of risk
Y1 = Ka(6, —67) /oi.

The term structure and its dynamics are fully determinecifoarbitrary number of factors by five parame-
ters
(Kl,b, ol,er,e;@) € (0,00) x (1,0) x (0,00) x RZ.

We investigate the empirical performance of this model intiBas 4-5, and test the functional form as-
sumptions in Section 6. In Section 7, we discuss dimensigariant extensions that permit time-varying

risk premia and stochastic volatility.

Under these assumptions, the long-term forward rate

foo:yw:er_

2 __h—n _ h—2n
0[ 1-b 1-b ]7 (23)

-1

< T T 21 by
is higher than the short rate if the risk premiyyris sufficiently negative to overcome the convexity effect,
—y; > (L+b™")/[2k1(1+b~1)]. We also observe that for large

of [ viki N 1
K |1-b 1 2(1-b2)

fo — 6, —

This suggests that the cascade converges, as we now iratestig

11



3.2 Limiting Behavior

We give conditions under which both the short rate and teracttre weakly converge as the number of
factorsn grows. Using the property of the response functiong jn (%),kwow thata;(t) < 1 and thus

ajz(r) < aj(1). The unconditional variance of the instantaneous intesgsttherefore satisfies:

o0 g2
Var(ry) / s ds< § o? [ aj(s)ds=Y L. 24
(1) z z p ieds= 5 (24)
Using (21) and[(22), we can rewrite the upper bound as
21 b—n
Var(ry) < < =1 (25)

Therefore, as long as > 0 andb > 1, the unconditional variance of the instantaneous inteaés remains
bounded as — . Consider an arbitrariff > 0, and letL? denote the Hilbert space of adapted square

integrable processes defined [OnT].

Proposition 4 (Convergence of the term structure). Consider a fixed set of parametefis;,b,01,6;).
When the number of factors in the cascade mo, the sequence of short rate processgs+ x,; converges
in L? to a limit process with continuous sample paths and a finiteanae. When the parameté@ is also

fixed, the term structure of zero-coupon bond yields alsv@ges in B as n— .

Convergence holds more generally when the volatil'miﬁare heterogeneous across frequencies and satisfy

z‘f:loJZ/Kj < oo, under the maintained assumptions that (21) holdsyardy for all j.

We emphasize two implications of the convergence resultst,Rine proposition builds a bridge be-
tween standard, finite-factor DTSMs and the infinite-factedels described using the mathematics of ran-
dom fields by Kennedy (1994,1997), Goldstein (2000), and&s&tara and Sornette (2001). This bridge
is useful because our model can be implemented using vepleiempirical methods, yet approximates
arbitrarily closely the rich dynamics of genuinely infing&ate term structures. Second, convergence guar-
antees that as we add factors a non-degenerate limit doastieXist. Thus in empirical work, we expect
that our parameter estimates and estimated likelihoodcaiiverge as we increase the number of factors.

We are now in position to estimate with confidence our firstatision-invariant DTSM.
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4 Data and Estimation

We estimate the model on a panel of U.S. dollar LIBOR and swasgsrdownloaded from Bloomberg. The
LIBOR have maturities of one, two, three, six, nine, and 1ths, and the swap rates have maturities
of two, three, four, five, seven, ten, 15, 20, and 30 years. dehta are weekly (Wednesday) closing mid-
guotes spanning 13 years from January 4, 1995 to Decemb@0R8, This gives a total of 678 weekly

observations for each series.

4.1 Summary statistics of LIBOR and swap rates

The LIBOR are simple interest rates that relate to the zertgon bond prices by

LIBOR(X;,T) = g) <% - 1) , (26)

where the maturityt follows actual/360 day-count convention, starting twoibass days forward. The
swap rates relate to the zero-coupon bond prices by

1-P(X,7)
S P(%i/h)
wheret denotes the swap maturity in years @ndenotes the number of payments per year. The swap

SWARX;,T) = 100h x (27)

contracts make semi-annual paymeihts=(2) and follow 30/360 day-count convention.

In Table[1, we report for each series the sample mean, sthmgsiation, skewness, kurtosis, and
weekly autocorrelations of order 1, 5, 10, and 20. The awetagm structure is upward-sloping. The
interest rates of all maturities exhibit small skewness exukss kurtosis. They are also highly persistent

with first-order autocorrelations ranging from 0.9885 t99®.

Panel A of FiguréR illustrate the time series of the interats. The short-term LIBOR started at 6%
in 1995, varied between 5 and 6% in the 1990s, dropped to d86Luih 2003, and moved upward from
mid-2004 to 2006. Panel B plots the term structure of the LRBSWvap rates at different dates, showing a
wide variety of shapes including upward- and downward4igigphump-shaped, and flat. The data should

therefore provide a meaningful challenge.

4.2 Estimation and likelihood tests

We cast the dimension-invariant DTSM into a state space famdh estimate the parameters using quasi-

maximum likelihood. The state propagation equation is ardige-time analog of the statistical dynamics
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):
X1 = A+ DX+ /Tukria, (28)

whereAt = 1/52, ® = exp(—KAt), |, denotes am-dimensional identity matrixA = (I, — ®)0, {&1} is
i.i.d. AL(0,1,), andZy = o?Atl,,.

The measurement equations are built from observationsBOR and swap rates:

wherey; denotes the datl(X;) denotes model values of the LIBOR and swap rates as a furddftibe state
X, ande denotes a vector of measurement errors. We assume that Hsurement errors are normally

distributed iid random variables with zero mean and vageargc

In systems where the state variables are Gaussian and tiserasent equations are linear, the Kalman
(1960) filter provides efficient least-squares updatingaunapplication, the state propagation equafioh (28)
satisfies Gaussian linearity, but the measurement eqsatiemonlinear functions of the state variables. We
therefore use the unscented Kalman filter as described iyghendix to obtain quasi-maximum likelihood
estimates of the parameter vectes, b, ol,e,,,e;@,og)i composed of the five model parameters and the

- . 2
pricing error varianceyg.

Using this procedure, we estimate models in which the nurmbiequency componentsrange from
one to fifteen. Tablel2 reports parameter estimates, stamdeors, and the maximized log likelihood for
the 15 models. Wit = 1 the model is equivalent to Vasicek (1977) and has no scpkmgmeteb. All
other models have the same number of parameters regardigss mumber of frequencies. Comparing
the parameter estimates msaries helps to build intuition about the model. The esteador the mean-
reversion speed of the lowest frequency compoRreratre similar acrosa. The estimation thus identifies
low-frequency movements first, and as we add factors higleguéncies are captured as well. The es-
timated scaling parametérfalls with n, implying a finer frequency spacing as we add factors, wtdch i
intuitive. Finally, the measurement error variamgedeclines withn, suggesting that fitimproves as we add
factors. Confirming this result, the log likelihood ) rises monotonically with the number of frequencies.
The likelihood increase is rapid initially but levels off a& add more factors, consistent with the weak

convergence demonstrated in Section 3.

Focusing on the best-performing 15-factor model, the lofreguency ix; = 0.0572, corresponding

to a time horizon (1k;) of about 17.5 years. The scaling coefficient 1.74 gives the highest frequency
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a mean-reversion speed of about two days. The estimatedatahistical long-run mean is close to zero,
and the risk-neutral mean is 5.59%. Given the parsimony@ftlodel and the large amount of data, all

parameters are estimated with small standard errors ipediifications.

To assess the statistical significance of the improvemefit #hown by the 15-factor model, we use
the Vuong (1989) test, a standard method to assess the cigniéi of the likelihood difference between
two non-nested models. The Appendix provides details ofdbe We calculate the Vuong statistic for the
difference in likelihood between the 15-factor model ancheaf the other 14 models, and report the results
in the last column of Tablel 2. Asymptotically, the statistas a standard normal distribution, and the large
values of the statistics indicate rejection at the 1% levehe hypothesis that the 15-factor model has a
lower likelihood than the comparison models. The fit of thefd&or model is thus significantly better than

for all lower-frequency models.

