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Abstract

This paper explores the impact of simultaneously enforcing the no-arbitrage struc-
ture of a Gaussian macro-finance term structure model (MTSM) and accommodating
measurement errors on bond yield through filtering on the maximum likelihood estimates
of the model-implied conditional distributions of the macro risk factors and bond yields.
We show that, for the typical yield curves and macro variables studied in this literature,
the maximum likelihood estimate of a canonical MTSM-implied joint distribution is
nearly identical to its counterpart estimated from the economic-model-free state-space
model (factor-V AR). The practical implication of this finding is that a canonical
MTSM does not offer any new insights into economic questions regarding the historical
distribution of the macro risk factors and yields, over and above what one can learn
from a factor-V AR. In particular, the discipline of a canonical MTSM is empirically
inconsequential for analyses of impulse response functions of bond yields and macro
factors or resolutions of the failure of the expectations theory of the term structure.
Certain classes of constraints may break these irrelevancy results, and we discuss what
is known from the literature about this possibility.
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1 Introduction

Gaussian macro-dynamic term structure models (MTSMs) typically feature three key ingredi-
ents: (i) a low-dimensional factor-structure in which the risk factors are both macroeconomic
and yield-based variables; (ii) the assumption of no arbitrage opportunities in bond markets;
and (iii) accommodation of measurement errors in bond markets owing to the presence of
microstructure noise or errors introduced by the bootstrapping of zero-coupon yields. The
low-dimensional factor structure is motivated by the observation that most of the variation
in bond yields is explained by a small number of principal components (PCs).1 The overlay
of an arbitrage-free MTSM on the representations of the short-term rate brings information
about the entire yield curve to bear on the links between macroeconomic shocks and bond
yields, in a consistent structured way. Thirdly, with measurement errors on bond yields,2

MTSMs are formulated as state-space models and estimation proceeds using filtering.
This paper takes the low-dimensional factor structure of bond yields and macro factors

imposed in MTSMs as given and explores the implications of no-arbitrage and the use
of filtering for the maximum likelihood (ML) estimator of the joint distribution of these
variables. We derive sufficient and easily verified theoretical conditions for a canonical3

MTSM and an unconstrained state-space model to lead to identical ML estimators of the
joint distribution of the risk factors, even when all bonds are priced imperfectly by the MTSM
and estimation proceeds by filtering. We proceed to show, using data on a variety of yield and
macro risk factors, that these conditions are very nearly satisfied by the canonical versions of
several prominent specifications of MTSMs. The practical implication of our analysis is that
canonical MTSMs typically do not offer any new insights into economic questions regarding
the historical distribution of macro variables and yields, over and above what one can learn
from an economics-free state-space model (factor-VAR).

Among the most widely studied properties MTSMs are their implied impulse responses
(IRs) of bond yields to shocks to output or inflation,4 and their ability to reproduce the
anomalous correlations between change in long-term bond yields and the slope of the yield
curve relative to the expectations hypothesis.5 Both of these features of MTSMs co-depend

1This has been widely documented for U.S. Treasury yields (e.g., Litterman and Scheinkman (1991)).
Ang, Piazzesi, and Wei (2006) and Bikbov and Chernov (2010) are among the many studies of MTSMs that
base their selection of a small number of risk factors (typically three or four) on similar PC evidence.

2A low-dimensional factor structure does not perfectly fit the term structure of yields. See Duffee (1996)
for a discussion of measurement issues at the short end of the Treasury curve. In addition, the use of splines
to extract zero-coupon yields from coupon yield curves and the differing degrees of liquidity of individual
bonds along the yield curve introduce errors in the measurement of yields.

3A canonical model for a family of MTSMs is one in which maximally flexible (in the sense that each
member of the family is represented) and which has a minimal set of normalizations imposed to ensure
econometric identification.

4Examples include Ang and Piazzesi (2003) who examine the responses of bond yields to their macro
risk factors; Bikbov and Chernov (2010) who quantify the proportion of bond yield variation attributable to
macro risk factors; and Joslin, Priebsch, and Singleton (2010) who quantify the effects of unspanned macro
risks on forward term premiums.

5The expectations puzzle (e.g., Campbell and Shiller (1991)) has been examined within Gaussian term
structure models by Dai and Singleton (2002) and Kim and Orphanides (2005), among others.
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on model-implied conditional means and variances of the risk factors. For impulse responses
this codependence arises through the normalizations required to identify the innovations in
(shocks to) the yields and macro variables. This codependence arise directly in evaluating
expectations puzzles by definition of the MTSM-implied slope coefficients in projections of
changes in bond yields onto the slope of the yield curve.

We show that the imposition of the structure of a canonical MTSM is empirically
inconsequential for analyses of IR functions and inferences about the effects of macro factors
on term premiums. More precisely we show that, when all bond yields are measured with
errors, the joint distributions of bond yields and macro factors implied by a canonical MTSM
and its unconstrained factor-VAR counterpart are virtually identical. Imposition of the
over-identifying no-arbitrage restrictions has little impact on Kalman filter estimates of either
the conditional mean or variance parameters of the the risk factors Zt. This result is fully
rotation invariant: any normalization of the latent or yield-based risk factors necessarily
gives identical results.6 Moreover when the non-macro pricing factors are normalized to
be the theoretical low-order PCs of bond yields, then the model-implied joint distribution
of the risk factors Zt is virtually identical to the one implied by a standard unconstrained
VAR model of the observed risk factors Zo

t . That is, for studying the joint distribution of
the low-order PCs and macro factors, neither the no-arbitrage structure of a MTSM nor
filtering to accommodate measurement errors lead to new insights over what is learned from
a standard VAR model estimated by OLS.

Illustrative of the practical implications of our theoretical results are the IRs in a MTSM
that has two macro risk factors, representing real growth and inflation, and one latent risk
factor (model GM3(g, π)).7 The no-arbitrage structure of GM3(g, π) implies over-identifying
restrictions on the distribution of bond yields, and it is estimated using the Kalman filter
to accommodate measurement errors in all of the bond yields. Nevertheless, the IRs of the
first PC of bond yields (PC1) to a shock to CPI inflation implied by GM3(g, π) and by its
corresponding factor-V AR (FV AR) are virtually indistinguishable (Figure 1).

At the core of our irrelevancy results is the proposition that the MTSM- and factor-V AR-
based ML estimators of the conditional covariance matrix of the risk factors converge to each
other (in a sense we make precise subsequently) as the average pricing errors on yield-based
risk factors, relative to their standard deviations, approach zero. Without loss of generality,
canonical MTSMs can be rotated so that any risk factors that are latent or represented
by yields on specific bonds are replaced by low-order PCs of bond yields. So, essentially,
what gives rise to the irrelevance of no-arbitrage restrictions or the presence of measurement
errors on individual yields in MTSMs is the empirical regularity that the filtered low-order
PCs from MTSMs tend to accurately replicate their sample counterparts. As we document
through several examples, accurate matching of PCs does not require accurate pricing of
individual bonds. In particular, this explains why our propositions apply with equal force to

6See Dai and Singleton (2000) for the definition of invariant affine transformations. Such transformations
lead to equivalent models in which the pricing factors P̃N t are obtained by applying affine transformations of
the form P̃Nt = C +DPNt , for nonsingular N ×N matrix D.

7Full details of the data and estimation results are provided in Section 4.2.
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Figure 1: Impulse Responses of PC1 to a shock to CPI Inflation in Model GM3(g, π).

GM3(g, π) which implies large mean-squared pricing errors (RMSEs) on individual yields.
To derive our irrelevance results we develop a canonical form for the family of N -factor

MTSMs in whichM of the factors (M < N ) are macro variables, Mt. Under the assumption
that Mt incrementally affects bond prices beyond the other L = N −M risk factors, we derive
a canonical form for MTSMs in which the pricing factors are Mt and the first L principal
components (PCs) of bond yields, PLt . This form is particularly revealing about the nature
of the over-identifying restrictions implied by term structure models with macro risk factors,
and of sufficient theoretical conditions for no-arbitrage restrictions to have no effect on the
ML estimator of the historical distribution of the risk factors. When these conditions are
(nearly) satisfied, a canonical MTSM and a model-free factor-V AR will produce (nearly)
identical estimates of any relationships among the risk factors that are fully describable in
terms of the parameters of their historical (P) distribution.

These propositions are a mix of theoretical results that hold exactly for each sample of
yields and of approximations that are accurate as the average-to-variance ratios of a MTSM’s
pricing errors approach zero. We initially explore their empirical relevance within three-factor
MTSMs in which the risk factors are various combinations of output growth, inflation, and
PCs of bond yields (in the spirit of Ang and Piazzesi (2003)). Attention is then turned to a
MTSM in which Mt is not spanned by bond yields and the question of whether the imposition
of the structure of a MTSM sheds new light on the failure of the expectations theory. Based
on a variety of standard data sets, the conditional P-distributions of the risk factors implied
by these MTSMs and their unconstrained factor-VAR counterparts are nearly identical.

These illustrations presume that Zt follows a first-order Markov process. Several imple-
mentations of MTSMs have allowed for higher-order lags. We show that our analysis is robust
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to these extensions in the sense that the estimates of the canonical no-arbitrage model remain
nearly identical to those of the factor-V AR. Of independent interest, we also find that, for
our datasets, the empirical evidence supports multiple lags under the historical distribution
P, but a first-order Markov structure under the pricing measure Q. Accordingly, we develop
a new family of canonical MTSMs with this asymmetric P/Q lag structure.

This paper builds upon and complements several recent studies. Joslin, Singleton, and
Zhu (2010) show theoretically for any canonical Gaussian model with latent or yield-based risk
factors (YTSM) that if the N pricing factors are priced perfectly, then the ML estimator of
the conditional mean of these factors is invariant to the imposition of no-arbitrage restrictions.
Building on their results, Duffee (2011) shows through Monte Carlo analysis (again with
perfectly priced risk factors in YTSMs) that estimates of the loadings in the mapping
between risk factors and bond yields are also largely invariant to the imposition of no-
arbitrage restrictions. Our focus is on the implications of no-arbitrage and filtering for the
ML estimator of the entire conditional distribution of the risk factors and bond yields in
over-identified MTSMs when all yields are priced imperfectly by the model.

Our irrelevancy results apply to the maximally flexible canonical forms of MTSMs. Certain
types of restrictions, when imposed in combination with the no-arbitrage restrictions of a
MTSM, may increase the efficiency of ML estimators relative to those of the unconstrained
V AR. Most studies of MTSMs have left open the question of whether their particular
formulations led to materially different estimates of historical distributions relative to those
from a V AR.8 In our concluding section we draw upon on analysis to assess what types of
constraints might create such a wedge.

To fix notation, suppose that a MTSM is to be evaluated using a set of J yields yt =
(ym1

t , . . . , ymJ
t )′ with maturities (m1, . . . ,mJ) and with J ≥ N , where N is the number of

pricing factors. We introduce a fixed, full-rank matrix of portfolio weights W ∈ RJ×J and
define the “portfolios” of yields Pt = Wyt and, for any j ≤ J , we let Pj

t and W j denote the
first j portfolios and their associated weights. The modeler’s choice of W will determine
which portfolios of yields enter the MTSM as risk factors and which additional portfolios are
used in estimation.

2 A Canonical MTSM

This section gives a heuristic construction of our canonical form; formal regularity conditions
and a proof that our form is canonical are presented in Appendix A. Suppose that M
macroeconomic variables Mt enter a MTSM as risk factors and that the one-period interest
rate rt is an affine function of Mt and an additional L pricing factors PLt ,

rt = ρ0Z + ρ1M ·Mt + ρ1P · PLt ≡ ρ0 + ρ1 · Zt, (1)

8In the context of YTSMs, Joslin, Singleton, and Zhu (2010) and Duffee (2011) explore empirically whether
various constraints on the P distribution of the risk factors improve out-of-sample forecasts of these factors.
They did not consider second moments, nor any properties of distributions that involve these moments.

