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 Abstract  
 
Studies of investment performance routinely use various measures of alpha, yet the 
literature has not established that a positive (negative) alpha, as traditionally measured, 
means that an investor would want to buy (sell) a fund.  However, under general 
conditions, when alpha is defined using the client's marginal utility function, a client faced 
with a positive alpha would want to buy the fund.  Thus, performance measurement is 
inherently investor specific, and investors will disagree about the attractiveness of a given 
fund.  We provide empirical evidence that bounds the effects of investor heterogeneity on 
performance measures, and study the cross sectional effects of disagreement on investors‟ 
flow response to past fund performance.  The effects of investor heterogeneity are 
economically and statistically significant. 
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Introduction  

Finance researchers have an easy familiarity with alpha, which is supposed to measure the 

expected abnormal return of an investment.  Alpha is so ubiquitous that it has become a 

generic, like Xerox or Google.  Studies refer to CAPM alpha, three-factor alpha or four-

factor alpha, assuming the reader hardly requires a definition.  Investment practitioners 

routinely discuss their strategies in terms of their quest for alpha.  Alpha can be active, 

conditional or portable.  The number of investment firms with alpha in their names is 

truly staggering. 

  Despite the apparent familiarity with alpha, the current literature too often fails to 

think rigorously about how alphas can and should be interpreted.  The contributions of 

this paper are three.  First, we offer extensions of existing results that motivate alpha as a 

guide to investment selection.  The conclusion is that in theory we need to define alpha in 

a client-specific manner in order to justify its interpretation.  Second, we provide an 

analysis of how different client-specific alphas are expected to be from the standard alphas 

in the literature.  We derive and estimate bounds on the extent to which a client may be 

expected to disagree with a traditional measure of alpha, and find that the effects of 

heterogeneity can be similar in importance to the choice of the performance benchmark or 

to the effects of statistical imprecision in traditional alphas.  Third, in the cross-section of 

funds, we find that funds for which there is likely to be more disagreement among 

heterogeneous investors experience a weaker flow response to performance as measured 

by traditional alphas.  

  The next section reviews the issues with traditional alphas that motivate our 

analysis.  Section 3 sets up the problem for client-specific alphas and Section 4 provides 

the main analytical results.  Section 5 discusses our approach to bounding the extent to 

which clients may disagree about alpha.  Section 6 discusses the data and Section 7 

presents the empirical evidence.  Section 8 concludes.  
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2. Problems with Traditional Alphas 

  There are two Fundamental Questions about the use of alphas.  The first question 

is: When faced with a fund that has a positive (negative) alpha, should the investor want 

to buy (sell) that fund?  The second question is: If a manager has superior information, will 

he or she generate a positive alpha?  While the concept of alpha may be traced in some 

form back to Coles (1933), a substantial literature grappled with these two questions after 

alpha was developed within the CAPM (Sharpe, 1964) by Jensen (1968, 1972) and others.  

But this work, with a few exceptions, essentially died out in the late 1980s, leaving these 

two fundamental questions at best partially resolved.  Without clean answers to these 

fundamental questions, it would seem that a large part of the literature on investment 

performance lacks a rigorous foundation.   This paper provides that foundation. 

  As to the first question, whether an investor would wish to buy a positive-alpha 

fund, the literature offers some hopeful examples, but also many counterexamples.  The 

simplest intuition for the attractiveness of a positive alpha is taught with the CAPM, 

where a combination of a positive-alpha fund, the market portfolio and cash can "beat the 

market" in a mean variance sense (higher mean return given the variance).  Given an 

arbitrary (inefficient) benchmark, Dybvig and Ross (1985b) show (their Theorem 5), that a 

positive alpha measured relative to the benchmark implies that buying some of the fund at 

the margin, will result in a higher Sharpe ratio than the benchmark, if the benchmark 

excess return is positive. 

  Jobson and Korkie (1982) showed that given an inefficient index, a portfolio with 

weights proportional to the vector of assets' alphas, premultiplied by an inverse 

covariance matrix (the optimal orthogonal portfolio), can be combined with the index to 

generate a mean variance efficient portfolio.  However, the weight in the optimal 

orthogonal portfolio for a positive alpha asset can be negative, and Gibbons Ross and 
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Shanken (1989) provide empirical examples where it is.  So, even if a positive alpha is 

attractive at the margin to a mean-variance investor, it might not imply buying a positive 

alpha fund.1 

  The counterexamples to the attractiveness of a positive alpha are many.  In some 

examples performance within the model is neutral but alpha is not zero.  Jagannathan and 

Korajczyk (1986) and Leland (1999) show you can get nonzero CAPM alphas by trading 

fairly priced options with no special skill.  Ferson and Schadt (1996) show you can record 

negative alphas when performance is neutral if you don't account for public information.  

Roll (1978), Dybvig and Ross (1985b) and Green (1986) give examples of nearly arbitrary 

alphas when there is no ability.  Goetzmann et al. (2007) show how to produce positive 

traditional alphas through informationless trading. 

    These examples do not explicitly consider differential information.  It seems 

natural to think that a portfolio manager may have better information about returns than 

the client investor.  With differential information the problem of alpha becomes richer.   

The portfolio of a better-informed manager expands the opportunity set of the less-

informed client, so the client would generally like to use the managed portfolio in some 

way.  The problem is, the client might wish to short the fund even if it has a positive alpha 

(Chen and Knez, 1996).  In summary, the existing literature suggests that the general 

answer to the first Fundamental Question is negative.  This paper provides conditions 

under which the "right" alpha, defined in terms of the client's preferences, provides a 

reliable buy or sell indication. 

                                                                                                                                            
1 In a mean variance setting, the optimal weight need not be of the same sign as the alpha because 

of the correlation among assets.  If only a single fund is allowed, in combination with a fixed 

inefficient benchmark, then the optimal combination of the two does have a positive weight in the 

positive-alpha fund.  Our results are more general, as they do not assume that the weights on the 

other assets are held fixed, they do not rely on mean-variance preferences, a single-period model or 

on many other restrictions that are imposed in the earlier studies. 
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  The mean variance analysis of alpha in the literature typically takes place in a 

static, single period model under normality.  But, returns are not normally distributed and 

mean-variance preferences are not very realistic.  We provide a justification for alpha in a 

multiperiod setting for general investors, and consider the optimal discrete response of 

the investor.  The cost of this general justification for alpha is that we have to confront 

investor heterogeneity.  The previous literature that struggled to justify alpha, struggled 

in part because it sought alphas that all investors could agree on.  But investors will not in 

general agree about alphas, so the same fund will look attractive to one investor but not to 

another.  This leads us to the empirical question:  How large are the effects of 

heterogeneity on alpha likely to be?  This question motivates our derivation of bounds on 

the effects of investor heterogeneity and our empirical analysis of the effects.   