5 Comparing High- versus Low-Dimensional Models

We compare other aspects of the performance of high- vepsugimensional specifications, both in- and
out-of-sample. To simplify exposition, we will refer to thh&-factor cascade as the high-dimensional model

and the three-factor cascade as the low-dimensional bear&hm

5.1 In-sample fit and yield curve stripping

Table[3 reports the summary statistics of the pricing erran® the two representative models. The sum-
mary statistics of the pricing errors from the three-factwdel in panel A are similar to those reported
in the literature for typical three-factor models. The rowan squared error averages over 6 basis points.
Since the bid-ask spreads for swap rates average arourtd bak basis point, these pricing errors although
small are economically significant. By contrast, the 13damodel fits observed interest rates to near per-
fection, with a root mean squared pricing error of less thaa loasis point and explained variations close

to 100% for all series.

An important practical application of our model is to generstripped yield curves from swaps and
coupon bonds. Typically, constructing a forward-rate euinom a discrete number of observations of
coupon bonds or swap rates involves choosing a functional fo link the forward rates across and between

different observed maturities. Common basis function$ubhe polynomials (Chambers, Carleton, and
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Waldman (1984)), cubic splines (McCulloch (1975) and Litzerger and Rolfo (1984)), step functions
(Ronn (1987)), piece-wise linear specifications (Fama aligs §1987)), and exponentials (Nelson and
Siegel (1987) and Svensson (1995)).

Among these approaches, the exponential functional fofm&tson and Siegel (1987) and Svensson
(1995) have become popular choices in the literature andigiedy used to generate data used in a variety
of studies (e.g., Gurkaynak, Sack, and Wright (2006)). Aidifty, however, is that the original Nelson-
Siegel basis functions cannot be made consistent with absdrarbitrage under any interest rate dynamics
(Filipovit (1999)). In using data generated by such a ptrig procedure, Cochrane and Piazzesi (2008)
therefore offer the strong caveat that, “this functionahfccannot be generated by standard yield curve
models. Since the asymptotitc{ o) forward rate and yield vary over time, there is an asymptntitrage

opportunity.”

Christensen, Diebold, and Rudebusch (2008) propose a ratibifi of the original Nelson and Siegel
approach to make it consistent with a three-factor dynaemm tstructure model. While the three-factor
structure does capture major variations of the yield cuBielfold and Li (2006)), the remaining fitting
errors can be economically significant and the functionahoverly restrictive in some instances. Indeed,
Cochrane and Piazzesi (2008) argue that the loss of infmmatn be substantial even when using the
six-factor Svensson model to compress the original datatpdiescribed by fifteen separate matur@s.
They further explain that because the fit is approximateelt¥curves will be evaluated by how well they

match the functional form, not necessarily how well theyehdhe underlying data.”

Our approach solves all of these problems, permitting pediect arbitrage-free yield-curve stripping
for an arbitrary number of factors. Following the forwarderaxpressiorf (20), the basis functions for the
forward rate curve are the response functi¢agt) }7_;. The factors(x;}|_, act as time-varying weights
for the basis functions, and the rich state space providefekibility to match closely virtually all observed

term structure shapes.

Some of the features of a standard stripping approach vetsysrocedure can be seen in Figure 3. In
Panel A, we show the standard method used in industry of dagumpiece-wise constant step function for
the forward rate and backing out the levels of the steps saigllg from low to high maturity. The stripped

forward rates from our model are shown in Panel B, calculasidg the forward-rate functiof(X;,t),

10They comment, “Regressions using 15 maturities on the hight-side, generated from a six-factor model, are obwousl
hopeless.” Further, “because excess return forecasty impltiple differences of the underlying price data... dnaahounts of
smoothing have the potential to lose a lot of informationdretasting exercises.”
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whereX; denotes the filtered state values at each fiat¢hile both approaches match the observed LIBOR
and swap rates well, our model-generated curves offer itapbadvantages over the piece-wise constant
approach. In particular, our forward curves are dynamjaahsistent and exclude arbitrage opportunities.
The piece-wise constant assumption by design matchesvelosates exactly. However, the discontinuities
in the forward curves indicate potentially large misprécifor any maturities not explicitly used in the
construction of the forward curves. These discontinuitias induce instabilities when used as inputs to
the forward rate model of Heath, Jarrow, and Morton (1998)this sense, our dynamic term structure
model provides a good starting point for the interest-rgggona pricing literature by generating smooth,
dynamically consistent forward rate curves that match tar perfection the cross-section of observed

LIBOR and swap rates.

5.2 Cross-correlations among different interest rate seds

When measuring the cross-correlations between changeshoverlapping forward rates, Dai and Sin-
gleton (2003) find that low-dimensional term structure msdgpically imply much higher correlations
than those estimated from the data. Intuitively, a low-disienal model captures the systematic, common
movements in the interest rate term structure. By desidarast rate fair values built purely from these
common movements show high cross-correlation. With a kigiensional structure, our model has the

promise of generating interest rate fair values that madtelttoss-correlations observed in the data.

To measure cross-correlations between non-overlappingafd rates, one must first strip the swap
rates. The estimates would thus depend on the particuippisty method and the basis functional forms.
To avoid such contamination, we measure cross-correlabetween the observed LIBOR and swap rates.
Their overlapping nature dictates that their cross-cati@hs can be much higher than between non-overlapping
forward rates. Nevertheless, our objective is to investigdnether high-dimensional model can match what

is observed in the data.

Our 15 interest rate series generate ax1 correlation matrix. For ease of exposition, we take the
six-month LIBOR as the basis instrument and measure itelation with other LIBOR and swap rates.
Figurel4 reports the correlation estimates between thelwebknges of the six-month LIBOR and weekly
changes in other LIBOR and swap rates across different itiatur Circles denote the cross-correlation
estimates from data. The solid and dashed lines respgcteesent correlation estimates from the 15

andn = 3 factor model implied values. We observe that the cori@tatirom the 15-factor model match the
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data well, while the 3-factor model generates correlattbhas are too high, consistent with prior evidence.
Thus, by using a high-dimensional structure, we readilyroweme a major limitation of low-dimensional
DTSMs.

5.3 Interest rate forecasting

Several studies, e.g., Duffee (2002), Ang and Piazzesi3RChd Bali, Heidari, and Wu (2009), find
that low-dimensional DTSMs fare little better, and oftenrggy than a simple random walk in forecast-
ing interest rate movements. We hypothesize that two ltroita of typical DTSMs inhibit forecasting
performance. First, general three-factor models involver dwenty parameters, many of which cannot
be estimated with statistical significance. Therefore, rasten how well a traditional three-factor model
fits the data in-sample, we should expect the out-of-samgtfopnance to deteriorate substantially due
to parameter instability. Second, traditional threedachodels do not fit observed interest rates closely
in-sample. The fitting errors carry over to out-of-sampleeéasts, because all model-based forecasts use

as a starting point the fitted yield curve.

The random walk (RW) hypothesis implies that the best faaeoha future spot rate is the current spot
rate of the same maturity. While naive, the RW has the adgaméstarting from the correct value of the
current spot rate. Over a short enough forecasting horitdmtherefore likely to outperform any model
that does not match well the current term structure. Funmbeg, the RW hypothesis involves no parameter

estimation, so there is no distinction between in- and ddtample performance.

The 15-factor cascade seems to address the two main diEaladitional three-factor DTSMs face
in forecasting. First, the cascade is parsimonious andidetitified. This should improve out-of-sample
stability, and cause less degradation between in-samglewairof-sample performance. Second, our high-
dimensional cascade fits the yield curve nearly exactlyaiqygde, and its forecasts start at essentially the
same place as the random walk. For these reasons, our casdikddy to be a strong performer out-of-

sample.