5



where the risk factors are Zt ≡ (M ′
t ,PL′t )′. Some treat PLt in (1) as a set of L latent risk

factors,9 while others include portfolios of yields as risk factors.10 Fixing Mt and the dimension
L of PLt , these two theoretical formulations are observationally equivalent. In fact, as we
show, we are free to rotate the entire vector Zt to express bond prices in terms of PNt , the
first N =M+ L entries of the modeler’s chosen portfolios of yields. This is an implication
of affine pricing of PNt in terms of Zt. Accordingly, in characterizing a canonical form for
the family of MTSMs with short-rate processes of the form (1), we are free to start with
either interpretation of PLt (latent or yield-based) and to use any of these rotations of the
risk factors Zt.

We select a rotation of Zt and its associated risk-neutral (Q) distribution so that our
maximally flexible canonical form is particularly revealing about the joint distribution of Zt

and bond yields implied by MTSMs with N pricing factors and macro pricing factors Mt.

2.1 The Canonical Form

Consider a MTSM with risk factors Zt and short rate as in (1), with Zt following a Gaussian
process under the risk-neutral distribution,

∆Zt = KQ
0 +KQ

1 Zt−1 +
√

ΣεQt , ε
Q
t ∼ N(0, I). (2)

Absent arbitrage opportunities in this bond market, (1) and (2) imply affine pricing of bonds
of all maturities (Duffie and Kan (1996)). The yield portfolios Pt can be expressed as

Pt = ATS(ΘQ
TS) +BTS(ΘQ

TS)Zt, (3)

where the loadings (ATS, BTS) are known functions of the parameters ΘQ
TS governing the Q

distribution of yields, and hereafter we use “TS” to denote features of a MTSM. A canonical
version of this model is obtained by imposing normalizations that ensure that the only
admissible rotation of Zt that leaves the distribution of rt unaffected is the identity matrix.
To arrive at our canonical form we observe that from the first N entries of (3), Zt, and hence
all bond yields yt, can be expressed as affine functions of PNt .11 After rotating to a pricing
model with risk factors PNt , we adopt the canonical form of Joslin, Singleton, and Zhu (2010)
(JSZ). What is distinctive about their canonical form is that ΘQ

TS is fully characterized by
the covariance matrix Σ and the rotation invariant (and hence economically interpretable)
long-run Q-mean of rt, r

Q
∞ = EQ[rt], and the N -vector λQ of distinct real eigenvalues of the

feedback matrix KQ
1Z .12

9Studies with this formulation include Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2007), Bikbov
and Chernov (2010), Chernov and Mueller (2009), and Smith and Taylor (2009).

10Examples include Ang, Piazzesi, and Wei (2006) and Jardet, Monfort, and Pegoraro (2010).
11This inversion presumes that the N -factor MTSM is non-degenerate in the sense that all M macro

factors distinctly contribute to the pricing of bonds after accounting for the remaining L factors. Formal
regularity conditions are provided in Appendix A.

12Extensions to the more general case of KQ
1 being in ordered real Jordan form, or to a zero root in the Q

process of Zt, are straightforward along the lines of Theorem 1 in JSZ.
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A second key implication of (3) is that, within any MTSM that includes Mt as pricing
factors in (1), these macro factors must be spanned by PNt :

Mt = γ0 + γ1PNt , (4)

for some conformable γ0 and γ1 that implicitly depend on W . Using (4), we apply the rotation

Zt =

(
Mt

PLt

)
=

(
γ0

0

)
+

(
γ1

IL 0L×(N−L)

)
PNt (5)

to the canonical form in terms to PNt to obtain an equivalent model in which the risk factors
are Mt and PLt , rt satisfies (1), and Zt follows the Gaussian Q process (2). Our specification
is completed by assuming that, under the historical distribution P, Zt follows the process

∆Zt = KP
0 +KP

1Zt−1 +
√

ΣεPt , ε
P
t ∼ N(0, I). (6)

Summarizing, in our canonical form the first M components of the pricing factors Zt

are the macro variables Mt, and without loss of generality the risk factors are rotated so
that the remaining L components of Zt are the yield portfolios PLt ; rt is given by (1); Mt

is related to Pt through (4); and Zt follows the Gaussian Q and P processes (2) and (6).
Moreover, for given W , the risk-neutral parameters (ρ0, ρ1, K

Q
0 , K

Q
1 ) are explicit functions of

ΘQ
TS = (rQ

∞, λ
Q, γ0, γ1,Σ).

Our canonical construction reveals the essential difference between term structure models
based entirely on yield-based pricing factors PNt and those that include macro risk factors. A
MTSM with pricing factors (Mt,PLt ) offers more flexibility in fitting the joint distribution of
bond yields than a pure latent factor model (one in which N = L), because the “rotation
problem” of the risk factors is most severe in the latter setting. In the JSZ canonical form
with pricing factors PNt , the underlying parameter set is (λQ, rQ

∞, K
P
0P , K

P
1P ,ΣP). A MTSM

adds the spanning property (4) with its M(N + 1) free parameters. Thus, any canonical
N -factor MTSM with macro factors Mt gains M(N + 1) free parameters relative to pure
latent-factor Gaussian models. Of course this added flexibility (by parameter count) of a
MTSM is gained at a cost: the realizations of the yield-based risk factors must be related to
the macro factors Mt through equation (4).

In taking the model to the data, we must accommodate the fact that the observed data,
{M o

t ,Po
t }, will not be perfectly matched by a theoretical no-arbitrage model. Accordingly

we suppose that the observed data are given by the theoretical values plus a mean-zero
measurement error. Absent any guidance from economic theory, and consistent with the
literature, we presume that the measurement errors are i.i.d. normal, thereby giving rise to a
Kalman filtering problem.13 The observation equation is simply (3) allowing for errors:

Po
t = ATS(ΘQ

TS) +BTS(ΘQ
TS)Zt + et, et ∼ N(0,Σe), (7)

13This formulation subsumes the case of cross-sectionally uncorrelated pricing errors (Σe is diagonal)
adopted by Ang, Dong, and Piazzesi (2007) and Bikbov and Chernov (2010), as well as the case where Σe is
singular with the first L rows and columns of Σe equal to zero. In the latter case, PLt = PLo

t .
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and the state equation is (6). Consistent with the literature, we assume always that the
observed macro factors M o

t coincide with their theoretical counterparts Mt, though this
assumption is easily relaxed. Together (6) and (7) comprise the state space representation of
the MTSM. The full parameter set is ΘTS = (ΘQ

TS, K
P
0 , K

P
1 ,Σe).

2.2 State-Space Formulations Under Alternative Hypotheses

Throughout our subsequent analysis we compare the MTSMs characterized by (6) and (7)
to their “unconstrained alternatives”. Since a MTSM involves multiple over-identifying
restrictions, the relevant alternative model depends on which of these restrictions one is
interested in relaxing. We find it useful to distinguish between the following three alternative
formulations which we label by FV, TSn, and FVn.

The FV alternative follows Duffee (2011) and maintains the state equation (6), but
generalizes the observation equation to

Po
t = AFV +BFV Zt + et, (8)

for conformable matrices AFV and BFV , with et normally distributed from the same family
as the MTSM. The subscript “FV” is short-hand for the factor-V AR structure of (6) and (8).
For identification we normalize the first L entries of AFV to zero and the first L rows of BFV

to the corresponding standard basis vectors. Except for this, AFV and BFV are free from any
restrictions.14 The full parameter set is ΘFV = (AFV , BFV , K

P
0 , K

P
1 ,Σ,Σe). Since all bonds

are priced with errors, the FV model is estimated using the Kalman filter.
Special cases of models TS and FV that are also of interest arise when their respective

error covariance matrices Σe have rank J −L. In this case, L linear combinations of the yield
portfolios Pt are priced perfectly by the model, along the lines of Chen and Scott (1993).
The particular case we focus on is where the first L portfolios of yields PL are measured
perfectly. We distinguish these special cases by the notation TSn and FVn (for no pricing
errors on the risk factors). The Kalman filtering problem then simplifies to conventional ML
estimation. In particular, for the FVn model, estimation conveniently reduces to two sets of
OLS regressions: a VAR for the observed risk factors Zo

t gives the parameters in (6),15 and
an OLS regression of Po

t on Zo
t recovers the parameters characterizing (7).

Relative to model TS, model FV relaxes the over-identifying restrictions implied by the
assumption of no arbitrage, but maintains the low-dimensional factor structure of returns
and the presumption of measurement errors on bond yields. Thus, in assessing whether these
two models imply nearly identical joint distributions for (yt,Mt), the focus is on whether
the no arbitrage restrictions induce a difference. On the other hand, differences between
the TS and TSn models, which both maintain a similar no-arbitrage structure, should arise

14A subtle issue is that this is slightly over-identifying since it implies that a relationship of the form
α+ β · PLt = 0 cannot hold in the model. Certainly this would be rejected in the data for typical choices of
W . However, the ODE theory implies this normalization is just-identifying in the no-arbitrage model.

15The ML estimators of KP
0Z and KP

1Z are the standard OLS estimators, and the ML estimator of ΣZ is
the usual sample covariance matrix based on the OLS residuals.
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mainly out of the different treatments of measurement errors of the pricing factors. Finally,
in moving from model TS to model FVn one is relaxing both the no arbitrage restrictions and
the presumption that the yield-based pricing factors PLt are measured with errors (PLo

t = PLt
in model FVn), while again maintaining the low-dimensional factor structure.

3 Conditions for the (Near) Observational Equivalence

of MTSMs and Factor-V ARs

To derive sufficient conditions for the general agreement of Kalman filter estimators of models
TS and FV, we fix a choice of W and derive (stronger) sufficient conditions for the Kalman
filter estimators of the distribution of Zt from model TS and FV to be (nearly) identical to
those implied by the FVn model. As it becomes clear subsequently, this indirect approach,
as opposed to a direct comparison between models TS and FV, is justified by the ease in
estimating model FVn (two OLS regressions). As long as there exists one W ∗ such that
these conditions are satisfied, it must mean that models TS and FV imply (nearly) identical
distributions of Zt for all admissible portfolio matrices W . This is true despite that the
individual comparisons for the pairs (TS, FVn) and (FV, FVn) are rotation–dependent.
Equally importantly, for such a W ∗, everything that one can learn about the P distribution
of this model’s risk factors Zt from a canonical MTSM can be equally learned from analysis
of the corresponding economics-free factor-V AR model FVn .

The filtering problems in both models TS and FV is one of estimating the true values of
PLt , the first L PCs of the bond yields yt. Intuitively, a key condition for the Kalman filter
estimates of models (TS, FV) to match the OLS estimates of model FVn is that the filtered
pricing factors equal their observed counterparts. However, this observation begs the more
fundamental question of when this approximation holds. Additionally, this condition is not
sufficient for the Kalman filter estimates of either the drift nor the volatility of Zt to match
the OLS estimates of model FVn . The remainder of this section addresses these issues.

To fix the notation, we will denote the filtered and smoothed version of any random
variable Xt by Xf

t = E[Xt|Ft] and Xs
t = E[Xt|FT ].

3.1 When do the filtered yields differ from the observed yields?

The filtered yields will agree closely with the observed yields when the filtered measurement
errors are close to zero. This difference will depend on two quantities. First, it will depend on
how large the measurement errors are for the yields. Second, it will depend on how accurately
the yield portfolios can be forecasted based on current and lagged observeables, excluding
the current yields themselves.