  The closest work that we know of to this is Glosten and Jagannathan (1994) and 

Chen and Knez (1996).  Glosten and Jagannathan (1994) start with the definition of alpha 

studied here, based on the stochastic discount factor (SDF) implied by the client‟s marginal 

rate of substitution.  They then assume that clients' SDFs are functions only of some traded 

benchmark portfolios and a small set of options strategies, and they focus on the resulting 

consensus or representative agent valuation of informed-manager strategies that may 

have option-like characteristics.  A key focus of their analysis is to approximate the 

functional form of the expected payoff of the fund, given the benchmark returns.  Among 

other things their approach provides insights about models for measuring market-timing 

ability.   Chen and Knez (1996) characterize general classes of "admissible" and positive 

admissible performance measures in the presence of information, concluding that 

performance measurement is “essentially arbitrary.”  Following Grinblatt and Titman 

(1989) they focus on the case where the SDF is represented by a minimum variance 

efficient portfolio conditional on the client's information.  They do not provide explicit 
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answers to the two Fundamental Questions posed above.2  Cochrane and Saa-Requejo 

(2000) study the bounds on Sharpe ratios (Sharpe, 1992) from several perspectives, and 

our bounds on heterogeneity rely on maximum Sharpe ratios.  

 

3. A General Model for a Client’s Alpha 

  This section revisits alpha using a natural definition based on the stochastic 

discount factor (SDF) approach.  This approach was proposed in some form as early as 

Beja (1971), but became common in asset pricing only after the literature that tried to 

address the Fundamental Questions had waned.  The SDF approach offers new insights on 

the Fundamental Questions about alpha.  The insights are general, in that they are based 

on a multiperiod model and do not require normality.  There is no need to rule out timing 

ability, nor is selectivity information required to be independent of timing information, 

security-specific or otherwise restricted as in the earlier literature.  The agent is allowed to 

have a general consumption response to the introduction of the managed portfolio.  The 

results are not limited to marginal changes, but consider the optimal discrete responses.  

Finally, a mean variance efficient benchmark is not required or used.3   

  Agents make consumption and portfolio choices at each date t, to maximize a 

separable lifetime utility function, represented as the indirect value function: 

 

                                                                                                                                            

     2 The version of alpha studied here is a "positive admissible" measure.  Chen and Knez show that 

there can be funds that have positive alphas under some positive admissible measures and negative 

alphas under others.  This foreshadows the result here that the "right" alpha is client-specific, and 

there is likely to be disagreement across investors about alpha.  They also show that if an alpha is 

positive, there exists some agent with a monotone, concave utility function that would want to buy 

the fund at the margin.  Optimal discrete responses, such as derived here, are not addressed. 

3 Ferson (2010) shows that a mean variance efficient benchmark is only appropriate under the 

CAPM. 
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   J(Wt,info)  Max{c,x} u(C) + E{ β J(Wt+1,st+1) |info},                                      (1) 

   s.t. Wt+1 = (Wt-C) x'Rt+1,  x'1=1, 

 

where Wt is the wealth at time t, C is the consumption expenditure at time t, Rt+1 is the N-

vector of gross (i.e., one plus the rate of) returns for the N assets, one of which can be risk-

free, and 1 is an N-vector of ones.  The K-vector of state variables in the model is st at time 

t and the conditioning information at time t, "info," takes one of two forms.  The info is Zt, 

representing public information that includes the current values of state variables st and 

the current risk-free rate if any, when referring to the client.  The info is Ωt when referring 

to the better-informed manager, assuming that Zt is contained in Ωt.  The time subscripts 

are dropped except when needed to avoid ambiguity.4 

  Assuming that the uninformed agent is at an interior optimum in the N-asset 

economy, the first order conditions to the problem imply: 

    

   E(mR|Z) = 1,  with m = β Jw(Wt+1)/uc(Ct),                                                      (2) 

 

where m is the stochastic discount factor and subscripts denote derivatives.  The notation 

Jw(W) suppresses but allows for the dependence of the value function on the state 

variables and Zt. 

  Consider now presenting the client with a new investment opportunity, the 

managed portfolio with return Rp = x(Ω)'R where x(Ω) is the vector of the informed 

manager's portfolio weights.  We assume that portfolio managers don't invent new 

                                                                                                                                            

     4 There can be another component of wealth; for example nontraded human capital, and that 

component can imply hedging demands as in Grinblatt and Titman (1989) without affecting any of 

the results. 



 
 

 7 

securities, just trade the existing ones using better information.  Define alpha for any 

portfolio Rp as: 

                                      αp = E(mRp|Z) - 1.                                                             (3) 

 

Clearly, if the manager has no superior information in the sense that Z includes Ω, then αp 

is zero by Equation (2).  Let the managed portfolio return be Rp = vt+1/Pt, where Pt is the 

price that the manager offers the client at time t and vt+1 is the random value one period 

later.  From the definition of alpha we see that (1+αp)Pt = E{vt+1m|Z}, so that if alpha is 

zero the client would find the offer price "fair," relative to the previous equilibrium.  A 

positive alpha suggests a "low" price for the value.  It is shown below that this intuition 

holds when the client's consumption and investments in all assets can change by discrete 

amounts in response to the introduction of the managed portfolio.5 

 

4. Addressing the Fundamental Questions 

4.1 Resolving the First Fundamental Question 

    How will the client behave when confronted with the new investment 

opportunity? When faced with a new investment opportunity Rp with a nonzero alpha, 

the client will generally adjust to new optimal consumption and portfolio choices, until 

the alpha is zero at the new optimum.6  Consider a situation where we allow the client to 

                                                                                                                                            

     5 It is assumed, as is common in the literature starting with Mayers and Rice (1979), that the 

manager's trading based on superior information does not affect the market prices of the underlying 

assets. 