To verify these ideas, we compare our fifteen-factor castiade) its three-factor counterpairj ) the
random walk, andiii ) a first-order autoregression (AR). To demonstrate thereifféal effects of in-sample
fit versus out-of-sample stability on forecasting perfonee we first calculate the prediction errors of each

model using in-sample parameter estimates, and then igatsbut-of-sample performance.
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In-sample analysis. In this subsection, the entire sample period is used to b&timate parameters and
calculate prediction errors. For the AR strategy we esténaatAR(1) regression for each interest rate series

j for each forecasting horizdm
Yit+h = a+ byJ |t + ej t+hy J = 17 T 157 (30)

wherey;; denotes the time-observed value of th¢-th interest rate (LIBOR or swap rate) series, and the
forecasting horizons ate= 1,2, 3, and 4 weeks. We run separate regressions for differentrities | and
horizonsh, so that the estimated coefficieatandb depend on botl andh. Given the full-sample estimates

(ﬁ,B), we generate predicted valugs,, = é.\‘i‘Byj’t, and define the errors &g th = Yjt+h — Vj11h-

For the cascade, we use the filtered state values at eaclidmel the statistical factor dynamics to

predict future values of the state over different horizbns
Xiih=An+ th)/(\t, (31)

with ®, = exp(—khAt), A, = (I — ®,)0, andAt = 1/52 denoting the length of each period. We predict
values of the LIBOR and swap rates accordind d (26) (&Tng the predicted the state vec¥qr .

We compare the in-sample prediction errefs,,, of each strategy to the errors from the random walk
hypothesisy; +n—Y;:. We measure the performance difference using the preéliairiation (PV), defined

as one minus the ratio of mean squared predicting error tosgaared interest rate change:

N-h(a 2
e.
PV =1 —2L1 Gieen)” (32)
i1 (Yitrh—VYit)
The predictive variation is positive when the strategy maalker in-sample prediction errors than the ran-

dom walk.

In Table[4, we report the in-sample predictive variationineates. Panel A shows the predictive vari-
ations for the AR strategy, which are all positive becauseAR strategy nests the random walk. The
predictive variations range from 17.53% to 68.12% for thB@QR series, and are about 10% for the less-
predictable swap series. By contrast, Panel B shows thahtkee-factor model performs worse than the
random walk at the one-week horizon for all LIBOR and swapgatvith mixed results at two to four week
horizons. Panel C reports predictive variations from thdatbor model. These are close to zero for the
random-walk-like swap rates, but show significant improgata on the random walk for all LIBOR series

across all four forecasting horizons.
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Thus, even in-sample the 3-factor model cannot match predgfrom the random walk over short
intervals. Since out-of-sample predictive variations ocaly be worse than in-sample predictive variations
because of parameter instability, the results in Table 4safficient to discard the three-factor model as
a viable candidate to outperform the random-walk in outahple forecasts. The term-structure model
will suffer some degradation of performance out-of-santjle to parameter instability while the random
walk hypothesis involves no parameter estimation. By @sjiboth the AR specifications and the 15-factor
cascade provide better in-sample prediction errors tharethdom walk. However, overfitting may be more
of a concern with the AR specifications as we estimate a tdtddity parameters for the 15 interest-rate
series, whereas the 15-factor cascade ties together tlaeigs of the entire term-structure of interest rates
using only five parameters. We therefore continue to evaltlet out-of-sample forecasting performances

of both the AR model and the 15-factor cascade relative toahdom walk.

Out-of-sample performance.We re-estimate the autoregressive coefficients and the Ipademeters at
each date using the data up to that date, starting from January 7, 18@8yenerate forecasts based on the

coefficient estimates on the dateTable[5 reports the out-of-sample results.

Panel A reports the predictive variation of the AR(1) regies. Although the AR strategy showed
the best performance in-sample, its predictive power tetdes dramatically out-of-sample, indicating
parameter instability and in-sample overfitting. The ofas@mple performance is worse than the random

walk hypothesis across all interest rate series and ovéalforecasting horizons.

Panel B reports the out-of-sample performance of the 1ftafanodel, showing substantial improve-
ments over the random walk for all LIBOR series over all fasting horizons. To help explain this good
performance, we note that the out-of-sample predictiveatians are very close to the corresponding in-
sample estimates. This confirms that parameter instaksilitpt a problem for our specification, which uses

only five parameters to control the dynamics and term straaifithe 15 interest rate series.

To obtain a broader perspective on this forecasting arglgsnsider the idea of exploiting information
in the cross-section of interest rates by using a general(YARNhile this approach has a natural appeal,
by our prior results we can already see that there is littesjpect of finding success in this approach.
Overfitting and parameter instability was shown to be a suttistl difficulty even when using a set of
AR(1) regressions, which dramatically restricts the gahé&R approach by shutting down all off-diagonal
elements. Obviously, a general VAR(1) system would haveriaay free parameters to be estimated with

any accuracy, and out-of-sample instability would be amdaeger problem than with the simple AR(1)
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approacl@ By contrast, our model essentially builds a VAR(1) systentlenforward rates that exploits
information from the whole term structure, but the modeluiegs only five parameters. The ability to
parsimoniously incorporate information from the entirarestructure is a necessity for generating good

forecasts, and drives our results.

The 15-factor model succeeds because it is parsimoniobispaitameters, yet flexibile due to its rich
state space. This combination differs from existing litera, which typically specifies few factors with
many parameters. From this perspective, our approach tefieceffort to be as simple as possible in
aspects that permit it, but not simpler than required to etely match the data. The combination of a
DTSM that is rich in states but thrifty with parameters isghnportant to producing excellent in-sample

fit and improved out-of sample forecasts.

6 Specification Analysis

In this section, we investigate the empirical validity oétkey assumptions in our benchmark dimension-

invariant model.

6.1 The frequency specification

To verify the empirical validity of our assumed geometriognession of mean reversion rates[inl (21), we
estimate an extended version of the 15-factor model byntpitj be a free parameter for each frequency
j. The total number of parameters increases from the originall9. In Figuré b, we plot the logarithm
of thek; estimates in circles, and as a solid line the linear relatigplied by (21) withk; = 0.0572 and
b= 1.74. The estimates for the free parametgrsary around the solid line, suggesting that our frequency

specification holds reasonably well.

Using a likelihood ratio test to refine this analysis, resion (21) is strongly rejecte@. Nevertheless,
the added freedom does not improve forecasting performafen we try to perform rolling estimation
of the unrestricted model, we often experience convergessces. When we use the in-sample parameter

estimates instead to study prediction errors, the granchgeeof the percentage predicted variation on the

11This intuition is consistent with Ang and Piazzesi (2003)ovshow that an unconstrained VAR(1) performs poorly indste
ing relative to the simple random walk hypothesis.

12The maximized log likelihood values of the unrestricted elas 29,997, whereas the restricted log likelihood is 26,3which
produces a rejection at the 1% level given 13 degrees ofdraed

21



six LIBOR rates over the 13 different horizons is 26.80%. ¢tm@arison the restricted model gives an
improvement in predictive variation relative to the randesmilk of 26.98%, marginally better. Thus, in
practical applications the cascade that assumes a geompetgression of frequencies performs at least as

well as the cascade with unconstrained frequencies.

6.2 Risks and risk premia

Following the idea that our specification of mean-reversitesk j approximately matches the near-geometric
progression of maturities in the most widely quoted fixechime instruments, our base model makes use of
the additional simplifying assumption that the volatdgio; are identical across factors. This assumption
builds on the idea that each factor in the cascade modeldlarty a roughly equal amount of information
relative to its neighbors. Given this choice, we also assimwair base specification that risk premia are

identical across componentg:=y;.

To investigate the specification of risks and risk premiassifrequencies, we extend the dimension-
invariant model to permit separate scaling parametersdiatilities and the market premia across factors.

We specify the instantaneous variance of the components as
0% = afbli V%, (33)
and we accommodate a more flexible risk premium specificatjon
Y ,tGJZ = Yo,jcj2 - V1,j012Xj 1t Vz,jGJZXj e (34)

where the three components satisfy

Yo, 012 = yoc%b(i *1)307
Vijof = viofblie, (33)
¥,j0; = Y010 Y%,

This relaxed specification adds two more risk premium caefiis §,,y,) and four additional scaling pa-
rameterg sy, S, S1,S2)- A zero estimate for a scaling exponent, sgyindicates that; does not vary across

frequencies, while a positive estimate indicates that dmeponent is larger for higher frequency factors.

Table® reports the additional parameter estimates for tiaetwith flexible volatilities and risk premia
across factors. All three risk premium coefficients are tiegasuggesting that the risk premium increases

in the deviation ofx;; from its lower-frequency neighbot;_1;. The estimates for the scaling exponent
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on the instantaneous variance are negative, suggestinththastantaneous variance is smaller at higher
frequencies. However, the estimates are much smaller thaincabsolute magnitude. Thus, the instanta-
neous variance changes much more slowly across frequahaiethe mean reversion speed. The estimate
of g is positive, implying that the risk premium is larger in alde magnitude for higher-frequency fac-
tors. Again, however, the estimate is much smaller than ®he.estimate o$; is virtually zero, ands, is
negative, suggesting that the risk premium depends ongkdeniel, but this dependence becomes small at

high frequencies.