We can see the relationship as follows. Focusing on the first L yield portfolios, let us
define the vector

It = (M1,Po
1 , . . . ,Mt−1,Po

t−1,Mt,P−Lo
t ),
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where P−Lo
t are the observed yield portfolios at time t excluding the first L portfolios. The

filtered measurement error, eLt , is equal to

E[eLt |It,PLo
t ].

Now, conditional on It, the measurement error and the observed yields are jointly normal so
by the standard formula for updating of jointly normal variables16 we have

E[eLt |It,PLo
t ] = ΣeLS

−1
t (PLo

t − E[PLo
t |It]), (9)

where ΣeL is the covariance of the measurement errors, eLt , and St is the conditional forecast
variance of PLo

t based on It.
Intuitively, the conditional updating places more weight on the forecast the more accurate

it is (i.e. the smaller St is) and more weight on the observed state the smaller the measurement
errors. The difference in magnitude between the observed and filtered states will thus depend
on the relative size of ΣeL to St.

How small will the portfolio measurement errors be?

ΣeL will reflect the size of the pricing errors within the model. Typical studies find mean
square pricing errors for individual bond yields on the order of 10 basis points, though with
fewer pricing factors the pricing errors can be substantially larger. However, σeL will be
determined not only by the size of the pricing errors of the indivdual yields, but also by the
choice of the weighting matrix W . In general, the weighting matrix W can allow for averaging
of errors across individual yields, resulting Σc,L being smaller than the corresponding mean-
square measurement errors of the individual yields. For example, if the errors are independent
and we scale Pt to take the first row of W to give equal weights (corresponding to a level
factor), the square root of the mean square pricing error should be reduced by a factor of
1/
√
J due to the cancelation of the signed errors across maturities.17 This averaging effect

means that even if individual bonds are priced with relatively large errors, Σe can still be
relatively low due to a rich amount of cross-sectional information.

How large will the forecast error be?

St reflects the uncertainty about Po
t given past realizations of the yield curve and macro

variables and current information about the macro-variables and the higher order portfolios.

16When random vectors (X,Y ) follow a multivariate normal distribution, E[X|Y ] = µX +ΣXY Σ−1
Y (Y −µY ),

where µX and µY are the mean of X and Y , ΣY is the variance of Y and ΣXY is the covariance of X and Y .
In the case of X = eLt and Y = PLo

t , the covariance between X and Y is just the variance of the errors by
independence.

17Typically principal components are normalized so that the sum of the square of the weights is one.
This condition also ensures the observational equivalence of Section 2 if one supposes that the errors
are independent with equal variances. For ease of interpretation, it is convenient to rescale the principle
component to more interpretable values such as setting the sum of the weights equal to one for the first
principal component. This rescaling gives an observational equivalent model with the adjusted Σe (which will
violate equal variances due to the rescaling).
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Consider again the case where the first portfolio of Pt is associated with a level factor. First
notice that Po

t incorporates the measurement error which is independent of It, so that St

will always be larger than Σe. Second, observe that the lagged value of Po
t−1 will contain a

substantial amount of information about Po
t . Monthly volatilities of changes in yields are

on the order of 20 to 30 basis points, depending on the sample period. To the extent that
most of these changes are unpredictable relative to It, this should provide a guideline for the
variance of Pt conditioned on lagged information. Furthermore, given the lagged information,
incorporating the current macro-variables and current values of other yield portfolios are
likely to have only a small effect on the conditional variance.

Discussion

This heuristic analysis allows us to see the approximate average magnitude of the difference
between the filtered and observed states. For example, if there is a single state portfolio
(L = 1) which is a level factor with equal weights (1/J), then square root of the filtered mean
squared measurement error is

σy

J
× σy

σf,t

(10)

where σy is the pricing error for a single yield, σf is the forecast error for time t based on It
(i.e. σ2

t = St). The ratio of σy to σf,t will always be less than one since the forecast is of the
observed state portfolio which includes the independent measurement error. So if the pricing
errors are independent and around 10 basis points, the forecast errors are on the order of 20
basis points, and there are J = 10 yields use in the estimation, the magnitude will be about
half of a basis point.

Since the forecast error is normal distributed with covariance St, if ΣeLS
− 1

2
t is small, the

difference between the filtered states and observed states will be small on average. This has a
number of implication. First, since St is at least as large as ΣeL, it follows that as long as the
measurement errors for the portfolios are small the filtered states and observed states will be
close. This means for example for a level factor that increasing the number of yields used in
the estimation is likely to reduce the measurement error for the level portfolio and increase
the match between the observed level and the filtered level. Second, St will be much larger
than ΣeL when there is a lot of uncertainty in the forecasting PLo

t from the information in It.
This forecasting uncertainty is likely to rise as the sampling frequency decreases. Thus we
conclude that the observed and filtered states will agree when W is chosen so that (i) there
is cancelation of measurement errors across maturities, (ii) more cross-sectional information
is available, and (iii) there is a large amount of unpredictable variation in PLo

t relative to the
information in It.

We stress that the magnitude of ΣLeS
−1
t depends on the particular choice of the weighting

matrix W . For some choices of W this product may be much smaller than for other choices.
For example, if one chooses weighting matrices that select individual yields, there will be no
cancelation of measurement errors so that ΣLe will likely be substantially larger. However, as
discussed in Section 2 , the choice of W only reflects the parameterization of the model. So
although one can parameterize the model with W taken to be the identity, it may be that
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there exists an alternative W ∗ satisfying the above conditions so that filtering has little effect
on the observed portfolios with respect to this W ∗. Put differently, for a given model, some
linear combinations of the observed yields may correspond closely to its filtered counterparts
while other may not: the above conditions provide insights into which linear combination
weighting will fall into each class.

These results also provide a context for interpreting previous work with large numbers
of latent or yield-based risk factors. The reported large differences between the filtered and
observed values of the high-order PCs in the five-factor, yield-only models studied by Duffee
(2009) and Joslin, Singleton, and Zhu (2010) models could be attributed to the smaller
variances of forecast errors associated with higher PCs. Under the typical assumption of
i.i.d. measurement errors and normalized loadings, the cross-sectional uncertainty remains
fixed across PCs. The sample standard deviations of the fourth and fifth PCs, about 19
and 13 basis points for our data, are much smaller than those for the first three PCs and
more importantly, borderline the typical RMS of pricing errors. Since the forecast errors
variances of the fourth and fifth PCs must be smaller than their respective unconditional
variances, it is likely that the elements of ΣLeΩ

−1
Lt corresponding to these PCs are not small.

Therefore, in this case, the Kalman filter will tend to emphasize measurement error reduction,
through smoothing of the higher-order factors over their past innovations, over fitting the
cross-section of yields.

3.2 ML Estimation of the Conditional Distribution of (Mt, yt)

We now turn to characterize the conditions for computing the maximum likelhood estimates
of the models. For either of the models TS or FV, the joint likelihood of the observed data,
{M o

t , y
o
t }, follow a multivariate normal distribution that can be computed efficiently by using

the Kalman filter. From a theoretical perspective, we can think of building the likelihood of
the data by by integrating the joint density fP

m(~Z = z, ~Po, ~M o; Θm) over the missing data ~Z:

fP
m( ~Po, ~M o; Θm) =

∫
z

fP
m(~Z = z, ~Po, ~M o; Θm)dz, (11)

for m = TS or FV , with ~X denoting the sequence of the entire sample: ~X = (X1, X2, . . . , XT ).
For ease of notation, we omit the subscript m from fP

m and Θm in all expressions that apply
to both the MTSMs and the factor-V ARs. Taking the derivative of (11) with respect to Θ

and setting this equal to zero, and dividing by the marginal density of ( ~Po, ~M o), gives the
first-order conditions18

0 = E
[
∂Θ log fP(~Z, ~Po, ~M o; Θ̂)

∣∣∣FT

]
, (12)

where T is the sample size and FT is all of the observable information.19

18This relation arises in the literature on the “EM” algorithm (e.g., Dempster, Laird, and Rubin (1977)).
19In model FVn with our choice of W , Zt = Zo

t and (12) holds without the conditional expectation.
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The density log fP(~Z, ~Po, ~M o) in (12) is equal to

T∑
t=1

log fP (Po
t |Zt; ΘQ,Σe

)
+

T∑
t=1

log fP (Zt|Zt−1;KP
1 , K

P
0 ,Σ

)
. (13)

This construction reveals two important and distinguishing properties of our canonical MTSM.
The conditional distribution of the risk factors Zt in (13) depends only on (KP

1 , K
P
0 ,Σ), and

(KP
1 , K

P
0 ) enter only fP(Zt|Zt−1) and not fP(Po

t |Zt). Moreover, both of these observations
are equally true of model FV. This similarity between these null and alternative models is
immediately apparent in our canonical form, while being largely obscured in say the more
standard identification schemes of MTSMs based on Dai and Singleton (2000).

A key difference between models TS and FV is how Σ enters the two components of fP.
The functional dependence of fP(Zt|Zt−1) on Σ is identical for these two models. However,
owing to the diffusion invariance property of the no-arbitrage model, Σ only affects fP

TS(Po
t |Zt)

and not fP
FV (Po

t |Zt). Nevertheless, for our canonical form, this difference turns out to be
largely inconsequential for Kalman filter estimates of Σ.

Using the fact that f(Po
t |Zt) does not depend on (KP

0 , K
P
1 ), the ML estimators of the

conditional mean parameters (KP
0 , K

P
1 ) satisfy

[K̂P
0 , K̂

P
1 ]′ =

((
Z̃ ′Z̃

)s)−1 (
Z̃ ′∆Z

)s

, (14)

where Z̃t = [1, Z ′t]
′, and Z and Z̃ are matrices with rows corresponding to Zt and Z̃t,

respectively, for t ranging from 1 to T .
From (14) it is seen that a key ingredient for Kalman filter estimates of (KP

0 , K
P
1 ) from

models TS and FV to agree with each other and with those from model ZV is that (Z̃tZ̃
′
t)

s

be close to Z̃o
t Z̃

o′
t , period-by-period. For (14) is almost the estimator of [KP

0 , K
P
1 ] obtained

from OLS estimation of a VAR on the smoothed risk factors Zs
t . The difference between (14)

and the VAR estimator run on Zs
t lies in the fact that

(ZtZ
′
t)

s
= Var(Zt|FT ) + Zs

tZ
s′
t . (15)

This equation and the analogous extensions reveal that, provided the smoothed state is close
to the observed state and Var(Zt|FT ) is small, the ML estimates of (KP

0 , K
P
1 ) from model ZV

will be similar to those obtained by Kalman filtering within a MTSM. Even in the presence
of large pricing errors, the conditions derived in Section 3.1 show that the observed and
smoothed states may agree closely depending on the amoutn of cross sectional information,
the frequency of observations, and the amount of cancellation of measurement errors implicit
in the choice of W .

Turning to estimation of Σ, in model FV there is no diffusion invariance and fP
FV (Po

t |Zt)
does not depend on Σ. Therefore, the first-order conditions for maximizing the likelihood
function depend only on log fP

FV (Zt|Zt−1; Θ̂FV ). This leads to the first-order condition

E
[
vec
(

(Σ̂FV )−1 − (Σ̂FV )−1Σ̂u
FV (Σ̂FV )−1

)∣∣∣FT

]
= 0, (16)
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where Σ̂u
FV is the sample covariance matrix based on the residuals îuFV,t = ∆Zt − (K̂P

0FV +

K̂P
1FVZt−1). Both Σ̂u

FV and îuFV,t are unobserved since they depend on the partially observed
~Z. From (16), we obtain Σ̂FV = (Σu

FV )s. Using the logic of our discussion of the conditional
mean, as long as the estimated model FV accurately prices the risk factors, then (Σu

FV )s will
be nearly identical to the OLS estimator of Σ from the VAR model ZV.