     6 This is a partial normative, not a general equilibrium analysis.  Berk and Green (2004) make 

an argument where equilibrium adjustment comes from flows of new cash across funds and 

diseconomies of scale in fund management, which drive informed manager's alphas to zero in 

equilibrium.  Here, the client adjusts to a new optimal portfolio and consumption choice. 
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adjust current consumption and to buy or sell some amount of the manager's fund.  The 

client feels the effects of these decisions in his future wealth, and thus the marginal utilities 

of current consumption and future wealth change.  We assume that the client is a price-

taker, so there is no effect on the market prices of assets or consumption goods.  Let Δ be a 

reduction in current consumption used to buy the fund, leading to the random wealth at 

time t+1, W(Δ) = Wt+1 + ΔRp + (Wt-C)[x(Δ)-x]'R, where x(Δ) is the new optimal portfolio 

weight vector for the N base assets, normalized to sum to 1.0, and x is the old optimal 

weight vector.7  The appendix proves:  

 

Proposition 1: 
  Under the assumptions described above, and also assuming regular utility 

functions to which the mean value theorem applies and assuming further that the 

response of the optimal portfolio weights on the original N assets guarantees that  

[Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R] > 0,  Then the agent when 

confronted with a new investment with an alpha equal to αp, will optimally purchase or 

sell  the discrete amount Δ given by:  Δ = αp {uc /(-ucc* - Q)}, 

Where Q = E{β Jww* [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R]}<0 and 

ucc*<0. 

Proof: See the Appendix. 

  The sign of the optimal investment in the new fund is the same as the sign of 

                                                                                                                                            
7 The client divides the beginning of period wealth Wt as follows:  Δ is invested in the new 
fund, C-Δ is consumed and (Wt-C) is invested in the old assets.  At Δ=0, W(Δ) = Wt+1 = 
(Wt-C)x'R, and x(Δ)=x.  The analysis can accommodate the case where the investor does not change 

the current consumption, but only the portfolio weights in response to the new investment.  In this 

case the weights x(Δ) do not sum to 1.0 and Δ = Wt(1-x(Δ)'1). 
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alpha, so the investor buys (sells) a discrete amount  of the fund if alpha is positive 

(negative).  The optimal investment is zero only when alpha is zero.  The optimal 

investment is proportional to alpha and scaled by a term which is related to "risk 

tolerance.” 

  The assumption that [Rpt+1+(Wt-Ct)(x(Δ)/Δ)'R][Rpt+1+(Wt-Ct)(x(Δ)-x)/Δ)'R]>0 

says that the derivatives of the optimal portfolio weights on the N base assets are 

adequately approximated by the discrete changes divided by the optimal Δ.  This holds in 

the limit for small Δ.  For discrete Δ there are special cases where the restriction is 

guaranteed to hold, such as when x(Δ) is well-approximated by a linear function of Δ  or 

when the relative allocation to the original assets does not change very much.    

  It is interesting to note that while Proposition 1 relies on the definition of alpha, it 

does not assume that the alpha is optimally generated from the portfolio weights of an 

informed manager.  This is important in view of the examples cited above using other 

definitions of alpha.  The definition of alpha here precludes some of these pathologies.  

For example, trading within the return measurement interval, which Goetzmann et al. 

(2007) illustrate with several examples, can generate spurious performance with many 

traditional measures but does not necessarily bias the SDF alpha studied here. 8  Of course, 

this does not rule out statistical biases in measuring alpha.  For example, return smoothing 

can make it difficult to estimate the true alpha because the returns of the fund are not 

accurately measured (e.g. Asness et al. (2000), Getmansky, Lo and Makarov, 2004). 

                                                                                                                                            

     8 The issue of bias because funds trade within the return measurement period, or interim trading, 

is raised by Goetzmann, Ingersoll and Ivkovic (2000) and Ferson and Khang (2002), and examined 

in detail by Goetzmann et al. (2007).  However, Ferson, Henry and Kisgen (2006) show that if the 

right time-aggregated SDF is used, this problem is avoided.  The definition of alpha here involves 

the right, time-aggregated SDF on the (perhaps heroic) assumption that investors optimize as often 

as managers trade.   
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4.2 The Second Fundamental Question 

   The second Fundamental Question is whether a manager with superior 

information will produce a positive alpha.  The Appendix surveys the classical literature 

on this question, which concludes that the answer will not generally be “yes.”  The fact 

that Proposition 1 does not rely on alpha being generated optimally by an informed 

manager would seem to obviate the need to resolve the second Fundamental Question.  

All the client needs to know is that if her SDF alpha is positive, she should buy.  

Nevertheless, the model speaks to the second question, at least in special cases.  For 

example, it follows from the definition of αp and the client's first order condition that if Ru 

is any “passive” portfolio that is feasible to the client, then αp = E[m(Rp-Ru)|Z].  Since m>0 

it follows that αp>0 if the manager's return first order stochastically dominates Ru (Chen 

and Knez, 1996).  Indeed, any client should buy a fund that first order stochastically 

dominates his other investment options. 

  Since the uninformed portfolio is feasible for but not chosen by the informed 

manager, we must have for the same initial wealth, W0 and consumption C0, that  

E[J(WI)|Ω] > E[J(Wu)|Ω], where WI is the future wealth of the informed manager and Wu 

is the future wealth without the superior information.  These are related as WI = Wu + [W0-

C0][x(Ω)-x(Z)]'R.  By the mean value theorem, J(WI) = J(Wu) + Jw# [W0-C0][Rp - Ru], where 

Jw# = Jw(aWI + (1-a)Wu) for some a ε [0,1].   Substituting implies E{βJw# [Rp - Ru]|Ω} = 

E{βJw(aWI + (1-a)Wu) [Rp - Ru]|Ω} > 0.   If a=0 so there is no wealth effect associated with 

having the superior information Ω, then by the client's first order condition we have αp > 

0.  But this is not a very realistic case, as informed portfolio managers are often highly 

compensated for their work.  A more interesting special case is: 
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Proposition II: 

Under the assumptions of Proposition I, if the indirect value function J(.) is quadratic in 

wealth, an informed manager produces a positive alpha. 

Proof: (See the Appendix)  

  Proposition II generalizes results of Mayers and Rice (1979) and Grinblatt and 

Titman (1989) to a multiperiod model.  A quadratic J(.) function would occur in a 

continuous-time diffusion setting or under conditional normality of the returns given Ω.  

This does not require that returns appear normal from the client's perspective, which is 

important because x(Ω)'R will not be normal from the client's perspective even if returns 

are normal (Dybvig and Ross, 1985). 