Overall, the risks and risk premiums do not vary nearly ashragross frequencies as does the mean
reversion speed. The assumption of stability across frecjee can thus be viewed as a convenient sim-
plification that can be relaxed in particular applicatiobst offers the benefits of parsimony and robust

identification.

6.3 Positive interest rates

The linear Gaussian structure of the benchmark model peswaahalytical tractability but permits interest
rates to have positive probabilities of becoming negativ@ exclude negative interest rates, we consider

two alternative dimension-invariant specifications.

First, we specify the instantaneous volatility of eachda¢d be proportional to the square root of the
corresponding factor itselfy; = o1,/Xj;. The one-factor version of this model thus corresponds to, Co
Ingersoll, and Ross (1985). We further assume that the marlee of risk is proportional to the square
root of the risk level,; , /Xj; so that the risk premium is proportional to the risk leveti aﬁj =Kj,j+Y,0%.
The spot-rate loading coefficients can no longer be solvatyacally, but can be solved numerically from
the following set of ordinary differential equations,

b(t) = en—(k%)Th(1) - 30%[b(T) * b(T)],
c(t) = bi(T)K6,

(36)

starting atb(0) = 0 andc(0) = 0, wherex denotes element-by-element multiplication. When we extém
this alternative specification with 15 factors, the maximeitog likelihood is 29,377, almost identical to the
likelihood of the benchmark linear Gaussian model. Theainysle prediction errors from the six LIBOR
rates generates a grand average of 21.16%, again similae teatue from the benchmark linear Gaussian

specification (21.10%).
The second alternative maintains the linear Gaussiantsteiof the factors but sets the instantaneous
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interest rate to the square of the highest-frequency coemon= x2,, implying that zero-coupon bond
prices become exponential quadratic functions of the faas in Leippold and Wu (2002). Bond prices
are given by

P (X, T) = exg—XB()% —b(1)" X —c(1)],

where the coefficients solve the system of ordinary difféaéequations:

B'(1) = Zn—B(1)k—k'B(1)—2B(1)%03,
b'(t) = 2B(1)k8% k' b(1) — 2B(1)b(T)02,

d(1) = b(T)TKGQthr[B(T)]of—%%b(T)Tb(T),

starting aB(0) = 0, b(0) = 0, andc(0) = 0, whereZ, is a matrix of zeros with a one in tte, n)th position
andtr denotes the trace operator. When we estimate this modellwithctors, we obtain a log likelihood
of 29,742, slightly higher than the linear Gaussian benchmarkahothe in-sample predictive variation
from the six LIBOR rates over all horizons generates a graredaaye of 2105%, slightly lower than the

benchmark linear Gaussian specification.

Since both of these alternative specifications generajesiailar performance to the benchmark linear
Gaussian model, we recommend the benchmark model for ifglisity and analytical tractability. When
the possibility of negative interest rates is an importamioern, either of the two alternatives can be chosen

while maintaining the same dimension-invariance propsids the base model.

7 Dimension-Invariant Extensions: Stochastic Volatilityand Time-varying
Risk Premia

Itis natural to view our efforts in this paper as the first Ste@ more general dimension-invariant approach.
We now extend it to accommodate volatility and risk premiuynainics, allowing future applications to

interest rate options and the analysis of excess bond eeturn

7.1 Stochastic volatility and fixed-income option pricing

Prior literature shows that the stochastic volatility irofiag interest rates is largely “unspanned” by bond
prices themselves (e.g., Collin-Dufresne and Goldsted®32. The specification of stochastic volatility

should therefore not have a large impact on the term streicamd our benchmark model therefore assumes
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constant volatilities for simplicity. For other applicatis, such as the pricing of interest rate options, the
specification of stochastic volatility is critical. For erple, current practice for interest rate option pricing

takes observed interest rates as given and focuses on imgdadlatility dynamics.

The following candidate specification provides a naturahelision-invariant extension of our term

structure model to include an analogous stochastic vityatiscade suitable for option pricing:

dof) = K{(0]y —0f)dt+wodZ,  j=1,..n, (37
Gz~ 6. (38)
< = B B>, (39
p = E[dW,dZ]/dt. (40)

The specification thus permits amdimensional stochastic volatility cascade in which eacmgonent
mean reverts at a geometrically increasing rate aroundekielowest frequency component. In addition to
the geometric progression of mean-reversion speeds, guffisption achieves dimension invariance by as-
suming a constant and identical coefficiendescribing the volatility of volatility, and identical a@lations

between the interest rate and variance innovations.

We leave empirical investigation of option pricing for frguresearch. One possible procedure for
estimation can be as follows. One first estimates our fivaspater term structure model with as many
frequency components as needed to match observed intatest rThen one can take the estimates of
the five parameters as fixed, use the model to strip the fornstedcurve, and proceed to estimate the
parameters governing variance dynamics using interesbgtons data. This estimation procedure extracts

the interest-rate frequency components from the first steldtze volatility factors from the second step.

7.2 Time-varying bond risk premia

Extending the concept of a dimension-invariant term stmgcto time-varying risk premia is straightfor-
ward. For example, Cochrane and Piazzessi (2005, 2008gsutigt risk premia affecting bonds of dif-
ferent maturities are all driven by a single factor, appmatied by a tent-shaped function of forward rates.
Within our framework this idea can be captured by allowinat#y =|;A, j = 1,--- ,nwherel; are scalars

andA is ann x 1 column vector, where thig are the risk-premium loadings on the factors definefih (11).

Alternatively, a more direct approach to investigating thaisk premia is to use our dynamic term

structure model to extract the complete set of frequencypoomants x; ,t}T=1 and use the variance dynamics
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specified in[(3l{-40) to extract the variance componénts}y., from interest rate options. One can then
easily investigate how bond returns over different investtihorizons depend on the level of these different

frequency components:
n m
Excess Retukny = a+ Z bjx;j: + Z CkVkt + & 1at-
=1 k=1

Through such regression analysis, one can analyze whéeoefficientgb;} are tent-shaped, whether
the excess returns also depend on the interest rate vasjarmaehow the dependence structure varies across

different maturities and investment horizons.

8 Conclusion

We develop a class of dynamic term structure models thatdrereely parsimonious, with parameter re-

guirements that are independent of the number of factors.b@se model uses merely five parameters to
govern the time-series and cross-section of interest.ratesapproach eliminates the well-known curse of
dimensionality in general specifications, and allows usstoreate with equal ease and accuracy specifica-

tions with arbitrarily large numbers of factors.

We show that genuinely high-dimensional specificationsrowe on the traditional three-factor struc-
ture that predominates in the existing literature. A 13damodel achieves near perfect fit to a broad cross-
section of LIBOR and swap rates, is dynamically consisteoturately matches the correlation between
bonds of different maturities, and generates superioobsample forecasts relative to lower-dimensional

specifications.

The dimension-invariant approach we develop in this papematurally be extended to accommodate
stochastic volatility, allowing the pricing of interesdte options, and time-varying risk premia. We leave

empirical investigations of these extensions for futuseesch.
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A Appendix

Throughout the appendix, we make explicit the dependendheofesponse function on the number of

factorsn.

A.1 Proof of Proposition[

We prove the proposition by induction. Consider the ondefacase f = 1). We infer from Ito’s lemma

thatd(e4x; 1) = K1 €4t (dt + €'d(Xq ). Sinced(Xqt) = K1 (0r — X1¢)dt+ 0;dWi ¢, we have
d(eKltX]_’t) = eKlt(K]_erdt + 0'1dV\/_|_’t).
Integrating both sides and then dividing &%, we obtain equatioi 5) far= 1.