The ML estimator of Σ in model TS will in general be more efficient than in model ZV
and this is true even when PLo

t = PLt . The first-order conditions for Σ in model TS have an
additional term since, in this model, the density fP

TS(Po
t |Zt; Θ) also depends on Σ. Combining

this term, derived in Appendix E as (71), with (16) gives

E

[
vec

(
1

2

[
(Σ̂TS)−1 − (Σ̂TS)−1Σ̂u

TS(Σ̂TS)−1
])
− β̂′Z(Σ̂e,TS)−1 1

T

∑
t

êu
TS,t

∣∣∣∣∣FT

]
= 0,

where Σ̂u
TS is the sample covariance of the residuals îut = ∆Zt − (K̂P

0TS + K̂P
1TSZt), β̂Z is a

constant vector defined in Appendix E, and the unobserved pricing errors êu
TS,t from (7) are

evaluated at the ML estimators and depend on the partially observed ~Z.
The following two conditions are sufficient for the Kalman filter estimators of Σ in models

TS and FV to be approximately equal. First, we require that the risk factors be priced
sufficiently accurately for

Σ̂FV =
(

Σ̂u
FV

)s

≈
(

Σ̂u
Z

)s

. (17)

To guarantee that the right hand side of (17) is close to the estimate of Σ in the MTSM, our
second requirement is that the average-to-variance ratio (Σ̂e)

−1(T−1
∑
êo

t ) of pricing errors

be close to zero, where êo
t is computed from (7) evaluated at the ML estimates and using ~Zo.

When both conditions are satisfied, (Σ̂e)
−1(T−1

∑
êu

t )s will be close to zero as well, ensuring
that Σ̂Z,TS ≈ (Σ̂u

FV )s. Moreover, when these conditions hold, the estimators from all three
models TS, FV, and ZV will approximately agree with each other.

3.3 Discussion

The first-order conditions of the ML estimators do not set the sample mean of the pricing error
êu

TS,t to zero. However, it is easily verified that the first-order conditions with respect to the
“constant terms” (rQ

∞, γ0) set M+ 1 linear combinations of the filtered means (T−1
∑
êu

TS,t)
s

to zero. So, effectively, the likelihood function hasM+ 1 degrees of freedom to use in making
the mean-to-variance ratios close to zero.

These observations regarding the conditional distribution of the risk factors Zt extend to
individual bond yields with one additional requirement. Specifically, the factor loadings from
OLS projections of yo

t onto Zo
t need to be close to their model-based counterparts estimated

using the Kalman filter. Using our earlier logic, if PLt is reasonably accurately priced, the
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OLS loadings are likely to be close to those implied by model FV.20 Nevertheless, large
RMSEs in the pricing of individual bonds might lead to large efficiency gains from ML
estimation of the loadings within a MTSM. This is an empirical question that we take up
subsequently.

Importantly, the conditions we have derived for the near observational equivalence of
the MTSM- and factor-V AR-implied Kalman filter estimators of the joint distribution of
(Pt,Mt) apply even though the canonical MTSM implies over-identifying restrictions on this
distribution and individual bond yields are priced imperfectly. Further intuition for our
results comes from exploring two restrictive special cases: the yield-based risk factors PLt are
priced perfectly by the MTSM (PLo

t = PLt ) and, on top of this, the MTSM is just-identified
in the sense that the restriction of no arbitrage is non-binding on the factor-V AR model for
the risk factors. We discuss each of these in turn.

A stark version of our results is obtained directly under the assumption PLo
t = PLt . In

this case, the relevant comparison is between models TSn and FVn where ΣLeΩ
−1
Lt is zero by

construction. Hence, the ML estimates of the conditional mean parameters (KP
0Z , K

P
1Z) from

TSn exactly coincide with the OLS estimates for model FVn , regardless of the magnitude
of the mean-to-variance ratios of pricing errors.21 Therefore, a sufficient condition for the
conditional distribution of the risk factors Zt in a MTSM to be fully invariant to the imposition
of the no-arbitrage restrictions is that the average-to-variance ratio of the pricing errors
(Σ̂e)

−1(T−1
∑
êTS,t) is zero. Owing to the Gaussian property, these invariance results extend

to the unconditional distributions of {Zt} as well.
Insight into circumstances when the sample mean of êTS,t is exactly equal to zero comes

from Duffee (2011)’s analysis of a yield-based TSn model where the number of yields used in
estimation (J) is N + 1. In this case, the term structure model is just-identified,22 and the
mean of êTS,t for the one imperfectly priced bond is zero. Thus, the ML estimators of the
joint distribution of PNt from the term structure model and the unrestricted factor-V AR are
always identical to each other.

20To see this, first note that the loadings of yt on Zt are simply the loadings of Pt on Zt, premultiplied by
the inverse of W . Second note that, for the FV model, the loadings of Pt on Zt are given by:

(ÂFV , B̂FV ) =

(
1
T

∑
t

[
Po

t

(
Z̃ ′t

)s])( 1
T

∑
t

[(
Z̃tZ̃

′
t

)s])−1

,

which should be close to the loadings from projecting Po
t on Zo

t if PLo
t is accurately priced.

21This is the counterpart for MTSMs of the irrelevancy result for conditional means derived in JSZ when
Zt = PNt .

22More precisely, what Duffee shows is that the parameter count in the factor-VAR and in his corresponding
model TS are the same. This turns out not to be sufficient to leave model TS just-identified. Duffee gives
examples of factor-VAR loadings BFV that do not correspond to BTS . His observation leads naturally to the
question of whether (KP

0Z ,K
P
1Z ,Σ) can differ from their counterparts in model FV. Our results show that

this is not the case. Whenever J = N + 1, the first-order condition with respect to rQ
∞ (unrestricted by the

no-arbitrage model) guarantees that the mean of êTS,t is zero. Importantly, this result holds for any given λQ

and, therefore, does not depend on the extent to which the no-arbitrage model matches (AFV , BFV ). Thus
our results show that when J = N + 1 with PNo

t = PNt , the ML estimators of f(PNt |PNt−1) from his models
TS and FV are always identical to each other.
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The same condition (J = N + 1) in an N -factor MTSM withM macro factors guarantees
that Σ̂Z exactly agrees for models TSn and FVn when the yield risk factors PLt are perfectly
priced. As discussed above, our canonical MTSM reveals that there are M+ 1 degrees of
freedom available to force the mean of êTS,t to zero. Therefore, if exactly M+ 1 portfolios
of yields are included with measurement errors in the ML estimation of a MTSM, the
mean-to-variance ratios will be optimized at zeros.

The typical MTSM examined in the literature has J � N + 1 and, hence, the MTSM is
an over-identified model of bond yields. Moreover, most of the recent literature has presumed
that all bonds are priced imperfectly (PLo

t 6= PLt ). Our results show that much of the
intuition from just-identified MTSMs will carry over to over-identified MTSMs whenever the
MTSM accurately prices the yield-based factors PLt , and this may be true even when the
MTSM-implied errors in pricing individual bonds are quite large.

The remainder of this paper explores the empirical relevance of the sufficient conditions
just derived for the Kalman filter estimates of the distribution of (Mt, yt) in our canonical
MTSM and its associated model FV to (nearly) equal those implied by the OLS estimates of
model FVn .

4 Empirical (Near) Observational Equivalence of MTSMs

and Factor-V ARs

We now turn to assess the empirical relevance of the theory we developed in Section 3. We
examine, step-by-step, to what extent the conditions hold that allow for the observational
equivalence of MTSMs and factor-V ARs.

To examine the conditions, we first focus on a three-factor model in Mt = (gt, πt)
′, where

gt is a measure of real output growth and πt is a measure of inflation as in, for example,
Ang, Dong, and Piazzesi (2007) and Smith and Taylor (2009). We follow Ang and Piazzesi
(2003) and use the first PC of the help wanted index, unemployment, the growth rate of
employment, and the growth rate of industrial production (REALPC) as our measure of g,
the first PC of measures of inflation based on the CPI, the PPI of finished goods, and the
spot market commodity prices (INFPC) for π.23 We use the notation GM3(g, π) to denote
this three-factor model with growth and inflation.

4.1 On the Need For Filtering PCs Within Our Canonical Models

A key aspect of our argument that the filtered versions of the first L portfolios agree with
the observed portfolios was the cancellation effect of the errors across maturities. That is,
even if individual yields are very noisy in the sense that filter error are large, it can be the
case that portfolios are observed much more precisely.

23All of our results are qualitatively the same if we replace these measures of (g, π) by the help wanted
index and CPI inflation as in Bikbov and Chernov (2010).
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Figure 2: This figure compares observed yields with smoothed yields estimated from model
GM3(g, π). Panel (a) plots the difference between observed yields and the smoothed versions
from the model (ym

t )s. Panel (b) plots the observed PC1 and its smoothed version PC1s.

Figure 2, Panel (a), plots the time series of the differences between observed yields, ymo
t ,

and their smoothed counterparts (ym
t )s, for m=1, 5, and 10 years. These pricing errors are

large, occasionally exceeding 100 basis points, so this model clearly has difficulty matching
individual yields. The estimated standard deviation of the measurement errors is 43.1 basis
points. The reason for this poor fit is that the macro-variables are only able to capture a
small amount of the variation in the slope and curvature of the yield curve.

Although the individual yields are poorly fit by the model, the model provides an excellent
fit the level of yields. Figure 2, Panel (b), plots the time series of the observed first principal
component and its smoothed counterpart. Here, we scale the principal component so that
the sum of the weights are one, which approximately gives equal weight to each maturity.
The sample standard deviation of the difference between the observed and smoothed first PC
is only 1.7 basis points; the standard deviation between the filtered and observed first PC is
only 4.3 basis points.

These numbers are aligned with out the prediction of our theory in Section 3.1. The
standard deviation of the forecast of the observed first PC based on lagged information and the
current macro-variables and higher order principal component is 40.7 basis points. The sample
standard deviation of changes in the first PC are 42.5 basis points, indicating that based on
the information structure of GM3(g, π), very little of the changes are predictable consistent
with the near-random walk behavior of the level of interest rates. The estimated standard
deviation of the measurement error for the first PC is 12.5 basis points, approximately equal
to the standard deviation of the individual yields (43.1 basis points) divided by the square
root of the number of yields used in estimation (J = 12). According to (10), the estimated
standard deviation of the difference between the observed and filtered first PC is 3.8 basis
points – close to the sample value of 4.3 basis points.
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KP
0Z I +KP

1Z

TS
FV

1 1 1 0.999
1 1 1 1
1 0.999 1 1

TS
TSn

1.12 0.998 1.04
0.999 0.999 1 1
0.988 0.93 1 1

FV
FV n

1.12 0.998 1.04 1.02
0.999 0.999 1 1
0.989 0.929 1 1

Table 1: Ratios of estimated KP
0Z and I + KP

1Z for the GM3(g, π) model. The first block
compares the estimates for models TS and FV, the second block compares models TS and
TSn , and the third compares models FV and FVn .

4.2 ML estimation of the conditional distribution

In Section 3.2, we observed several conditions for the ML estimators of the parameters
governing the distribution of (Mt,PLt ) to agree. These conditions were that first the smoothed
lower order portfolios should agree closely with the observed lower order portfolios. Second,
for the lower order portfolios there should be a low amount of uncertainty about their
unobserved theoretical values. Finally, the time series average of the errors, relative to the
error variances, should be low for the higher order portfolios.