  Proposition II also generalizes results from Ferson and Siegel (2001) to a 

multiperiod setting.  Hansen and Richard (1987) show that a portfolio that is efficient 

given Ω may not be efficient given Z (conditionally efficient does not imply 

unconditionally efficient).  However, Ferson and Siegel (2001) show that a quadratic utility 

agent with Ω will choose a portfolio that is also efficient given Z.  Here, the agent with a 

quadratic indirect utility will choose a portfolio that the client using Z will also find 

attractive. 

 

5. Assessing Investor Heterogeneity 

We work with excess returns, r  R-Rf, where Rf is a gross short term Treasury return.  Thus, 

Equation (2) implies that E(mr|Z)=0 and equation (3) implies that αp = E(mrp|Z).9  Consider 

a regression over time of rp on the "passive" assets {rj}j in r: 

 

                                                                                                                                            
9 In theory we should be using real returns.  In empirical practice, excess nominal returns are a 

good approximation to excess real returns for equity funds. 
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    rp = ap + Σj βj rj + εp.                  (5) 

 

This is a simple, unconditional regression with constant coefficients and E(εp)=E(εprj)=0.  

Taking the unconditional expectation of the expression for alpha and substituting in 

Equation (5) we obtain: 

 

   E(αp) = E(m)ap +  Σj βj E(mrj) + E(mεp),                (6) 

 

For all passive rj, where the first term on the right captures the traditional, unconditional 

alpha that would be obtained if {rj}j were used as the benchmark returns in a factor model.10  

Since E(mrj|Z)=0 for the passive assets, the second term in Equation (6) is zero.  Expanding 

the expectation of the product,  mrj,  into the product of the expectations plus the covariance, 

we obtain: 

 

   σ(m)/E(m) = (-1/ρmrj)[E(rj)/σ(rj)],                                                          (7) 

 

where ρmrj is the correlation between m and rj and σ(.) denotes the standard deviation. 

 The third term of Equation (6) can be expressed as E(mεp) = Cov(m,εp) = ρєm σ(m) 

σ(εp), where ρєm is the correlation between m and εp.  If the correlation is zero, the traditional 

alpha and the expected SDF alpha for the client coincide.  Investor heterogeneity about 

alpha arises when εp is correlated with the investor's marginal rate of substitution.   

 It is important to note that we have taken the unconditional expectation of the 

                                                                                                                                            

    10 Using the SDF approach, αp is measured at the beginning of the period, like an asset price.  

Using the traditional regressions of returns on factors, alpha is measured at the end of the period, 

like a return.  The term E(m) translates between the two dates. 
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client‟s conditional expectation to arrive at these results, stated in terms of the expected 

alpha. Clients have different beliefs when they hold different Zs, and their different 

consumptions and portfolio choices lead to different marginal rates of substitution.  As long 

as we can apply iterated expectations, the implications of investor heterogeneity that we 

examine can be represented using the unconditional expectations. 11 In this sense, our 

measures of the effects of heterogeneity are conservative.  Differential beliefs across 

investors is another potential direct source of disagreement about alpha.   

  Equation (6) implies: 

 

  |E(αp)/E(m)- ap| =  |ρєm σ(εp) [σ(m)/E(m)] |                                                      (8) 

           =  |ρєm σ(εp) (-1/ρmrj)[E(rj)/σ(rj)]|, 

 

Where the second line uses (7).   The term  (-1/ρmrj)[E(rj)/σ(rj) is positive and the same for all 

passive assets, so it may be replaced with {(-1/ρmrj*)[E(rj*)/σ(rj*)}, where rj* is the portfolio of 

passive assets that achieves the maximum Sharpe ratio, SRmax.   With this substitution and 

assuming SRmax>0, we have: 

 

  |E(αp)/E(m)- ap| =  |(-ρєm /ρmrj*) σ(εp)  SRmax|                                                   (9) 

           =  |(-ρєm /ρmrj*)| σ(εp)  SRmax 

           ≤   σ(εp)  SRmax, 

                                                                                                                                            

    11 Taking the conditional expectation of the definition of alpha delivers the expected alpha. The 

investor’s information set is still reflected in the expected alpha to the extent that different 

information sets lead clients to different consumption and portfolio policies, and thus different 

marginal rates of substitution.  The analysis also applies to conditional moments given public 

information known by all clients, in which case E(.), ρ and the σ's refer to these conditional 

moments.  We will consider this case below. 
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where the assumption moving between the second and third lines is that |ρєm /ρmrj*|≤1.  

Since the return rj* maximizes the Sharpe ratio, it maximizes the correlation to m, and this 

assumption should be innocuous. 

 We also have a lower bound on the effects of investor heterogeneity.  From the 

second line of Equation (9), and using |ρmrj*|≤ 1, we have: 

 

  |E(αp)/E(m)- ap | ≥  |ρєm| σ(εp)  SRmax.                                                          (10) 

 

Equations (9) and (10) bound the effects of investor heterogeneity on alpha.  The left hand 

side of these expressions is the difference between the expected SDF alpha for the client and 

a traditional measure of alpha using the passive returns as factors.  The right hand side of 

Equation (9) expresses the upper bound in terms of variables that we can estimate using 

data.  The lower bound in (10) also depends on the unobserved correlation, ρєm.  A fund 

with a low σ(εp) is a fund whose return variation is largely captured by the passive 

benchmark assets.   For such a fund there can be little disagreement over its performance.  A 

fund with ρєm=0 is a fund whose correlation with the client‟s marginal utility is completely 

captured by the passive benchmark assets.  For such a fund the traditional measures capture 

the correct expected alpha.  Equation (10) may be a conservative lower bound if |ρmrj*| is far 

below 1.0.  Investors whose marginal utility fluctuations are not captured well by the 

passive asset returns will disagree more with the traditional alphas.  

 Our estimates of the bounds on heterogeneity rely on several assumptions.  Some of 

these are clearly innocuous but others are not, and the failure of these assumptions may 

affect the results.  We assume that the alphas are zero, from the client‟s perspective, on the 

passive benchmark assets rj.  It seems plausible that the investor would be at an interior 
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optimum relative to his allocation to a broad market index, and thus the alpha of the market 

index would be zero.   While active funds may have alphas, it seems plausible to assume 

that index funds and exchange traded funds (ETFs) have zero, or nearly zero, alphas.  We 

therefore examine index funds and ETFs as examples of the passive benchmark assets.   The 

assumption of zero alphas is less likely to hold for benchmarks like the Fama and French 

(1993) factors, given the highly tilted small and value stock positions they embed and the 

extreme short positions they imply.  If the benchmark assets have nonzero alphas from the 

client‟s perspective then the second term of Equation (6) is not zero and our bounds should 

include a weighted average of these unobservable alphas.  The weights are the active fund‟s 

betas on the benchmark assets.  The weighted average of the alphas of the benchmarks may 

be close to zero.  However, our results should be interpreted with caution in view of this 

issue.   