We now assume that property (5) holds for(an- 1)-factor structure,
n—1 n—1 t
Xn_1t = 6 + Zl(xj,o_ er)aj,nfl(t) + 2 Jj /O aj‘nfl(t — S)dvvj& (41)
i= =1

whereaj n_1= (Kj*...xKn_1)/K;. Ito's lemma impliesd (€“'X, ) = Kn€'Xq_1 (dt+ o€t dW;. Integrating

both sides and then dividing both sidesd$y, we have

t t
Xnt = € X0 +/ KneiKn(tis)anl‘sd S+ 0”/ eﬁKﬂ(tiS)d\Nms-
: 0 o :

Substitute ouk,_1 s according to equatiof (41),

n-1

t t
/OKnefK”(t*s)Xn,l‘st - Gr(l—e’K”t)JrZ(xj,o—er)/o Kne ("%, 4(s)ds
=1
n—-1

t s
+ Z oj/o Kne *(9) [/0 ajn-1(s— u)d\Nj,u] ds

=

Letann(t) = e, andaj o(t) = [y ke *9a; 1 1(s)dsfor all j < n— 1. We observe that

t s tr ot
/ Kne_K"(t_S) [/ ajn-1(s— U)dvvjyu] ds = / [/ Kne_Kn(t_S)ajyn—l(S_ u)ds} dWi
0 0 0 u
tr pt—u
= / [/ KneK”(tusl)ajyn_l(S')dg} dwj
0 0

t
= /O ajn(t—u)dW ,

Thus, the proposition holds for tmefactor structure, and we conclude that it holds fomall
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The coefficients are defined recursivelydyy, = K, * a; 51 Starting witha; ; = K; /k; fort > 0. Hence
ajn= Kn*...% Kj+1>k ajj= Knx Kn_1* ---KJ/KJ‘, (42)

which proves equationl6) holds.

A.2 Proof of Proposition[2

Property 1. If 1> Ois a local optimum of the response functigmathen (1) = Kj11a] 1 (7).

Proof. Sincea; , = (K; x--- xKy)/K;, we infer that
_K
ajn(T Hl/ Kj(T—s)aj;1n(s)ds

We differentiate this relation with respectto

K T

ajn(1) = lj(—Jrl [/O —KjKj(T = s)aj1n(s)ds+K;j(0)aj1n(T) | -
j

This implies the relationsa] (1) = Kj;18j11.n(T) — K& n(T) and

a/j/,n(-[) = KJ+1a/j+1,n(T) - Kjalj.n(T)-

An interior local optimum of; , therefore satisfies; () = Kj.1a], 1 5(T) sincea] ,(1) = 0. |

We now show by backward induction that for @#=n—1,--- 1, the functiona; »(T) is single peaked

and reaches a maximumt,. Furthermoref;n > -+ > Ty

The property holds fof = n— 1. The functiora, ,_1(T) = —2— (e *1T —e™*T) js hump-shaped and

Kn—Kn-1

reaches a maximum when= T, 1, = In(Kn/Kn_1)/(Kn —Kn_1)-

Assume that the property holds fgr+ 1. LetT;, denote the smallest local maximum af,. We
know thata/ ,(Tjn) <0, and thata ,(Tjn) = Kj 418, 1 4(Tjn). Hencea|,; ,(T;n) <0, which implies that
ﬂn > r_j+17n. If the function is nonmonotonic, there exists a local minmm> T_Jn Sincet > T_j7n > T_j+17n,
we know that] ,(T) = Kj;1&],1,(T) <0, which is a contradiction. We conclude tlzgt, is single peaked

and reaches a maximum®@t, > Tj1n.

The analytical solutions and proofs for the convolutionserponential density functions are given,

among other places, in Akkouchi (2008).
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Inequality [9) can be proved by a forward recursion. Stgritm = 1, the condition holds sinaa 1(t) =

e "1t <1 fort > 0. We now assume that the inequality holds for(ar- 1)-factor structure. We infer that

n n-1 ,t
D ain(t) = e_K"tJFZ/O kne " ~%a; , 1(s)ds
=1 =1

n

-1
;aj‘n,l(s)ds

t
_ efKnt_i_/ KnefKn(tfs)
0

Sincez'j‘;}am_l(s) < 1foralls> 0, we have

n

t
Zlaj‘n(t) <e Kt +/ Kne (t-9ds= 1.
= 0

We conclude that the inequality holds for all

A.3 Proof of Proposition[3

Derivation of the system of ordinary differential equations (14) — (15). Ito’s lemma implies that the
expected return on the bond undgis:
1d 1
EQ <——H> = —by(1) "k (B = X)) + ébn(r)Tan(r) +¢h(T) + b (1) "%

Since this expectation is equal to the interest rate x,¢, we infer that

—mafmw+%maﬂmwo+qmzﬁ, (43)

bn(T) TK* X + B (T) T X = & X. (44)

Equation[(4B) is equivalent t6 (115). Equatiénl(44) implieatb, (1) "k* + b, (1)" = €/, and we conclude
that (14) holds.

Constant risk premia. When risk premia are constany;j, = y; for all j, we can solve the system of

ordinary differential equation@4) — (15) in closed-form. By(14), the functionb,(T) satisfies

1n(T) = —Kibyn(T) +Kabzn(T),

n1n(D = —Kno1bn-1n(T) +Knbnn(T),

b:17n(‘[) - 1_ Knbn’n(‘[).
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The last equation implies that
1—e Kt

Kn

T
bnn(T) = /0 ann(s)ds=
The penultimate equation implies that

d
- €0 10(1)] = €7 Knbaa (1),

Henceb,_1n(T) = (Kn/Kn-1)Kn_1(T) *bnn(T), and therefore

50 K (T) by (1) = KKn Kn-1(T) * ann(T) = @n-1,n(1).

n—1 n—1

;—l,n(r) = K

We infer that
T
Dy-1.(1) = | 0-1(9)ds

More generally, we infer thdtj , = (Kn/K;)K;*...%Kn_1 % bn » and therefore (16) holds for glle {1,...,n—
1}.

By ([15), the functionc, (1) satisfies
n 1 n
cn (1) = Kabrbin (1) = Y Y;05bj n (1) dsb— 5 > o?bf (1)
=1

Hence

Similarly, (18) implies

1 n n T
b? (s)ds = i i nOli / 1—e M%) (1— e )ds
/0 J‘n() l;kzzj i,j,nYk,j,n 0( )( )
AL 1—e ™t 1-ekt 1 g (kT
= Qi jnOlk jn | T— -
i; = W /J/n[ Ki Kk Ki + Kk
and we conclude that equatidn17) holds.
We easily verify that
Kyt 0 - 0
-1 -1
Kl Ki® K
0
Kyt Kyt Kyt
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and infer thaB® = (8, — y,0%/K1,6; — Y107 — Y,03/Ka, ...,0 — S 1 yio?/ki) .

Derivation of equation (18).Sincea; , = Kn * Kn_1 % - - - Kj /K|, we infer that

+00
/ ajn(T)dt= 1
0

Kj
By (16),
i=] W KJ.
Hence ,
n n 1 e—K,T n yo‘ n | 1_e—K|T
2 iC] 2
Yio7 ) a (r— >— |1 Qi jny;O
lej J|=ZJ He Ki (le KJ) 21(121””] J) K
Similarly,

1— e KT 1— e K 1— e—(Ki+Kk)T
< Ki - Kk * Ki + Kk )
n 1—e (Ki+KK)T
= K%_K_jzai‘j‘ +zzaljnak1n K+ K

Equation[(18) therefore holds.

Generalization. More generally, we note that we can solve the equation:
b (T) = € — K" Tbn(T) + X%

as long as the matrix*" is upper triangular. Since* = k + ZA, we conclude that we can solve fok(t)
explicitly whenA is lower triangular, that is if the risk premium of any factiois only affected by factors

i<j.

A.4 Proof that the response functions are translated versius of each other

Let {E;}7_, denote a sequence of independent, exponentially distdmaindom variables. The p.d.f. Bf

is Kje~"*, wherek; satisfies[(211). The Fourier transformiBf+- ... + E, is

n
Fe 2TE(E +.+Ey) _ Ke
J:! Ky + 2iT¢,
For a fixedj, we infer that
n 2
W n(8) = [IEe—Z'"E(EJ+ +En>] =—SIn <1+ L—T[E> (45)
, ¢
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has a limit whem — oo sincey;” ;(1/K;) < «. The random variablg; +... +E, and its densitK; = - - - x K,

therefore have well-defined limits as— oo.