We have just seen in Section 4.1, the first two conditions are satisfied in the estimation of
the GMs(g, π) model. The final condition that the time series average of the measurement
errors (relative to their variances) is small for all the yields also holds. Although Panel (a) of
Figure 2 indicates that at times the errors for individual yields can be very large, visually we
can see that the time series average

Given that all of the conditions are approximately satisfied, we should anticipate that the
ML parameter estimates for (KP

0 , K
P
1 ,Σ) should agree for the MTSM and the FVAR with

either filtering or by assuming that that PC1 is observed with no error. Table 1 displays the
ratios and scaled differences of the conditional mean parameters from model GM3(g, π) and
its associated FV AR, with and without filtering. Consistent with our theory, we see that the
conditional mean parameters are virtually identical. Table 2 then compares the conditional
variance parameters. Again, since the time series average errors (relative to their variances)
of the yields are all near zero, the conditional variance parameters are nearly identical across
the three specifications.
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Ratio Scaled Difference

GMKF
3

FV KF
3

1.01 - - 0.00359 - -
0.987 1 - -0.00649 0.000123 -
0.998 1.01 1 -0.000901 0.00287 5.09e-05

GMKF
3

GM3

1.07 - - 0.0335 - -
0.9 1 - -0.0526 0.000953 -

0.885 1.11 1.01 -0.0609 0.0503 0.00472

FV KF
3

FV3

1.07 - - 0.0339 - -
0.898 1 - -0.0535 0.000986 -
0.885 1.11 1.01 -0.0612 0.0516 0.00474

Table 2: Ratios and scaled differences of conditional second moment parameters in ΣZ for
model GM3(g, π). Standard deviations are compared along the diagonals and correlations
are compared on the off-diagonals.

4.3 Statistics of the distribution of (Mt, yt)

Given that all of our conditions approximately hold for the GM3(g, π) model and both the
conditional mean and conditional variance parameters are nearly identical, it follows that
the distribution of the risk factors are the same across the specifications. This implies also
that all statistics of the distribution, such as the impulse response functions will be nearly
identical as well. This returns to our previous example in Figure 1, where we plotted the
impulse response of PC1 to a shock to CPI Inflation in Model GM3(g, π). Both the term
structure model and the factor-V AR have almost identical impulse responses for PC1 in
response to CPI shocks, whether we impose no arbitrage or not.

5 Extensions

In this section, we explore a number of extensions and applications of our results. First,
we turn our analysis to study the impact of no arbitrage to the study of the violations of
the expectations theory of the term structure. Second, we consider the effect of relaxing
the spanning assumption of the macro-variables by the yields as in Joslin, Priebsch, and
Singleton (2010). Finally, we look at the effects of higher-order Markov processes for the
yields and macro-variables.

5.1 Resolutions of Expectations Puzzles by YTSMs

One of the most widely studied features of the joint distribution of bond yields is the failure
of the expectations theory of the term structure (ETTS). According to the ETTS changes in
long-term bond yields should move one-to-one with changes in the slope of the yield curve,
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as long rates are hypothesized to differ from the average of expected future short rates by no
more than a constant term premium. Instead, the evidence from US Treasury bond markets
suggests that long-term bond yields tend to fall when the slope of the yield curve steepens
(e.g., Campbell and Shiller (1991)). Dai and Singleton (2002) and Kim and Orphanides
(2005), among others, have shown that the risk premiums inherent in Gaussian term structure
models are capable of rationalizing the “puzzling” failure of the expectations theory.

At issue are the coefficients φn in the projections

Proj
[
yn−1

t+1 − yn
t |yn

t − rt

]
= αn + φn

(
yn

t − rt

n− 1

)
, (18)

where yn
t denotes the n-period zero yield and Proj[·|·] denotes linear least-squares projection.

The ETTS implies that φn = 1, for all maturities n. To see under what circumstances (18)
holds it is instructive to compare this relationship to the general premium-adjusted expression

EP
[
yn−1

t+1 − yn
t − (cn−1

t+1 − cn−1
t ) +

pn−1
t

n− 1

∣∣yt

]
=

(
yn

t − rt

n− 1

)
, (19)

where

cnt ≡ yn
t −

1

n

n−1∑
i=0

EP[rt+1|yt] and pn
t ≡ fn

t − EP[rt+n|yt] (20)

are the yield and forward term premiums, respectively, and fn
t denotes the forward rate for

one-period loans commencing at date t + n (e.g., Dai and Singleton (2002)). A YTSM is
considered successful at explaining the failure of the ETTS if the term premiums it generates
through time-varying market prices of risk reproduce (19) and, thereby, leads to a pattern in
the model-implied φGY TSM

n that matches the φn in the sample.
Since the projections in (18) are restrictions on the conditional P-distribution of yt, our

earlier analysis implies that, absent measurement errors on yo
t , and if the model-implied

loadings of yields on the risk-factors are close to the FV AR estimates, nothing is learned
about the failure of the ETTS over and above what one learns from fitting an unconstrained
factor-model for yt based on a FV AR model for Pt. In practice, bond yields are not priced
perfectly by low-dimensional YTSMs. Likewise, in the presence of large pricing errors, risk
loadings of individual yields may differ from their FV AR counterpart. Therefore, as with
the previous illustrations, there is some scope for no-arbitrage restrictions to improve the
efficiency of estimators of the φn.

To investigate the role of no-arbitrage restrictions for testing this hypothesis we estimated
three- and four-factor YTSMs (models GY3 and GY4, respectively) using the JSZ normalization
with the risk factors rotated to be the first N PCs of bond yields (with N = 3 or 4), assuming
that all yields are priced with errors. Using the covariances of the steady-state distribution
of PNt implied by these YTSMs evaluated at the ML estimates, we compute the projection
coefficients φGY TSM

n . For comparison we computed the FV AR-implied projection coefficients
φFV AR

n , now with all of the risk factors being model-implied PCs of the bond yields.24 The

24A practical problem that arises in computing the regression coefficients for the FV AR model is that, from
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Figure 3: Regression coefficients φn implied by the sample Treasury yields, the GY KF
3 , GY KF

4

models and their corresponding unconstrained FV AR models. All yields were allowed to be
priced with errors. The horizontal axis is in years.

data are again the unsmoothed Fama-Bliss zero yields on US Treasury bonds for the period
January, 1972 through December, 2003.

The results for the case of a three-month holding period (that is, the short-term positions
are rolled every three months) are displayed in Figure 3.25 Consistent with the extant evidence,
these low-dimensional YTSMs do resolve the expectations puzzle: the implied φGY TSM

n track
the estimated φn from the data quite closely. More to the point of our analysis, the reason
that the YTSM is successful at resolving the ETTS puzzle is because the unconstrained
factor model resolves this puzzle. In other words, inherent in the reduced-form factor
structure (8) is a pattern of projection coefficients φFV AR

n that approximately matches those
from the regression equations (18). The YTSMs also match the regression slopes because
their no-arbitrage restrictions are empirically irrelevant for this feature of the conditional P
distribution of bond yields– the YTSMs and the FV AR’s produce almost identical conditional
distributions of bond yields.26 With regard to the ETTS, this is manifested in the nearly
identical patterns of projection coefficients φFV AR

n and φGY TSM
n in Figure 3.

the twelve yields used in estimation of the YTSM we cannot determine the loadings on the risk factors for all
of the maturities. For those maturities not used in estimation, we obtain their loadings from cubic splines
fitted through the loadings of the twelve maturities used in estimation. Very similar results are obtained
by projecting all yields onto the risk factors using OLS regression and using these loadings to compute the
FV AR-implied coefficients.

25We focus on the case of three-month holding periods, because this is the shortest maturity Treasury bond
that was used in estimation of the YTSM. The results for shorter and longer holding periods are qualitatively
similar.

26Implicit in this finding is a very close similarity between the cross-sectional patterns of factor loadings
produced by OLS projections of bond yields onto the risk factors (PCs of bond yields) and the loadings
produced by the arbitrage-free term structure models.
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5.2 Models with Unspanned Risk Factors

Up to this point, the models we have considered have the macro variables enter directly as
risk factors determining interest rates, as is the case with the large majority of the extant
literature on MTSMs. Joslin, Priebsch, and Singleton (2010) have developed a different class
of models that allow for unspanned yield and macro risks– risks that cannot be replicated by
linear combinations of bond yields.27 Canonical versions of these models with unspanned risks
share two important properties: (1) except for the volatility parameter (Σ), the P-parameters
are distinct from the Q-parameters; and (2) Σ only affects yield levels and not the loadings of
yields on the risk factors. Analogous to the spanned models, the implication of property (1)
is: when one assumes the risk factors are observed without error, forecasts agree identically
with the corresponding FV AR. Likewise, property (2) implies: the deviation of the ML
estimate of Σ from its FV AR-counterpart is proportional to the average-to-variance ratio of
the pricing errors. Therefore, so long as one considers canonical models with unspanned risk
factors, the historical distribution of the yields and macro-factors estimated using either the
FV AR or the no-arbitrage model will be nearly identical.28

We verify these assertions by reconsidering the MTSMs explored above, but now reformu-
lated as models with unspanned macro risks. Specifically, for the three-factor model GM3(g)
with g = REALPC, we adopt a variant of the setup in Joslin, Priebsch, and Singleton
(2010) in which there are two pricing factors (P2

t ) and the full Zt has forecasting power for
excess returns. Similarly, for model GM3(g, π), the single pricing factor is PC1 and again the
full state (REALPC, INFPC, PC1) determines risk premiums. Finally, for the four-factor
model with M ′

t = (CPI,HELP ), the pricing factors are P2
t and (P2

t ,Mt) determine risk
premiums. In all of these cases, the estimated KP

0Z , K
P
1Z and Σ from the MTSM are close to

their FV AR counterparts, whether we assume the pricing factors are measured without or
with errors.

That the joint P distributions of the state Zt implied by the MTSMs and their FV ARs
are nearly identical is reflected in the model-implied projection coefficients (18) for evaluating
the ETTS, as discussed in Section 5.1. Figure 4 plots these coefficients for the MTSMs
and the corresponding yield-only models with the same number of factors underlying bond
pricing (one factor for GM3(g, π) and two factors for GM3(g)). All of the models with two
pricing factors are successful in matching the failures of the expectations hypothesis, and the
no-arbitrage and FV AR models line up very closely. The projections for models GM3(g) and
GY KF

2 are virtually on top of one another, indicating that the crucial component in matching
the projections are the inclusion of PC2 (slope), and not the macro-information. This is
underscored by considering the results for model GM3(g, π). Again, all the no-arbitrage
and FV AR versions produce similar patterns for the projection coefficients, consistent with
our main arguments. However, in these models the projection coefficients are positive and

27For additional applications of their framework, see Wright (2009) and Barillas (2010). Duffee (2009)
discusses a complementary model of unspanned risks in yield-only models.

28In the case that yields or macro variables are forecastable by variables not in their joint span, this applies
only to the comparison of the no arbitrage model and the FV AR which are estimated by Kalman filtering.
This is because in this case the assumption that Pt = Po

t cannot hold by construction.
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Figure 4: Regression coefficients φn implied by the sample Treasury yields, the models
including two lags, GM3(g)F and GM3(g, π)F , and their corresponding unconstrained factor-
V AR model. All yields were allowed to be priced with errors. Additionally, the yield only
models GY KF

1 and GY KF
2 are plotted in panels (a) and (b), respectively. The horizontal axis

is in years.

increasing with maturity rather than negative and decreasing with maturity, as in the data.
That is, without including PC2, none of the specifications are able to match the violations of
the expectations hypothesis summarized by the sample projection coefficients.

5.3 Higher-Order V AR Models of Risk Factors

Up to this point we have focused on the class of MTSMs that presume that Zt follows
a first-order Markov process under P and Q. We now show that our central arguments
carry over to formulations based on higher-order V ARs: the corresponding canonical models
produce nearly identical estimates of the historical distribution of macro-factors and bond
yields as their associated FV ARs.