  Our analysis ignores the issues of trading costs and taxes, which can be important. 

  The incidence of these transactions costs differ across investors, and thus are likely to 

contribute to investor heterogeneity.  Active mutual fund returns are reported net of 

expense ratios and trading costs, but without regard to the client‟s tax costs.  Passive 

benchmarks, on the other hand, do not reflect even their trading costs, which can be 

substantial (see Carino et al., 2009).  A cleaner comparison would be to measure the 

benchmark returns after costs.  Short of this ideal, we use index funds and ETFs as 

benchmark assets, motivated in part by their relatively low trading costs. 

  The maximum Sharpe ratios in Equations (9) and (10) should in theory reflect the 

maximum taken over all of the assets in the client‟s portfolio for which she is at an interior 

optimum.    In empirical practice we can only use small subsets of the possible assets.   We 

therefore consider several alternative groups of assets as the passive benchmark assets, in 

order to assess the sensitivity of the results to this choice.   Since the maximum Sharpe 
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ratio in the universe of many assets is likely to be larger than on the subsets we examine, 

our upper bounds on the effects of heterogeneity are conservative from this perspective. 

  We have explicitly conditioned out heterogeneity in investor‟s beliefs in our 

bounds.   There are two ways to interpret the bounds in view of this important issue.   If 

we assume that investors beliefs are characterized by mathematical conditional 

expectations and that each investor knows at least as much as our lagged conditioning 

variables, then we can condition each investor‟s Euler equation down using the law of 

iterated expectations and there is no problem.  However, if some investors know less than 

our four lagged instruments or form expectations in other ways, that operation may 

become invalid.  

 
6. The Data 
 
6.1. The Fund Returns 

We study monthly returns on actively managed equity mutual funds from January 

1984 to December 2008.  Monthly mutual fund returns are from the CRSP mutual fund 

database.  We remove funds with less than 5 million dollars of assets under management 

at the end of the previous year and funds with less than twelve monthly returns.  Funds 

that invest more than 70% in bonds plus cash at the end of previous year are also screened 

out.  

The literature has documented a number of potential biases in the CRSP mutual 

fund data base.  Fama and French (2010) point out a selection bias due to missing returns 

from about 15% of the funds on CRSP before 1984.  Evans (2007) documents that 

incubated mutual funds overstate average performance due to backfilling.  Backfilling 

refers to a situation where a fund‟s past returns are added to the database when the fund 
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enters the database.  The incubation process selects only those funds whose returns during 

the incubation period were high, leaving out those whose returns were low.   Incubation 

and backfilling can bias alpha upwards.  We remove fund returns before the date of fund 

organization and also the first year of a fund‟s returns.   These screens leave us with a 

sample of 333 active equity funds in the first year, 1984, growing to 7077 funds in the final 

year, 2008.  

 

6.2. Benchmark Returns 

Roll (1978) and Lehmann and Modest (1987), among others, find that performance 

measurement is sensitive to the choice of benchmarks.  Ferson and Schadt (1996) 

emphasize the importance of incorporating public information and time variation in fund 

evaluation.  In our study, six alternative sets of benchmark returns are used to represent 

the passive assets available to investors.  We choose a range in the type and number of 

benchmarks to help assess the sensitivity of the results to the issue of benchmark choice.  

Since our bounds are relative to a traditional alpha based on a given set of benchmark 

returns, we include performance benchmarks that have been common in the literature.  

Our benchmarks are: (1) a broad stock market portfolio, (2) the three Fama and French 

(1993) factors, (3) a set of six index mutual funds, and (4) a set of eight exchange traded 

funds (ETFs).  We also include the equal-weighted portfolios of the index funds and of the 

ETFs as the final two benchmarks.   

The proxy for the market portfolio is the CRSP value-weighted index of NYSE 

stocks.  The Fama and French factors are the market excess return, SMB, and HML.  SMB 
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and HML measure the excess returns of small caps over big caps and of value stocks over 

growth stocks, respectively.  These data are from Ken French‟s website12.   Index mutual 

funds are selected from the CRSP database by matching fund names with the string 

“index”.  We merge index funds from CRSP with their benchmarks from Morningstar, and 

apply the same screens to the matched index funds as to the sample of active equity funds. 

 This leaves us with a sample of 3 index funds in 1984, growing to 306 in 2008.  To use the 

index funds as the passive assets we form six equally-weighted portfolios based on their 

stated benchmarks as reported by Morningstar.  The Categories are: S&P500, S&P Midcap, 

Small cap, Russell, MSCI and Others. 

Exchange traded funds (ETFs) now cover a wide range array of asset classes and 

strategies.  We select the following eight ETFs based on their high trading volume and 

market sector coverage:  SPY (large cap), MDY (mid cap), IJR (small cap), EWJ (Japan), 

EFA (MSCI ex-US), XLE (Energy), QQQQ (Technology), and IYR (mortgage and real 

estate).    

Table 1 presents summary statistics for the monthly returns of the active equity 

funds, benchmark factors, index funds and ETFs.    Equally-weighted averages of the 

index funds and ETF returns are included as the bottom rows.  The summary statistics 

include the mean returns, standard deviations, minimum and maximum values, first 

order autocorrelations and sample Sharpe ratios.  The index funds have mean returns 

around one half percent per month and standard deviations just under five percent.  The 

monthly Sharpe ratios vary between 7.8% and 12.6%.  The ETFs display more 

                                                                                                                                            
12 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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heterogeneity, with means between -0.38% and +0.68%, standard deviations between 4.1% 

and 8.8% and Sharpe ratios between -6.4% and +10.6%.  The Sharpe ratio of the equally-

weighted portfolio of index funds is 10.9% and for the ETFs it is 8.6% per month.   The 

autocorrelations are small, with all below 15%, the MSCI non US ETF being an exception 

at 35.8%.    