We note that
2ith¢

l‘IJj n ;I <1+ K,bJ ) :qu+1.n+1(bE)-

The inverse Fourier transform af; ,(§) is K;a; n(T), while the inverse Fourier transform ¢f ; , ;(bg) is

Kj+18j11,n+1(T/b) /b= Kjaj;1n+1(T/b). Hence
aj n(T) = aj11n41(1/b).

Let Aj = limp_.» aj n(T). We know thatA; (1) = Aj;1(T/b), that is theA,(t) are translated versions of each

other in log scale. We infer thag (1) ~ aj;.1,n(t/b) for largen.

A.5 Proof of Proposition[4

We denote b)|4y||§ = (fo dt) the norm of an adapted square integrable progeds’. The convergence

proof is based on the relation:
Xntfer‘i_zoj/ aJn dVVJs
By Propositiori 2, the factor loadings satisfy, = zi:j i ;K forall j > 1, where

Kj...Kn
KiKj iz iz (K —Ki)|

Aijn=

Whenk; = k1b'~1, the coefficients can be rewritten as

1( )I ip=( —j+1)/2
3 F<n—> (u—n |

whereF (0) = 1 andF (k) = (1—b™1)...(1—b¥) for all k > 1. The sequencéF (k)} is decreasing and

Qijn=

converges to a strictly positive limi,. We observe that

F(K) — Fo = F(K) [1— ﬁ (1—b‘i)] < F(k) S b
i=k+1 i=k+1
and therefore
F(k)—F, b7k
F(kk —b-1

for all k.
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As n goes to infinity, the coefficientt; j , converges to

1 ( )| jb (i—-j+1)/2

O(i’j:K,-Fm (|—J)

We show:
Property 2. There exists a finite constant C such tigat’ | ;| ||Ki[|, < C/bi/2 for all j.

Proof. Since||Ki||2 < v/Ki, we infer that

(i—j)(i—j+1)/2 (i-i-1/
Z‘GIJH‘KHZ Fz\/—zb \/ Kj w\/—JZ

LettingC = F,2/b/ky 525 b~'"Y/2 we conclude thay ;™% |o j| [|Kill, <C/bi/2.  m

The functiona; = LOT(YLJ'Ki is therefore well-defined and square-integrable, and itsnneatisfies

1aj]l,, < C/b}/2. We also show:
Property 3. There exists a finite constant €uch that|a; , — a;||» < C'bli/ZVfor all j <n.

Proof of Property 3. The identityaj n —a; = 3. ;(0li j.n — i j)Ki — 3,27, 1 0i jKi implies that
n
lajn—ajll2 < z Ot j.n — O j | V/Ki + z i ] VKi
i=] i=n+1

We observe that

O jn— @ |/ 1 P =) —F

IN

VKiF2 F(n—i)
S S
- JKF2 b—1
and therefore
ZIGI — &K < vb b (i=1)(i-i-3)/2p(i/2-1) _ ¢/ pi/2-1)
b o (b— 1)fF£z ! ‘

whereC; = VB[ ob0-9/2]/ [(b- 1) yKiFZ]

Similarly,
Z o j| VKi < 21 Jg b’(i*j)(i*jfl)/zg% +Zm p-(-i-1)
i=n+1 mei:n+1 o Kj i511
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Recall thaty £, b~ (-1=U = b=("=1) /(1 - b~1), and defineC, = vb/[(b— 1)/K1F2]. We infer that

+o0

S 166, Vi < Copli/2m),
i=nt+1

LettingC’ = C} +C,, we conclude thata; , — a;j|[; <C'bl/Z™. ®

The process
+00 t
=1 —®

is well-defined whery [ 07 /k; < . Since

n t
X = 5 01 [ @a- @)W 5 [ at-goaw,
=1 -

j= n+l

we know that

=Xl [3 = ZG||aJn ajll3+ Z ofl|ajl[3
j=n+1
2
2 2n(i-2n) | 2
< C ZO'b ) +C Z bJ

j=n+1

Let [y] denote the integral part of a real numigetf 3, 6%/k; < e, we conclude that

HXI’]_XOOH% < Clz[rg] Jb21 N C? i 0-J p2(i-m 4 2 Z j
- b —#7241 D! i )
© g2 o g2
S C/2 < ) b— (CZ+C/2) < _j)
2 o J:[r%]ﬂ b!

converges to zero whan— . This establishes the convergence of the short rate process.

We next turn to the convergence of the zero-coupon bond:yield

> 11 bjn(T)Xj ¢ +Cn(T)
T

Yn(t,T) =

asn — oo for a fixed value oft > 0. We observe that

ibj.n T)Xjt — < (i |bj.n(T) |+ z |b )Supnxj,tnz-
=1 2 =1 1 i

j=n+
Since|bj(1)| < 1/k; and

HMS

Xj‘t

— n _
|bj.n(T) = bj(D] < 3 [0tijn— @i jl < —,



whereC” = 57 ,b10-2 /[(b— 1)F2], we conclude thaF"_, bj n(T)x; /T converges tG 7 bj (1)x; in L2.
We also infer from[(1B) that,(T) converges to

e 0 0-12 1 0 _1_e7|<i'[ 0 0-12 © o
C)=6-Y 5 (W +5 G -y 2 0 Ol j —
o0 =6= 2 \™it3 +i; LoKT 2 5 2 2 0 (Ki +K)T

=17

wherec; = —8,K10i 1+ ¥|_; @; ;0% (Y4 1/K;) , and conclude that the yieig(t, T) converges tcﬁz‘}"zlgj (Oxj e+ ()] /1.
A.6 Unscented Kalman filter, maximum likelihood estimation and Vuong test

Since the measurement functibifX;) is nonlinear, one possibility is to rely on a Taylor expansio
obtain extended forms of the Kalman Filter (e.g. Baadsgdaadisen, and Nielsen (2001), Chen and Scott
(2003), Duan and Simonato (1999), and Duffee and Stanto®8(20 Alternatively, Julier and Uhlmann
(1997) propose the unscented Kalman filter (UKF) to direapiproximate the posterior density using a set
of deterministically chosen sample points (sigma poifthe UKF is accurate to the second order for any

nonlinearity.

We use the UKF approach to filter the mean and covariance o$tdtes and measurement series.

Specifically, we start with the linear Gaussian predictiaritee state vector,
X =A+®0X 1, V=W 1P +3,, (46)

whereX; andVy; are the timeit — 1) predicted value of the conditional mean and covarianceixnaitthe

state vector. Based on these predictions, we draw a set-pflSigma vectorg; on the state,
Xeo=Xt;  Xei = Xt T4/ (K+8)(Vir);j

with weights given by = 8/(n+ ) and fori > 0, w; = 1/[2(n+ )] whered is a parameter. We prop-
agate the sigma points through the nonlinear measuremeatieq to obtain a set of sigma points on the
measurementg, ; = h(x,;). These allow us to generate the predicted mgamd covariance matriXy,
of the measurement series, as well as the covariance matmwebn the state vector and the measurement
Vit
o = Ziziowizt,iv

Ve = Y oW [Zt,i =4 [Zt,i _Yt]T +2y, (47)

Vit = YW [X — X [Cu —Vt]T-
Using these moment conditions, we apply the Kalman filtettmin the filtered values of the meXpand

covariancé/, of the state vector:

Xe =X +Ke (Ve — V), Vy.t =V — KV K, (48)
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whereK; =V, (Vyy) ~! denotes the Kalman gain.

Given the unscented Kalman filter forecasts on the conditiorean and covariance of the interest rate

series at each date, we build the quasi log likelihood:

t(©) = —% In Wy‘t‘ - % §% —Vt)T (Vy‘t)_l(Yt ~%)- (49)

We choose model parametés= (k1,b,01,6;,,0%,02)T that maximize£(©) = T ;1 (©). We constrain

(8,,062) to be positive in the estimation.