We now consider the following extended family of models. For a fixed set ofM macroeco-
nomic variables Mt, we let GMTSMN ,p(M) be the set of invariant affine transformations of
non-degenerate MTSMs in which rt is an affine function of L latent (Lt) and M macro (Mt)
factors and the vector ZLt = (M ′

t , L
′
t)
′ follows the Gaussian processes (2) under Q and

ZLt = κP
0Z + κP

1Z

−→
ZLt−1,p +

√
ΩZε

P
t (21)

under P, where, for any Ut,
−→
U t,p ≡ (U ′t , U

′
t−1, . . . , U

′
t−p+1)′.

With regard to the P distribution of the risk factors, this formulation nests many prior
macro-finance term structure models with lags, including Ang and Piazzesi (2003), Ang,
Dong, and Piazzesi (2007), and Jardet, Monfort, and Pegoraro (2010). It does not, however,
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nest their representations under the pricing distribution.29 These studies adopt specifications
of the market prices of risk that imply that the Q distribution of ZL inherits the lag structure
of the V AR(p) under P. The choice of p > 1 in (21) is often supported by descriptive evidence
under the historical distribution. Left open by such evidence is the nature of the dependence
of rt and ZLt on lags of ZLt under the pricing distribution. As previously noted, within the
family of reduced-form MTSMs (with or without lags), neither the risk factors nor their
weights have structural interpretations, so economic theory, as well, is silent on this issue.

Indirect guidance on the lag structure of the Q distribution of (rt, Z
L
t ) is provided by

the projections of yields onto lagged values of the state vector ZLt . Starting with the null
that ZLt follows the first order V AR under Q, the information in ZLt is identical to that
of Zt = (Mt,PLt

′
)′. Therefore, it is exactly equivalent for us to project yields onto lagged

values of Zt. If the regressions fit materially improves with additional lags of Zt, this would
constitute evidence against our null.30 The standard deviations of the errors in the projections

of yields onto
−→
Z

o

t,q (RMSE in basis points), for q = 1, 6, 12 (one year in our monthly data)
and various compositions of macro risk factors Mt, are presented in Table 3. Clearly, for
three of the four cases, the improvements in fitting these bond yields from allowing for q > 1
are tiny, at most one or two basis points.31 In all cases, the (AIC,BIC) model selection
criteria select q = 1.

With these observations in mind, and supported by the evidence in Table 3, we proceed
to explore asymmetric formulations of MTSMs in which Zt follows a V AR(p) under P, and
Zt follows a V AR(1) under Q. Since the Q distributions for models in GMTSMN ,p(M)
and GMTSMN (M) are identical, the risk factors (Mt, Lt) can once again be expressed as
an affine function of (Mt,PLt ) as in (4). Further, the invariant transformation (5) gives an
observationally equivalent model in which Z ′t = (M ′

t ,PL′t ), rt is given by (1), and Zt follows
the process (2) under Q, with the parameters governing (1) and (2) being explicit functions
of ΘQ

GMTSM = (rQ
∞, λ

Q, γW
0 , γW

1 ,Σ).32 These functions are identical to those in Section 2 and

29It is straightforward to extend our theoretical results to allow for Q-dependence on lags of macro variables–
the setups of Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2007). Guided by the evidence below,
we omit these additional lags from our analysis.

30Strictly speaking, these projections speak directly to variants of models that assume P2o
t = P2

t . However,
we have seen that the filtered PCs are nearly identical to P2o

t in the variants with measurement errors
(P2o

t 6= P2
t ), so the following observations are relevant for both cases.

31The only exception is model GM3(g, π) with state vector (PC1, REALPC, INFPC). Here the fit is so
poor, with RMSEs as large as 60bp, that adding lags under Q improves the RMSEs a bit more, up to eight
basis points.

32 The lag structure of the most flexible models with lags precludes the direct application of the normalization
strategies in JSZ or in our Theorem 1. That is, if one starts with a MTSM in which the risk factors ZLt are
latent and satisfy

ZLt = κQ
0Z + κQ

1Z

−→
Z Lt−1,q +

√
ΩZε

Q
t ,

then in general it is not possible to find a portfolio matrix W such that PNt can be substituted for Zt in
this expression. Instead, premultiplying by the first N rows of W and inverting the lag polynomial, we can
express ZLt as an infinite-order distributed lag of PNt , and when this expression is substituted into the above
V AR the resulting time-series model for PNt inherits this infinite order.
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Model Mt History (q) y0.5yr
t y1yr

t y2yr
t y5yr

t y7yr
t y10yr

t

GM3 REALPC 1 10 15 17 10 10 18
GM3 REALPC 6 9 14 16 10 10 18
GM3 REALPC 12 9 14 16 9 9 17
GM3 REALPC, INFPC 1 60 45 22 25 36 47
GM3 REALPC, INFPC 6 57 42 20 24 34 45
GM3 REALPC, INFPC 12 53 37 18 22 31 40
GM4 HELP,CPI 1 8 15 17 10 10 18
GM4 HELP,CPI 6 7 14 16 9 10 17
GM4 HELP,CPI 12 7 14 15 9 9 16
GM4 REALPC, INFPC 1 9 15 17 10 10 18
GM4 REALPC, INFPC 6 8 14 16 9 10 17
GM4 REALPC, INFPC 12 8 13 15 9 9 16

Table 3: Root-mean-squared fitting errors, measured in basis points, from projections of bond
yields onto current and lagged values of the risk factors Zo

t . For given q, the conditioning
information is (Zt, Zt−1, . . . , Zt−q+1).

provided in Appendix A. Additionally, the P-dynamics of Zt is unrestricted:

Zt = KP
0Z +KP

1Z

−→
Z t−1,p +

√
ΣεPt . (22)

Our previous argument extends to as follows. For fixed W , any member of the family of models
GMTSMN ,p(M) is observationally equivalent to a unique member of GMTSMN ,p(M) in
which the first M components of the pricing factors are the macro variables Mt, and the
remaining L components are PLt ; rt is given by (1); Mt is related to PNt according to (4); the
risk factors follow the Gaussian process (2) under Q and (22) under P, where KQ

0Z , KQ
1Z , Σ, ρ0,

and ρ1 are explicit functions of ΘQ
GMTSM . For given W , our canonical form is parametrized

by ΘZ = (λQ, rQ
∞, K

P
0 , K

P
1 ,Σ, γ

W
0 , γW

1 ).
Our main analysis comparing the properties of no arbitrage models with their associated

FV ARs follows through for this generalized MTSM with lags. The source of this robustness
of our analysis is again the separation of the parameter space: except for Σ, the P-parameters
are distinct from the Q-parameters. Therefore, when Zt is measured without errors, ML
estimates of the P-mean parameters can be obtained directly by fitting Zt to a V AR(p).
Moreover, with or without lags, Σ only affects yield levels and not their factor loadings.
Consequently, the first-order derivative of the density of the pricing errors with respect to
Σ must be proportional to the average-to-variance ratio of errors defined earlier, so earlier
invariance results regarding the ML estimate of conditional variances continue to hold.
Provided that the average pricing errors are small relative to their standard deviations, one
should expect the model-implied conditional P-distribution of Zt to be nearly identical to its
counterpart implied by an unconstrained FV AR of yields.
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Figure 5: Impulse responses of PC1 and PC2 to innovations in HELP and CPI based
on ML estimates of model GMKF

4,4 . The horizontal axis is months, and the risk factors are
ordered as (CPI,HELP, PC1, PC2).

To examine this issue empirically we introduce V AR(p) processes under P to models
GM3(REALPC) and GM4(HELP,CPI). For each of these models, we first fit Zt to a
V AR(p) over a wide range of p’s and choose the optimal number of lags according to their
BIC and AIC scores. For model GM3, the optimal number of lags according to the BIC
(AIC) is 2 (7). For model GM4, the optimal number of lags according to the BIC (AIC) is
1 (4). Given our objective of examining the sensitivity of the conditional distribution of bond
yields to high-order lag structures we choose p = 7 (p = 4) in generalizing GM3 (GM4). We
denote these models by GM3,7 and GM4,4, respectively, where the second subscripts refer to
the number of lags in each model.

As in models with p = 1, the no-arbitrage and FV AR models give very similar estimates
for the parameters governing the conditional mean and conditional covariance of the risk
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factors, even when allowing for measurement errors on all yields.33 Figure 5 displays the
impulse responses implied by model GMKF

4,4 which depend on both KP
1Z and Σ.34 As before,

the imposition of no arbitrage is virtually inconsequential for how shocks to macro factors
impact the yield curve.35 This finding is robust to choices of which macro variables are
included. For example, a very similar result is obtained from model GM3,7.

6 Concluding Remarks

We have shown theoretically and documented empirically that the no-arbitrage restrictions
of canonical MTSMs have essentially no impact on the ML estimates of the joint conditional
distribution of the macro and yield-based risk factors, including models that nest some of the
most widely studied MTSMs in the literature. This finding is robust to whether a subset of
the bond yields are priced perfectly by a MTSM, or all yields are measured with error and
filtering is used in ML estimation.

Of course this finding does not imply that YTSMs or MTSMs are of little value for
understanding the risk profiles of portfolios of bonds. Our entire analysis has been conducted
within canonical forms that offer maximal flexibility in fitting both the conditional P and Q
distributions of the risk factors. Restrictions on risk premiums in bond markets typically
amount to constraints across these distributions, and such constraints cannot be explored
outside of a term structure model that (implicitly or explicitly) links the P and Q distributions
of yields. Moreover, the presence of constraints on risk premiums will in general imply that
ML estimation of a MTSM will lead to more efficient estimates of the P distribution of yields
relative to those of the factor model (6)-(8).

Whether such efficiency gains will be sizable is an empirical question and will likely depend
on the nature of the constraints imposed. JSZ found that the constraints on the feedback
matrix KP

1Z imposed by Christensen, Diebold, and Rudebusch (2009) in their analysis of
YTSMs had small effects on out-of-sample forecasts. Further, Ang, Dong, and Piazzesi
(2007) found that impulse response functions implied by their three-factor (M = 2,L = 1)
MTSM that imposes various zero restrictions on lag coefficients and the parameters governing
the market prices of risk were nearly identical to those computed from their corresponding
unrestricted V AR. Both of these studies illustrate cases where our propositions on the near
irrelevance of no-arbitrage restrictions in MTSMs (and YTSMs) carry over to non-canonical
models.

More generally, the results on higher order Markov term structure models combined with
the propositions in JSZ imply that one widely imposed class of restrictions will not break
our irrelevancy results. Specifically, constraints on the market price of risk that amount to

33Given their similarity to our previous findings, we omit these tables.
34The higher-order lag structure alters somewhat the individual responses. The choppy behavior over short

horizons for some of the responses in Figure 5 is also evident in the impulse responses reported in Ang and
Piazzesi (2003) for their MTSM with lags.

35The difference in the responses of PC1 to innovations in HELP is roughly 5bp. Since the loadings of
yields on PC1 are about 0.3, this translates to a difference in yields’ responses of about 1.5bp.
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zero restrictions on the lag structure of Zt under the pricing measure Q do not affect the
factorization of the likelihood function under our normalization scheme. Therefore, they
do not impinge on the parameters of the matrix KP

1Z , whence their affects on the entire
conditional P distribution of Zt are likely to be negligible.

For instance, the MTSM with constrained market prices of risk studied by Joslin, Priebsch,
and Singleton (2010) has very different dynamic properties than an unconstrained V AR.
Similarly, Duffee (2011) obtained improved out-of-sample forecasts of bond yields in a YTSM
with one of the risk factors constrained to follow a random walk. On the other hand, focusing
on conditional means, Joslin, Singleton, and Zhu (2010) provide examples where forecasts
from constrained YTSMs and their associated V ARs are identical.

Similarly, unit-root or cointegration-type restrictions imposed directly on the P distribution
of the risk factors (JSZ, Duffee (2011), Jardet, Monfort, and Pegoraro (2010)) also seem
unlikely to induce large differences between the conditional P distributions implied by a
MTSM and the corresponding FV AR with the same restrictions imposed. JSZ, for instance,
obtained very similar conditional mean parameters under cointegration from a YTSM and a
FV AR estimated using US Treasury data.