The statistics for the active mutual fund returns summarize the cross-section by 

sorting the individual funds and reporting the values at various fractiles of the cross-

sectional distribution.   Each column is sorted separately on the statistic shown.   In the 

presence of estimation error such sorting overstates the extremes, but there is clearly a lot 

of heterogeneity across the active funds.  While the mean fund with at least 12 monthly 

observations lost about 0.17% per month over our sample period, ten percent of the funds 

returned 0.66% or more per month.  The mean standard deviation was 5.32%, but 10 

percent of the funds had standard deviations below 3.25% and ten percent were above 

7.74%.    

The last panel of Table 1 shows that requiring four years of data, as we must for 

some of our analysis, has a large impact on the left tail of the mean returns.  At the ten 

percent tail the mean return values are -0.39% in the longer-surviving subset, versus -

1.35% in the broader sample.  The surviving funds in the left tail do much better.  The 

effects on the standard deviations and in the right tail of average returns are much 

smaller.   Nevertheless, this selection effect should be kept in mind when interpreting 

some of the results below.  In particular, our bounds will use funds‟ (residual) standard 

deviations.  Survivor selection seems to slightly inflate the 10% left tail (3.38% versus 
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3.25%) and reduce the right tail (7.42% versus 7.74%) of the standard deviations.  The 

comparison on survivor selection using 12 versus 48 months is only suggestive, because 

we can‟t measure the standard deviations without some survivor selection.  But it 

suggests that our upper bounds in investor heterogeneity will be conservative for the 

high-volatility funds, in view of survivor selection. 

 

6.3. The Public Information Variables 

Numerous studies suggest public information variables that have predictive power 

for asset returns and risks.  We use a Treasury bill yield, default spread, term spread and a 

dividend yield as the lagged predictor variables.13  We use these variables to estimate 

conditional versions of the bounds on heterogeneity as described below.   

  We use the one-month annualized Treasury bill yield from CRSP as a predictor.  

The excess returns are measured net of the one month return on a three-month Treasury 

bill, to avoid having the same variable on the right and left-hand sides of the predictive 

regressions.  The default spread is the yield difference between Moody‟s Baa-rated and 

Aaa-rated corporate bonds.  The term spread is the yield difference between a constant 

maturity 10-year Treasury bond and the 3-month Treasury bill.  The dividend yield is the 

sum of dividends paid on the S&P500 index over the past 12 months divided by the 

current level of the index.  The data for these predictors is collected from DRI Basic 

Economics. 

                                                                                                                                            
13 See Campbell (1987), Campbell and Shiller (1988a, 1988b), Fama and French (1989) Cochrane 

(1991), Fama and Schwert (1977) and Ferson and Harvey (1991) for more information about the 
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7.  Empirical Results 

We first present some results about traditional estimates of alpha that we use to inform 

our interpretation of the bounds.  The bounds are then presented, first using 

unconditional moments, and we then consider a number of conditional models. 

 

7.1 Traditional Alphas 

  Table 2 summarizes estimates of traditional alphas using the various benchmarks. 

 In panel A the alphas are the intercepts in excess return regressions on the benchmark 

excess returns.  The benchmarks are the market portfolio proxy (Mkt), the three Fama-

French factors (FF3), the vector of six index mutual funds (Idx MFs) or eight ETFs, or a 

single equally-weighted portfolio of index funds (EW Idx MFs) or of the exchange traded 

funds (EW ETFs).   The cross-section is summarized as in Table 1 by sorting on each 

statistic and presenting the values at various fractiles.   The statistics include the 

traditional alpha, its standard error and the residual standard deviations of the 

regressions.   

  The residual standard deviation is used below in our estimates of the bounds.   

The mean residual volatility varies from 1.5% using the vector of eight ETFs to 2.7% using 

their equally weighted portfolio.  Compared to the mean volatility of the total returns in 

Table 1 of just under over 5%, there is a substantial fraction of the average fund‟s return 

volatility that is not captured by the traditional factors.    This is the risk that investors 

may disagree about in their evaluation of the mutual funds.    There is substantial 

variation in the estimated σ(єp) across funds, suggesting variation in the extent of investor 

disagreement across funds.  The interquartile range under the CAPM is 1.4% to 3.1% per 

                                                                                                                                            

lagged predictor variables.   
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month.  The FF3 factors narrow the range somewhat, producing an interquartile range of 

1.1% to 2.5% per month.  The multifactor ETF benchmarks produce the smallest residual 

standard errors, with an interquartile range of 0.7% to 1.6% per month.   

  There is also heterogeneity across the mutual funds in their traditional alpha 

estimates.   The average standard error of the alphas varies across the models between 

0.21% and 0.33% in Panel A.   At the same time the point estimates at the upper and lower 

10% tails are -0.55% and 0.48% for the CAPM, a range of about three to four standard 

errors. 

  Panel B of Table 2 summarizes estimates of conditional alphas, following Ferson 

and Schadt (1996).  Their model includes the lagged public information variables, Z, in the 

regression as the products of Z and the benchmark excess returns.   This allows for 

conditional betas that may vary over time as linear functions of Z.    The intercepts are the 

conditional alphas.  Because of the additional variables we restrict to the subset of funds 

with at least 48 months of data, as summarized in Table 1.  With the additional variables in 

the regressions, the standard errors of the residuals are slightly smaller and the variation 

across models is slightly smaller.  For example, in the conditional CAPM the left tail of the 

residual volatility distribution is similar to that in the unconditional CAPM, reflecting the 

offsetting effects of selection bias, which was seen in Table 1 to increase the left tail values, 

and the additional regressors, which reduce the values.  In the right tail both effects work 

in the same direction and the volatilities are reduced.  Across funds, the variation in the 

point estimates of the conditional alphas is slightly smaller than under the unconditional 

CAPM.   The range for the 10% tails is -0.41% to +0.43%, still more than about three 

standard errors.    

  The residual volatilities are smaller in the conditional models.  The smaller the 

residual volatility, the smaller is the investor disagreement other things equal.  The 
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extreme example with the smallest residual volatilities in Table 2 is the 8 ETF benchmark.  

Still, the median residual volatility in this case is 0.71% per month and 80% of the funds‟ 

residual volatilities are between 0.31% and 1.43% per month.   

  In the unconditional FF3 model, a common model for alpha in the current 

literature, the median residual volatility is 1.7% per month.  A conservative estimate for 

the monthly maximum Sharpe ratio is 10%, so a conservative upper bound on the effects 

of investor heterogeneity on alpha is about 0.17% per month, or 2% per year for the 

median fund.  The median standard error of the FF3 alpha is 0.2% or about 2.5% per year.  