The Vuong statistic is given by
%: \/N(m”l)/S”h pn,t - |15.t_|n,t7 n= 1727"' 7147 (50)

wherem, = =¥ 1p, . /N denotes the sample mean of the weekly log likelihood diffee,,, between the

15-factor model and the model withfactors. The sample standard deviatiopgf is denoted bys,.
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Table 1

Summary statistics of LIBOR and swap rates

The data consist of weekly observations (Wednesday clasidgguotes) on LIBOR at maturities of one,
two, three, six, nine, and 12 months, and swap rates at mesudf two, three, four, five, seven, ten, 15,
20, and 30 years. Each series contains 678 weekly obsarsdtiom January 4, 1995 to December 26,
2007. Entries report the sample average (Mean), standaratioa (Std), skewness (Skew), excess kurtosis
(Kurt), and weekly autocorrelations of orders one, five,dij 20, respectively, for each series.

Maturity Mean Std Skew Kurt Autocorrelation

1 5 10 20

Im 4.335 1.798 -0.714 -1.050 0.998 0.988 0.971 0.922
2m 4.370 1.803 -0.722 -1.038 0.998 0.989 0.972 0.923
3m 4.405 1.808 -0.720 -1.025 0.998 0.989 0.971 0.921
6m 4.475 1.803 -0.713 -0.970 0.998 0.986 0.967 0.916
9m 4.547 1.789 -0.689 -0.910 0.997 0.983 0.962 0.908
12m 4.631 1.769 -0.653 -0.854 0.996 0.979 0.954 0.898
2y 4.877 1.570 -0.529 -0.699 0.994 0.966 0.932 0.865
3y 5.093 1.414 -0.407 -0.663 0.992 0.957 0.916 0.842
4y 5.260 1.298 -0.291 -0.693 0.991 0.950 0.904 0.823
S5y 5.395 1.209 -0.187 -0.748 0.990 0.944 0.893 0.808
7y 5.595 1.091 -0.023 -0.850 0.988 0.937 0.880 0.787
10y 5.798 0.994 0.126 -0.949 0.987 0.931 0.870 0.769
15y 6.009 0.909 0.228 -1.020 0.986 0.928 0.865 0.762
20y 6.103 0.870 0.254 -1.020 0.985 0.927 0.864 0.761
30y 6.136 0.851 0.295 -0.949 0.986 0.926 0.862 0.756

Average 5.135 1.398 -0.316 -0.896 0.992 0.959 0.919 0.844




Table 2

Parameter estimates, standard errors, and log likelihoods

Entries report the maximum likelihood estimates and thindard errors (in parentheses) of the model parametersh f6a represents one
set of parameter estimates under the assumptionfléfiquency components, with=1,2,--- ,15. The column under. reports the maximized
aggregate log likelihood value for each model. The lastmolwnder?’ reports the Vuong likelihood ratio test statistics betw#en 15-factor
model and the other 14 models. Asymptotically, the statlstis a standard normal distribution.

n K1 6 o1 oY b a? L Y

1 0.2092 (0.0009) 0.0436 (0.0003) 0.0065 (0.0001) 0.06880qAL) 0.0000 (0.0000) 0.1574 (0.0009) 4086 47.91
2 0.0603 (0.0007) 0.0131 (0.0004) 0.0111 (0.0001) 0.06950G%) 6.1387 (0.0905) 0.0187 (0.0001) 13967 30.79
3 0.0526 (0.0003) 0.0000 (0.0000) 0.0101 (0.0000) 0.06620G01) 7.3138 (0.0393) 0.0047 (0.0000) 19928 20.70
4 0.0366 (0.0004) 0.0000 (0.0000) 0.0116 (0.0000) 0.06530G02) 4.2707 (0.0216) 0.0019 (0.0000) 23276 17.33
5 0.0441 (0.0005) 0.0000 (0.0000) 0.0125 (0.0000) 0.05070GdB) 2.8266 (0.0108) 0.0010 (0.0000) 25551 15.99
6 0.0383 (0.0003) 0.0000 (0.0000) 0.0123 (0.0000) 0.04970q@2) 3.0267 (0.0070) 0.0005 (0.0000) 27527 10.60
7 0.0283 (0.0003) 0.0000 (0.0000) 0.0129 (0.0000) 0.04190GAB) 2.6150 (0.0047) 0.0004 (0.0000) 27898 11.93
8 0.0275 (0.0003) 0.0000 (0.0000) 0.0133 (0.0000) 0.06320G0B) 2.5271 (0.0057) 0.0004 (0.0000) 28445 11.00
9 0.0278 (0.0003) 0.0000 (0.0000) 0.0141 (0.0000) 0.065(0G0B) 2.2351 (0.0046) 0.0003 (0.0000) 28801  9.18
10 0.0313 (0.0004) 0.0000 (0.0000) 0.0140 (0.0000) 0.05070G05) 2.2010 (0.0048) 0.0003 (0.0000) 28972  6.68

=
=

0.0305 (0.0002) 0.0000 (0.0000) 0.0144 (0.0000) 0.09660q06) 1.9603 (0.0046) 0.0003 (0.0000) 29036  6.06
0.0359 (0.0003) 0.0000 (0.0000) 0.0147 (0.0000) 0.08060007) 1.9130 (0.0045) 0.0002 (0.0000) 29194  4.41
0.0383 (0.0003) 0.0000 (0.0000) 0.0149 (0.0000) 0.08830Q07) 1.8953 (0.0041) 0.0002 (0.0000) 29283  3.33
0.0409 (0.0004) 0.0000 (0.0000) 0.0151 (0.0000) 0.07810q06) 1.8757 (0.0048) 0.0002 (0.0000) 29332  2.32
0.0572 (0.0004) 0.0000 (0.0000) 0.0156 (0.0000) 0.05840q04) 1.7400 (0.0041) 0.0002 (0.0000) 29377 —

e i
abdwWN




Table 3

Summary statistics of pricing errors

Entries report the summary statistics of the pricing ermrghe LIBOR and swap rates from the power-
law scaled cascade term structure models with three (panahé\ 15 (panel B) factors, respectively. The
pricing errors are measured as the difference in basis bigiiween the observed interest rates and the
model-implied fair values. The statistics include the siengwerage of the error (Mean), root mean squared
error (Rmse), the first-order weekly autocorrelation ofeéler (Auto), the maximum absolute error (Max),
and the explained variation (VR) (in percentages), defiisazha minus the ratio of the pricing error variance
to the variance of the original interest rate series.

Model A. Three-factor model B. 15-factor model

Maturity ~ Mean Rmse  Auto Max VR Mean Rmse Auto Max VR
Im -0.68 7.47 0.86 43.93 99.83 0.02 0.62 0.36 5.40 100.00
2m 0.63 3.82 0.69 3742 99.96 0.01 1.76 0.52 16.31 99.99
3m 1.61 5.03 0.85 4254 99.93 -0.11 1.79 0.60 18.96 99.99
6m 0.39 6.78 0.93 24.05 99.86 0.04 1.06 0.59 8.78  100.00
9m -1.74 6.88 0.89 32.06 99.86 0.38 0.92 0.69 431 100.00
12m -3.06 6.74 0.79 33.00 99.88 -0.49 1.21 0.06 471  100.00
2y 211 6.17 0.81 2438 99.86 0.28 1.09 -0.02 452  100.00
3y 1.97 6.90 0.88 34.12 99.78 -0.19 0.75 0.36 3.88  100.00
4y 0.87 6.32 0.90 3348 99.76 -0.04 0.81 0.16 8.08 100.00
5y -0.21 5.85 090 27.63 99.76 0.07 0.73 0.20 4.60 100.00
7y -1.89 5.55 092 17.32 99.77 0.08 0.70 0.35 6.86 100.00
10y -2.35 5.17 0.89 18.65 99.78 -0.12 0.95 0.23 9.00 99.99
15y 0.88 3.87 0.86 13.14 99.82 0.00 0.72 0.29 4.68 99.99
20y 191 5.35 090 17.64 99.66 0.08 0.79 0.33 6.90 99.99
30y -0.76 9.67 095 31.88 98.68 -0.09 0.71 0.23 4.82 99.99

Average -0.02 6.11 0.87 28.75 99.75 -0.00 0.98 0.33 7.45  999.9




Table 4

In-sample predictive variations

Entries reports the predictive variation (in percentagetspon each interest rate series over four predicting
horizons f) at one, two, three, and four weeks from (i) a first-order egoessive regression (panel A),
(ii) the three-factor cascade model (panel B), and (iii)2Befactor cascade model (panel C). The predictive
variation is defined as one minus the ratio of mean squaretigirey error to mean squared interest rate
change, which can be regarded as the mean squared prediatimginder the random walk hypothesis. All
forecasting exercises are performed in sample. The auesgge coefficients and the model parameters are
estimated using the whole sample period. The predicting statistics are also computed over the whole
sample period from January 1995 to December 2007.