On the other hand, Joslin, Priebsch, and Singleton (2010) found that the constraints across
the P and Q parameters selected by Schwarz (1978)’s Bayesian information criteria led to
substantial differences between the selected model and both its canonical and unconstrained
V AR counterparts. Thus, undertaking a systematic model-selection exercise may point to
constraints that break the irrelevance results documented here.36 Similarly, the constraint
that expected excess returns lie in a lower than N -dimensional space (Cochrane and Piazzesi
(2005), JSZ), which effectively amounts to constraining the market prices of risk, might also
have material effects.

From what we know so far, evaluating how one’s choice of constraints on a MTSM affects
the model-implied historical distribution of bond yields and macro variables, relative to the
distribution from a V AR, seems likely to be an informative exercise.

36A typical strategy for achieving parsimony in dynamic term structure models is to first estimate a
canonical (or nearly canonical) model, to then set to zero the parameters of the market price of risk that are
small relative to their estimated standard errors, and finally to re-estimate this constrained model. See, for
examples, Dai and Singleton (2000), Ang and Piazzesi (2003), and Bikbov and Chernov (2010).
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A A Canonical Form for MTSMs

Our objective is to show that each GMTSMN (M) where

rt = ρL0Z + ρL1Z · ZLt (23)

with the risk factors ZLt ≡ (M ′
t , L

′
t)
′ following the Gaussian processes

∆ZLt = κQ
0Z + κQ

1ZZ
L
t−1 +

√
ΩZε

Q
t under Q and (24)

∆ZLt = κP
0Z + κP

1ZZ
L
t−1 +

√
ΩZε

P
t under P, (25)

is observationally equivalent to a unique member of GMTSMN (M) in which Zt = (M ′
t ,PLt

′
)′

with some L yield portfolios PLt :

rt = ρ0Z + ρ1Z · Zt, (26)

∆Zt = KQ
0Z +KQ

1ZZt−1 +
√

ΣεQt under Q and (27)

∆Zt = KP
0Z +KP

1ZZt−1 +
√

ΣεPt under P (28)

where (ρ0Z , ρ1Z , K
Q
0Z , K

Q
1Z) are explicit functions of some underlying parameter set ΘQ

GMTSM =
(rQ
∞, λ

Q, γW
0 , γW

1 ,Σ) to be described. We will make precise the sense in which ΘZ =
(ΘQ

GMTSM , K
P
0Z , K

P
1Z) uniquely characterizes the latter GMTSMN (M).

Observational Equivalence

Assuming, for ease of exposition, that κQ
1Z has nonzero, real and distinct eigenvalues with the

standard eigendecomposition:37 κQ
1Z = AQdiag(λQ)AQ−1

, we follow Joslin (2006) by adopting
the rotation:

Xt = V−1
(
ZLt + (κQ

1Z)−1κQ
0Z

)
where V = AQdiag((ρL1Z)′AQ)−1 (29)

to arrive at the following Q specification:

rt = rQ
∞ + ι ·Xt, and ∆Xt = diag(λQ)Xt−1 +

√
ΣXε

Q
t (30)

where λQ is ordered and ι denotes a vector of ones and

rQ
∞ = ρL0Z + (ρL1Z)′(κQ

1Z)−1κQ
0Z and ΩZ = VΣXV ′.

From (30), the J × 1 vector of yields yt is affine in Xt:

yt = AX(rQ
∞, λ

Q,ΣX) +BX(λQ)Xt (31)

37See JSZ for detailed treatments of cases with complex, repeated or zero eigenvalues.
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with AX , BX obtained from standard recursions. Following JSZ, we fix a full-rank loadings
matrix W ∈ RJ×J , and let Pt = Wyt. Focusing on the first N portfolios PNt , we have:

PNt = WNAX +WNBXXt. (32)

Based on (29) and (32), there is a linear mapping between Mt and PNt :

Mt = γW
0 + γW

1 PNt (33)

where

γW
1 = VM(WNBX)−1 and γW

0 = −γW
1 WNAX − AQ

M(λQ)−1AQ−1
κQ

0Z , (34)

and VM, AQ
M denote the first M rows of V , AQ, respectively. This allows us to write:

Zt = Γ0 + Γ1PNt = Γ0 + Γ1(WNAX +WNBXXt) = U0 + U−1
1 Xt (35)

where

Γ0 = (γW
0

′
, 0′L)′, Γ1 =

(
γW

1

IL, 0L×M

)
, U0 = Γ0 + Γ1W

NAX , and U1 = (Γ1W
NBX)−1.

Combining (30) and (35), the Q-specification of Zt is:

rt = ρ0Z + ρ1Z · Zt and ∆Zt = KQ
0Z +KQ

1ZZt−1 +
√

ΣεQt (36)

where

ρ1Z = (U1)′ι and ρ0Z = rQ
∞ − ρ1Z · U0,

KQ
1Z = U−1

1 λQU1, K
Q
0Z = −KQ

1ZU0 (and ΣX = U1ΣU ′1).

Based on (29) and (35), there must be a linear mapping between Zt and ZLt . It follows
that the P-dynamics of Zt must be Gaussian as in (28).

To summarize, the GMTSMN (M) with mixed macro-latent risk factors ZLt , described
by (23), (24), and (25), is observationally equivalent to one with observable mixed macro-
yield-portfolio risk factors Zt, characterized by (26), (27), and (28). The primitive parameter
set is ΘZ = (rQ

∞, λ
Q, γW

0 , γW
1 ,Σ, KP

0Z , K
P
1Z). The mappings between (ρ0Z , ρ1Z , K

Q
0Z , K

Q
1Z) and

ΘQ
GMTSM = (rQ

∞, λ
Q, γW

0 , γW
1 ,Σ) are:

ρ1Z = (U1)′ι, ρ0 = rQ
∞ − ρ1Z · U0, K

Q
1Z = U−1

1 λQU1, K
Q
0Z = −KQ

1ZU0 (37)

where

U1 = (Γ1W
NBX(λQ))−1, U0 = Γ0 + Γ1W

NAX(rQ
∞, λ

Q,U1ΣU ′1), and

Γ0 = (γW
0
′
, 0′L)′, Γ1 =

(
γW

1

IL, 0L×M

)
.
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Uniqueness

Consider two parameter sets, ΘZ and Θ̃Z , that give rise to two observationally equivalent
GMTSMN (M)’s with risk factors Zt. Since Zt is observable, the parameters, Σ, KP

0Z , K
P
1Z ,

describing the P-dynamics of Zt must be identical. Additionally, based on (33), the following
identity must hold state by state:

Mt ≡ γW
0 + γW

1 PNt ≡ γ̃W
0 + γ̃W

1 PNt . (38)

Since W is full rank, hence PNt are linearly independent, it follows that:

γW
0 = γ̃W

0 and γW
1 = γ̃W

1 . (39)

Finally, writing the term structure with PNt as risk factors:

yt = AX +BX(WNBX)−1(PNt −WNAX), (40)

it follows that

BX(WNBX)−1 = B̃X(WN B̃X)−1, and (41)

(IJ −BX(WNBX)−1WN )AX = (IJ − B̃X(WN B̃X)−1WN )ÃX . (42)

Now (41) is equivalent to:

diag(
1− λn

i

1− λi

)(WNBX)−1 = diag(
1− λ̃n

i

1− λ̃i

)(WN B̃X)−1 (43)

for every horizon n. As long as both WNBX and WN B̃X are full rank, it must follow that
λQ

i ≡ λ̃Q
i for all i’s.

Turning to (42), we note that

AX = ι rQ
∞ + βXvec(ΣX) (44)

where βX is a function of λQ, and thus must be the same for both ΘZ and Θ̃Z . Likewise,
ΣX = U1ΣU ′1, dependent only on (γW

1 , λQ,Σ), must be the same for both parameter sets. It
follows that rQ

∞ = r̃Q
∞. Therefore, ΘZ ≡ Θ̃Z .

Regularity Conditions

First, we assume that the diagonal elements of λQ are non-zero, real and distinct. These
can be easily relaxed - see JSZ for detailed treatments. Second, we assume that the
GMTSMN (M)’s are non-degenerate in the sense that there is no transformation such that
the effective number of risk factors is less than N . For this, the requirement is that all
elements of (ρL1Z)′AQ are non-zero. In terms of the parameters of our canonical form, none of
the eigenvectors of the risk-neutral feedback matrix KQ

1Z is orthogonal to the loadings vector
ρ1Z of the short rate. Finally, to maintain valid transformations between alternative choices
of risk factors, we require that the matrices WNBX and Γ1 be full rank. These are conditions
on (λQ,W ) and γW

1 , respectively.
The following theorem summarizes the above derivations:
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Theorem 1. Fix a full-rank portfolio matrix W ∈ RJ×J , and let Pt = Wyt. Any canonical
form for the family of N -factor models GMTSMN (M) is observationally equivalent to a
unique member of GMTSMN (M) in which the first M components of the pricing factors Zt

are the macro variables Mt, and the remaining L components of Zt are PLt ; rt is given by
(26); Mt is related to Pt through

Mt = γW
0 + γW

1 PNt , (45)

for M × 1 vector γW
0 and M × N matrix γW

1 ; and Zt follows the Gaussian Q and P
processes (27), and (28), where KQ

0Z , K
Q
1Z , ρ0Z , and ρ1Z are explicit functions of ΘQ

GMTSM =
(rQ
∞, λ

Q, γW
0 , γW

1 ,Σ), given by (37). For given W , our canonical form is parametrized by
ΘZ = (ΘQ

GMTSM , K
P
0Z , K

P
1Z).

B Filtering Invariance

It is standard to write the Kalman filtering equation as:

E[PLt |Ft] = E[PLt |Ft−1] + cov(PLt , U o
t |Ft−1)var(U o

t |Ft−1)−1(U o
t − E[U o

t |Ft−1]) (46)

where U o
t = (PL,o

t

′
, Do

t
′)′. To evaluate the Kalman gain term, we write:

cov(PLt , U o
t |Ft−1)var(U o

t |Ft−1)−1 =cov(PL,o
t , U o

t |Ft−1)var(U o
t |Ft−1)−1

− cov(eL,t, U
o
t |Ft−1)var(U o

t |Ft−1)−1

=(IL, 0L,J+M−L)− (ΣLe, 0L,J+M−L)var(U o
t |Ft−1)−1.