 This suggests that the effects of heterogeneity can be similar in magnitude to about one 

standard error of estimation uncertainty. 

  Panel C of Table 2 provides another point of comparison.  It shows the range of 

traditional alpha estimates across the six models.  For each fund, the range is the  

difference between the largest and the smallest alpha estimate across the six models, and 

the distribution of the range is summarized across the funds.  The median range of the 

unconditional alphas across the six models is 0.43% per month, or about 5.2% per year.   

This suggests that the impact of investor heterogeneity on alpha could be comparable in 

magnitude to the choice of benchmark model.  The next section takes these comparisons 

up more in more detail. 

 

7.2 Bounds on the Effects of Investor Heterogeneity using Unconditional Models 

  Table 3 summarizes estimates of the upper bound on investor disagreement about 

alphas given in Equation (9) using “unconditional” models.   The bounds are computed by 

running regressions of the excess fund returns on the benchmark excess returns and 

capturing the regression residual, εp.  The upper bounds are calculated as the product σ(εp) 

SRmax, where σ(εp) is the unconditional standard deviation of εp and SRmax is the square root 
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of the maximum  squared unconditional Sharpe ratio in the benchmark assets.   It is well 

known that estimates of maximum Sharpe ratios are upwardly biased in finite samples (e.g. 

Jobson and Korkie, 1982).   We adjust the maximum Sharpe ratio estimates for finite sample 

bias following Ferson and Siegel (2003).14 

  Table 3 shows that the mean upper bound varies from 0.23% to 0.43% per month 

across the benchmark models, or about 3% to 5% per year.   The upper 10% tail ranges 

from 0.39% to 0.70% per month, and the lower 10% tail ranges from 0.09% to 0.14% per 

month across the models.  To evaluate the potential economic significance of these values, 

we compare the upper bounds with the ambiguity in traditional alphas associated with 

the choice of benchmark, as summarized in Table 2.  A representative example is the FF3 

benchmark.  Here the median upper bound is 0.31% per month.  In comparison, for the 

median fund, the range of alphas across the six benchmarks is 0.43% per month.  The 

effects of investor disagreement could potentially be comparable in magnitude to the issue 

of benchmark choice. 

  Another way to assess the importance of investor heterogeneity is in comparison 

with the ambiguity in the traditional alphas associated with estimation error.  Consider 

the CAPM for example.  For the median fund the standard error of the CAPM alpha is 

Table 2 is 0.25%.  In Table 3 the median upper bound in the CAPM is 0.22% per month.  

Thus, investors may disagree on the performance of the median fund, as measured by 

CAPM, by an amount similar to the standard error of the traditional alpha.      

 

7.3 Conditional Models    

                                                                                                                                            
14 The adjustment for finite sample bias is  SR2

adjusted = [(T-N-2)/T] SR2 – N/T, where N is the 

number of benchmark assets, T is the length of the time series and SR2 is the maximum 

likelihood estimate of the maximum squared Sharpe ratio under normality.  We do not apply the 

correction when N=1.  
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  Our assessment of the potential impact of heterogeneity in Table 3 may be affected 

by the use of unconditional moments.   On the one hand, the conditional residual volatility 

of a fund is likely to be smaller than the unconditional volatility.  On the other hand the 

conditional maximum Sharpe ratio is likely to be higher than the unconditional one, so the 

net effect of conditioning is not a priori clear.  This section presents results using several 

conditional models to assess the sensitivity of the upper bounds to this issue.   

  Table 4 presents results for models that assume that the funds and the benchmark 

assets have fixed conditional second moments and first moments that are time-varying as 

linear functions of the lagged public information, Z.   Under these assumptions the 

unconditional variance of the residual for a fund return in a regression on the benchmark 

returns and the lagged Z is the expected value of the conditional residual variance given 

Z.   The conditional Sharpe ratio is time varying.  The expected value of the upper bound 

on heterogeneity is therefore the fixed σ(εp) multiplied by the expected Sharpe ratio, which 

we estimate using the sample mean of the time-varying ratio.  We find that the upper 

bounds on the effects of investor heterogeneity appear larger in the conditional models, 

indicating that the larger maximum Sharpe ratio dominates the smaller residual variance.  

For example, in the FF3 factor benchmark, the median estimate of the bound is 0.61%, 

compared with the 0.31% we found in Table 3.  At the same time the median range of the 

alpha estimates across the benchmarks is similar, as shown in Table 2, so the importance 

of heterogeneity relative to benchmark choice is almost twice as large as before.  The 

effects of heterogeneity now exceed the range of alphas across the benchmark models at 

each fractile of the distribution across funds.   

  Comparing these results with the standard errors of the traditional alphas for the 

conditional models in Table 2, we find that the effects of investor heterogeneity seem 

larger relative to the effects of statistical imprecision in the conditional models than in the 
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unconditional models.  For example, in the conditional CAPM the heterogeneity effect is a 

little less than two standard errors of alpha, and in the FF3 factors it is more than three 

standard errors.   The heterogeneity effect generally appears even more important relative 

to statistical precision in the other multifactor benchmarks. 

  In Table 4 we assume that σ(εp) is fixed over time and the Sharpe ratio SRmax(Z) is a 

time-varying function of Z.   The expected upper bound is computed as   

(1/T)Σt {σ(εp) SRmax(Zt)}.  If the fund residual is conditionally heteroskedastic, then its 

volatility, σ(εp|Z), varies over time with Z and the expected bound is E{σ(εp|Zt) SRmax(Zt)}, 

allowing for a covariance between the two terms.  We pursue this calculation in Table 5.   

Funds are assumed to have linear conditional betas, following Ferson and Schadt (1996).  In 

Panel A we model the conditional heteroskedasticity of the funds and the benchmarks using 

a regression for the absolute residuals, following Davidian and Carroll (1987).  In Panel B we 

model the heteroskedasticity using a GARCH model (the equations are in the table header).  

 The results of these two models roughly bracket those in Table 4, leading to similar 

conclusions.  The GARCH models tend to produce slightly larger upper bounds, while the 

Davidian-Carroll approach produces slightly smaller upper bounds than in Table 4. 

 

7.4  The Upper Bound: Summary 

  To summarize, the issue of investor heterogeneity can be of comparable 

importance in practice as the issues of the benchmark choice and the problem of statistical 

imprecision in alpha estimates.  Each of these issues has received a great deal of attention 

in the literature on performance measurement, but investor heterogeneity has hardly 

begun to be explored.   