Model A. AR(2) B. Three-factor model C. 15-factor model

h (weeks) 1 2 3 4 1 2 3 4 1 2 3 4
LIBOR/swap maturity:

1m 25.85 43.84 57.50 68.12 -0.71 3292 4284 4758 21.71 2462.16 58.02
2m 23.83 36.65 47.28 55.05 -1.94 1523 23.31 28.19 17.65 0283%.00 43.13
3m 22.82 32.19 4134 4749  -50.31 -1295 157 9.93 8.78 2128617 33.70
6m 20.85 25.00 31.90 36.31  -87.43 -42.16 -24.57 -13.88 5.727561 16.94 19.30
9m 20.22 19.35 23.79 27.10 -67.23 -38.76 -28.15 -20.99 1.3099 4 7.06 7.95
12m 2145 17.53 20.58 22.84 -39.25 -26.45 -21.32 -17.32 6.8571 3.07 2.53
2y 426 793 9.65 1153 -17.52 -521 -2.06 -0.99 -1.12  -1.4229 -3.05
3y 3.64 681 8.64 1030 -18.64 -428 -052 0.85 -1.25 -1.7530-2-2.72
4y 475 7.23 9.00 10.32 -15.20 -356 -049 0.32 0.53 -0.2376-0.-1.30
5y 335 641 836 989 -16.34 -599 -3.09 -2.39 -0.48 -0.8991-0 -1.24
Ty 344 643 8.08 954 -20.20 -10.37 -8.14 -7.14 -0.56 -0.50.87- -1.03
10y 353 6.19 7.87 9.21 -20.23 -12.00 -10.41 -9.21 0.12 0.1212- -0.22
15y 271 506 6.72 793 -11.47 -824 -7.60 -6.73 0.92 0.38 50.3.19
20y 242 490 6.69 7.67 -17.91 -10.09 -7.78 -5.92 0.17 -0.2215 -0.28

30y 3.09 544 716 825 -60.10 -25.86 -15.76 -9.32 -0.15 0.4%11 -0.01




Table 5

Out-of-sample forecasting

Panel A reports the out-of-sample predictive variation achenterest rate series over four forecasting hori-
zons from a first-order autoregressive regression. Theqgtrexlvariation is defined as one minus the ratio of
mean squared predicting error to mean squared interesthratgje. Panel B reports the corresponding out-
of-sample predictive variation from the 15-factor modelalko reports thé-statistics on the performance
difference between the 15-factor model and the random wgdkthesis. In performing the out-of-sample
forecasting exercise, we start from January 7, 1998, imatt the model parameters and the autoregres-
sive coefficients at each dateising the data up to that date, and generate predictions loaisestimates
on that date. The statistics are computed based on the -@atrgble predicting errors from January 1998 to
December 2008.

Model A. AR(2) B. 15-factor model

Statistics Predictive variation Predictive variation t-statistics

h (weeks) 1 2 3 4 1 2 3 4 1 2 3 4
LIBOR/swap maturity:

1m -1.57 -350 -5.40 -7.75 2424 4222 52.64 58.47 1.73 3.4981 4 6.34
2m -1.50 -3.64 -5.77 -8.29 1959 31.45 39.98 46.22 1.68 3.4803 5 6.86
3m -198 -4.19 -6.28 -8.94 9.80 24.77 32.47 37.76 1.69 4.75336.7.34
6m -3.36 -6.34 -8.62 -11.83 8.45 16.58 21.26 24.57 2.46 458835 6.57
9m -452 -790 -10.35 -14.11 471 856 11.15 13.06 2.26 3.5315 4 454
12m -490 -8.45 -10.93 -14.95 794 519 510 5.40 3.63 2.3302 2.1.99
2y -3.00 -591 -8.85 -12.21 -1.08 -1.19 -2.14 -2.87 -0.94 900. -1.33 -1.62
3y -244 -478 -7.26 -10.25 -092 -144 -2.18 -2.69 -1.11 391. -1.79 -1.96
4y -211 -413 -6.34 -9.02 0.22 -0.73 -1.25 -1.90 0.23 -0.73.15 -1.62
5y -1.84 -354 -549 -7.89 -0.76 -1.25 -1.33 -1.64 -1.10 416156 -1.73
7y -143 -2.74 -441 -6.39 -0.39 -0.53 -0.84 -1.04 -0.79 51.321.58 -1.72
10y -1.07 -2.06 -3.43 -5.12 -0.40 -0.26 -0.61 -0.74 -0.70 450. -1.00 -1.16
15y -0.89 -1.68 -2.97 -4.49 0.30 -0.12 -0.21 -0.49 0.60 -0.268.44 -0.94
20y -0.76 -152 -2.80 -4.25 0.56 -0.11 -0.39 -0.56 1.00 -0.26.80 -1.04

30y -0.63 -1.30 -2.35 -3.65 0.02 -0.05 -0.40 -0.50 0.04 -0.1@.81 -0.91




Table 6

Scaling in risks and risk premia

Entries report the maximum likelihood estimates and thiindard errors (in parentheses) of the model
parameters that govern the scaling of risks and risk premignoss the different frequency components in
a 15-factor structure.

€] Estimates Standard Errors
o1 0.0276 (0.0001)
yoof -0.0019 (0.0001)
ylcf -0.0520 (0.0004)
yzof -0.1634 (0.0006)
b 1.7276 (0.0032)
S5 -0.2408 (0.0021)
54 0.2532 (0.0111)
St 0.0010 (0.0064)
S -1.7617 (0.0038)
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Figure 1

The instantaneous interest rate response to unit shocks fro different frequency components.

Lines plot the response of the instantaneous interest oatmit shocks from each of the 15 frequency
components across different time horizons. The solid lierotes response to shocks from the lowest
frequencydW ¢, the dashed line denotes response to shocks from the higbgsencydWs;. The dotted
lines represent responses to intermediate frequency aoenf® The responses are computed with the
parameterg, = 1/30,b = 1.69, andn = 15.
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Figure 2
LIBOR and swap time series and term structure.

The top panel plots the time series of the 15 LIBOR/swap raties. The bottom panel plots the term
structure at each date.
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Figure 3

Term structure of forward rates stripped from LIBOR and swap rates

Lines plot the term structure of forward rates generatenhftioe piece-wise constant assumption in the top
panel and from the estimated 15-factor model in the bottonepa
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Figure 4

Cross-correlation between weekly changes in six-month LIBR and other interest rate series.

Circles denote the cross-correlation estimates betweeklywehanges in the six-month LIBOR and weekly
changes in other interest rate series. The solid line dereggmates from model values generated from
the 15-factor model. The dashed line denotes estimatesrfrodel values generated from the three-factor
model.
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The scaling ofk;.

The circles are estimated as free parameters. The solislgenerated from the benchmark model with the
scalingk; = kb1



	Introduction
	A Cascade Model of the Interest Rate Term Structure
	The multifrequency cascade
	Risk premia and the term structure of interest rates

	Dimension-Invariant Term Structures
	A Dimension-Invariant Specification
	Limiting Behavior

	Data and Estimation
	Summary statistics of LIBOR and swap rates
	Estimation and likelihood tests

	Comparing High- versus Low-Dimensional Models
	In-sample fit and yield curve stripping
	Cross-correlations among different interest rate series
	Interest rate forecasting

	Specification Analysis
	The frequency specification
	Risks and risk premia
	Positive interest rates

	Dimension-Invariant Extensions: Stochastic Volatility and Time-varying Risk Premia
	Stochastic volatility and fixed-income option pricing
	Time-varying bond risk premia

	Conclusion
	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof that the response functions are translated versions of each other
	Proof of Proposition 4
	Unscented Kalman filter, maximum likelihood estimation, and Vuong test