Applying block inversion to var(U o
t |Ft−1), collecting the first L rows corresponding to PL,o,

and substitute back the Kalman gain term into (46), we can write:

E[PLt |Ft] =PL,o
t −ΣLeΩ

−1
Lt︸ ︷︷ ︸

KL,t

(PL,o
t − E[PL,o

t |Ft−1])

−ΣLeΩ
−1
Lt cov(PL,o

t , Do
t |Ft−1)var(Do

t |Ft−1)−1︸ ︷︷ ︸
KD,t

(Do
t − E[Do

t |Ft−1]) (47)

where

ΩLt = var(PL,o
t |Ft−1)− cov(PL,o

t , Do
t |Ft−1)var(Do

t |Ft−1)−1cov(Do
t ,P

L,o
t |Ft−1). (48)

From this, the conditional variances are:

var(KL,tPL,o
t |Ft−1) =ΣL,eΩ

−1
Lt var(P

L,o
t |Ft−1)Ω−1

Lt ΣL,e, (49)

var(KD,tD
o
t |Ft−1) =ΣL,eΩ

−1
Lt cov(PL,o

t , Do
t |Ft−1)var(Do

t |Ft−1)−1cov(Do
t ,P

L,o
t |Ft−1)Ω−1

Lt ΣL,e

=ΣL,eΩ
−1
Lt (var(PL,o

t |Ft−1)− ΩLt)Ω
−1
Lt ΣL,e. (50)

It is obvious that var(KD,tD
o
t |Ft−1) is strictly smaller than var(KL,tPL,o

t |Ft−1). Finally, since

the conditional mean of PL,o
t − E[PL,o

t |Ft−1] is zero, its unconditional variance is simply the
unconditional mean of its conditional variance.
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C Speed of Convergence to Steady States

Consider the following generic state space system:

Zt+1 =K0 +K1Zt +
√

Σεt+1, (51)

Zo
t+1 =Zt+1 + eZ,t+1, (52)

Y o
t+1 =A+BZt+1 + eY,t+1 (53)

where eZ,t and eY,t are independent and eZ,t ∼ N(0,ΣZe) and eY,t ∼ N(0,ΣY e). Let Σt+1,
Ωt+1 denote var(Zt+1|Ft) and var(Zo

t+1|Y o
t+1,Ft) respectively. It is standard to show that

Σt+1 follows the recursion:

Σt+1 = Σ +K1(Σt − ΣtB̃
′(B̃ΣtB̃

′ + Σe)
−1B̃Σt)K

′
1 (54)

where Σe is the variance matrix of (e′Z,t, e
′
Y,t)
′ and B̃′ = (I, B′). We will first show that when

ΣeΩ
−1
t is small then Σt, and therefore the Kalman gain matrix, will approach its steady state

values rapidly. Next, we will show what this condition translates to under our particular
setup.

Standard linear algebra allows us to express the term between K1 and K ′1 in (54) as:

ΣZe − (ΣZe, 0)
(
B̃ΣtB̃

′ + Σe

)−1
(

ΣZe

0

)
. (55)

Now consider a small variation in Σt of ∂Σt, the corresponding change in Σt+1 (the Fréchet
derivative) will be:

∂Σt+1 = Φ∂ΣtΦ
′ with Φ = K1(ΣZe, 0)

(
B̃ΣtB̃

′ + Σe

)−1
(

I
B

)
. (56)

Now replace
(
B̃ΣtB̃

′ + Σe

)
by var

(
Zo

t

Y o
t

|Ft−1

)
and apply block-wise inversion to this

matrix, we have:

Φ = K1ΣZeΩ
−1
t (I − ΣtB

′(BΣtB
′ + ΣY e)

−1B). (57)

As a result, as ΣZeΩ
−1
t approaches zeros, so do the eigenvalues of Φ. Since the recursion (54)

can be written approximately as:

vec(Σt+1 − Σ̄) ≈ (Φ⊗ Φ)vec(Σt − Σ̄) (58)

where Σ̄ denotes the steady state value of Σt, small eigenvalues of Φ (and hence Φ⊗Φ) should
induce fast convergence to the steady state.

Now to apply this to our setup, since we assume that Mt is perfectly observed, the M
rows and columns of Σe corresponding to Mt are zeros. Applying block inversion to Ωt and
collect the L × L block corresponding to the yield portfolios PLt , it follows that we need
ΣLeΩ

−1
Lt to be small.
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D Conditional Mean Parameters

We are going to show that the filtered version of equation (14):

[K̂P
0Z , I + K̂P

1Z ]′ =

(
1

T

∑
t

Zf
t+1,

1

T

∑
t

(Zt+1Z
′
t)

f

)(
1 1

T

∑
t Z

f
t

′

1
T

∑
t Z

f
t

1
T

∑
t(ZtZ

′
t)

f

)−1

, (59)

with some mild assumptions, will deliver estimates that are close to the OLS estimates when
ΣLeΩ

−1
Lt is small. Assuming further that (ZtZ

′
t)

s and (Zt+1Z
′
t)

s are close to their filtered
counterparts, it follows that the smoothed version of (14) will also give approximately the
OLS estimates of KP

0Z , and K̂P
1Z . We turn to this assumption at the end and show why it is

likely to hold.
As shown in Appendix C, when ΣLeΩ

−1
Lt is small, convergence to steady state will be

fast. As such we can treat ΩLt (and Ωt) as if it were a constant matrix. Denoting Ωt =
var(Zo

t |P−Lo
t ,Ft−1) with P−Lo

t being the J − L higher order PCs, post-multiplying both

terms on the right hand side of (59) by

(
1 0
0 Ω−1

t

)
we have:

(
1

T

∑
t

Zf
t+1,

1

T

∑
t

(Zt+1Z
′
t)

fΩ−1
t

)(
1 1

T

∑
t Z

f
t

′
Ω−1

t
1
T

∑
t Z

f
t

1
T

∑
t(ZtZ

′
t)

fΩ−1
t

)−1

. (60)

Now,

(ZtZ
′
t)

fΩ−1
t =var(Zt|Ft)Ω

−1
t + Zf

t (Zf
t )′Ω−1

t

=var(Zt|Ft)Ω
−1
t + Zo

t (Zo
t )′Ω−1

t (61)

where the second line follows by using the result of Appendix B. Using block inversion we
can show that the non-zero block of the first term is:

ΣLeΩ
−1
Lt − ΣLeΩ

−1
Lt ΣLeΩ

−1
Lt

which by our assumption must be close to zeros. Therefore we can replace the 1
T

∑
t(ZtZ

′
t)

fΩ−1
t

term in (60) by 1
T

∑
t Z

o
tZ

o
t
′Ω−1

t . Using a similar argument, the 1
T

∑
t(Zt+1Z

′
t)

fΩ−1
t term can

also be replaced by 1
T

∑
t Z

o
t+1Z

o
t
′Ω−1

t . Using the result of Appendix B, we can replace all Zf
t

in (60) by its observed counter-part:(
1

T

∑
t

Zo
t+1,

1

T

∑
t

Zo
t+1Z

o
t
′Ω−1

t

)(
1 1

T

∑
t Z

o
t
′Ω−1

t
1
T

∑
t Z

o
t

1
T

∑
t Z

o
tZ

o
t
′Ω−1

t

)−1

. (62)

Additionally, assuming that varT (Zo
t )var(Zo

t |P−Lo
t ,Ft−1)

−1 is non-degenerate relative to
ΣLeΩ

−1
Lt , then all Ωt’s cancel out and (62) reduces to the the familiar OLS estimates.
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E Conditional Variance Parameters

To be integrated:

f(Po
t |Zt; ΘQ,Σe) = (2π)−J/2|Σe|−1/2 exp

(
−1

2
e′t Σ−1

e et

)
, (63)

where et is given by (7) for the MTSM and (8) for the factor-V AR. The conditional density
f(Zt|Zt−1) is given by

f
(
Zt|Zt−1;KP

1Z , K
P
0Z ,Σ

)
= (2π)−N/2|Σ|−1/2 exp

(
−1

2
i′tΣ
−1it

)
, (64)

where it = ∆Zt −
(
KP

0Z +KP
1ZZt−1

)
, the time t innovation.

The term structure corresponding to our canonical form with the observable risk factors
Zt can be obtained by substituting (35) into (40):

yt = AX +BX(WNBX)−1(Γ−1
1 (Zt − Γ0)−WNAX). (65)

From this we can write

Pt = ATSM +WBXU1Zt, where (66)

ATSM = Gγr + βZvec(Σ), (67)

G = W
(

(IJ −BX(WNBX)−1WN )ι, BXU1,M

)
, (68)

βZ = W (IJ −BX(WNBX)−1WN )βX(U1 ⊗ U1), (69)

γ′r = (rQ
∞, γ

W
0
′
), and U1,M denotes the first M columns of U1. Importantly, G and T are only

dependent on λQ and γW
1 . Therefore, from (7), the errors in pricing Pt are given by

et = Po
t − Gγr − βZvec(Σ)−BGMTSMZt. (70)

****Integrate in this additional term takes the form

E
[
ET [∂ log fTSM(Po

t |Zo
t ; Θ̂TSM)/∂vec(Σ)]

∣∣∣FT

]
= β̂′Z(Σ̂e)

−1E [ET [êu
t ]| FT ] , (71)

where the unobserved pricing errors êu
t from (7) are evaluated at the ML estimators and

depend on the partially observed ~Z.

F Concentration of the Likelihood

In this section, we show how to concentrate out the likelihood when PLt = PL,o
t . Since in this

case Σe is singular, to simplify exposition and avoid the use of Moore-Penrose pseudo inverse,
we will treat Σe as the covariance matrix of pricing errors for the remaining J − L portfolios
priced with errors; and Σe is non-singular again. We denote the weighting matrix associated
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with the J −L portfolios priced with errors by We. Ignoring constants, the log likelihood of
the data is:

−1

2

(
log |Σe|+ log |Σ|+ ET

[
e′tΣ

−1
e et + i′tΣ

−1it
])

(72)

where

et = Wey
o
t − Geγr − βZ,evec(Σ)−BGMTSM,eZt, (73)

it = ∆Zt − K̂P
0Z,OLS − K̂P

1Z,OLSZt−1, (74)

where the subscript e indexes the rows of G, βZ , and BGMTSM that correspond to the yields
portfolios priced with errors. From the first order condition with respect to γr, we have:

γr = (Ĝ ′e(Σ̂e)
−1Ĝe)

−1Ĝ ′e(Σ̂e)
−1︸ ︷︷ ︸

H

ET [Wey
o
t − βZ,evec(Σ)−BGMTSM,eZt] . (75)

Turning to Σ, the first order condition is:

vec

(
1

2

[
(Σ̂Z)−1 − (Σ̂Z)−1Σ̂Z,OLS(Σ̂Z)−1

])
− β̂′Z,e(Σ̂e)

−1ET [êt] = 0. (76)

Given the expression for γr from (75), we observe that β̂′Z,e(Σ̂e)
−1ET [êt] is linear in vec(Σ):

β̂′Z,e(Σ̂e)
−1ET [êt] = H0 +H1vec(Σ̂) (77)

where H0 = β̂′Z,e(Σ̂e)
−1(IJ−L − GeH)ET [Wey

o
t −BGMTSM,eZt] and H1 = −β̂′Z,e(Σ̂e)

−1(IJ−L −
GeH)βZ,e. As such, we can write (76) as:

−(Σ̂Z)−1 + (Σ̂Z)−1Σ̂Z,OLS(Σ̂Z)−1 + 2 vec−1(H0 +H1vec(Σ̂)) = 0. (78)

Let’s denote the left hand side by F (Σ). We obtain the Fréchet derivative of F with respect
to Σ:

DF (Σ)(ε) =
[
Σ−1εΣ−1 − Σ−1εΣ−1ΣZ,OLSΣ−1 − Σ−1ΣZ,OLSΣ−1εΣ−1

]
+ 2vec−1 (H1vec (ε)) .

(79)
This gives us the linearization F (Σ + ε) = F (Σ) + DF (Σ)(ε) + o(‖ε‖2) and provides the
Newton update equation ΣZ,n+1 = ΣZ,n + εn where εn solves F (ΣZ,n) + DF (ΣZ,n)(εn) = 0.
This is easily solved using the vec operation:

vec (εn) = E−1vec (F (ΣZ,n)) (80)

where

E =
[(

Σ−1
Z,n ⊗ Σ−1

Z,n

)
−
(
Σ−1

Z,n ⊗ Σ−1
Z,nΣZ,OLSΣ−1

Z,n

)
−
(
Σ−1

Z,nΣZ,OLSΣ−1
Z,n ⊗ Σ−1

Z,n

)]
+ 2H1. (81)

Since Σ̂ should be close to Σ̂Z,OLS, using this algorithm with ΣZ,0 = Σ̂Z,OLS should provide
near-instantaneous convergence. Finally, we note that depending on the assumed structure
of Σe, this parameter can also be analytically concentrated out. For example, if we let
Σe = Iσ2

e , an assumption we maintain throughout our empirical implementations, σe can also
be concentrated out.
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