  One interesting question regarding the upper bound is whether there are any 

mutual funds whose traditional alphas are so large that we expect all investors to agree 
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that they are positive (or negative).  This question can be addressed using our upper 

bound in a simulation approach that accounts for the number of correlated funds 

examined to find large traditional alphas.  Kosowski, Timmermann, Wermers and White 

(2006) use a simulation approach and find that the largest traditional alphas are 

statistically significant.  However, Fama and French (2010) criticize their simulation 

approach and find insignificant alphas for net returns, in both the positive and negative 

tails.  If the largest traditional alphas are insignificantly different from zero, it follows that 

they will not be significantly larger than our bounds.  There are unlikely to be many funds 

where all investors agree that the alpha is positive (or negative).  Thus, investor 

heterogeneity is likely to be important in the evaluation of almost all mutual funds.  

 

7.5  The Lower Bound 

  The lower bound on the impact of investor heterogeneity in Equation (10) is the 

upper bound multiplied by the correlation, ρєm.   Of course, the correlation is 

unobservable.  If it is zero, then the lower bound is zero and heterogeneity across 

investors may not matter.   If it is 0.10 for a particular fund, then the impact of 

heterogeneity on alpha is at least 10% of the size of the bounds discussed above.  The 

correlation is likely to be small when σ(εp) is small, as the common factors are likely to 

capture most of the correlation of the fund‟s return with the investors‟ marginal rate of 

substitution in such cases.  But we saw above that σ(εp) is substantial for many funds using 

traditional factors.  And there is reason to think that the correlation will not be zero.  For 

example, we know that the correlations of consumption growth rates are small across 

individuals and countries, suggesting heterogeneity in the marginal rates of substitution.  

This has been interpreted as imperfect risk sharing, because in complete markets 

individuals‟ marginal rates of substitution are perfectly dependent and there can be no 
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disagreement in our model about a fund manager‟s expected alpha.  Asset market returns 

are more highly correlated across countries than is consumption, and the common factors in 

returns are important, but it is hard to believe that investors face complete markets in 

practice.  It is difficult, for example, to trade claims on human capital.  Many forms of 

borrowing are restricted, and uncertain tax liabilities may be difficult to hedge with passive 

assets.  The question of the lower bound is whether some funds‟ residual returns are 

correlated with aspects of investors‟ utility that are not captured by the common factors.   

This can in principle by addressed by looking at data on individual investors.   While it is 

beyond the scope of this study to fully investigate the correlation of funds‟ residual returns 

with individual investors‟ marginal utilities, we offer suggestive evidence in the next 

section. 

 

7.6  Cross-sectional Implications 

 The bounds in (9) and (10) provide an interesting perspective on some recent studies 

of the cross section of mutual fund performance.  Recent studies find that mutual funds that 

depart further from benchmark weights or that have low R-squares in return regressions 

against common factor benchmarks have larger traditional alphas.15  These are high residual 

volatility funds, for which the traditional alphas are likely to be unreliable indictors of 

investment attractiveness.   When investors disagree more about the true alpha, there should 

be less coordination of their responses to the traditional alpha.  Thus, we predict that funds 

with greater investor disagreement should, other things equal, exhibit a more muted flow 

response to their past performance. 

 The effects of investor heterogeneity differs across funds, according to our model, in 

                                                                                                                                            
15 See for example, Brand, Brown and Gallagher (2005), Cremers and Patajisto (2009), 

Kacperczyk, Sialm and Zheng (2005) and Amihud and Goyenko (2010). 
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proportion to the product |ρєm σ(εp)|.  We estimate σ(εp) above, but ρєm is more challenging. 

 We construct a proxy for the cross-fund variation in ρєm following Da and Yun (2010), who 

find that electricity consumption works better than nondurables plus services consumption 

expenditures in consumption-based asset pricing models.  We use annual electricity 

consumption growth, measured for the 50 states and the District of Columbia during 1984-

2008.16 We take the cross-state variation in the time-series correlations between a fund‟s 

annual residual return, εp, and state electricity consumption growths, G, as a proxy for the 

variation in ρєm across “clients.”  Specifically, we construct two alternative measures of 

disagreement about a given fund‟s performance: 

 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                             (11) 

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 

 

Where σG[.] denotes the cross-sectional standard deviation across the electricity 

consumption growths for the 51 “states.”  The second measure, DISAGREE2p, is motivated 

by the second line of equation (9), which shows that the ratio ρєm /ρmrj* determines the 

extent of disagreement.  The correlation in the denominator, ρ(rj*,G), between the maximum 

Sharpe ratio portfolio return and the electricity consumption growth, varies across the 

benchmark models, changing the relative importance of σ(εp)  and ρ(εp,G) in the measure of 

disagreement. 

 Our conjecture is that funds for which there is greater disagreement across investors 

should experience a muted flow response to a given performance, as measured by 

traditional alphas.17  To investigate this, we embed the measures of disagreement in 

                                                                                                                                            
16 We are grateful to Zhi Da and Hayong Yun for allowing us to use their data. 
17 In this experiment we use annual disagreement measures, so we restrict to the subset of funds 

for which return data for the 1984-2008 period is available. 
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standard “flow-performance” regressions of mutual fund flows on their recent traditional 

performance measures and control variables.  Mutual fund flows are measured in the usual 

way as: 

   Flowp,t  =  [TNAp,t – TNAp,t-1(1+Rpt)]/ TNAp,t-1,                                       (12) 

 
where TNA is the total net assets of the fund and Rpt is the reported return.  Fund flows are 

measured quarterly and disagreement is measured annually. 

 The flow-performance regressions follow Sirri and Tufano (1998), Chevalier and 

Ellison (1997) and Huang, Wei and Yan (2007).   These are panel regressions of the flow on 

lagged performance measures and control variables.  The lagged control variables follow 

previous studies and include fund age (the natural logarithm of the number of months 

since fund inception), size (the natural logarithm of TNA), the expense ratio plus one-

seventh of any front-end load charges, the lagged fund flow, the traditional performance 

measure at several lags, the lagged fund total return volatility, and multiplicative terms in 

lagged fund age and lagged performance.  The regressions include both time and fund 

fixed effects.   Following these earlier studies, the performance measures and the total 

return volatility are estimated from the 36 months prior to quarter t.  

Our interest is the coefficients on the lagged performance, and how they vary with 

investor disagreement.  We use two approaches, a parametric and a “nonparametric” 

approach.  In the first approach the lagged performance enters linearly and as the squared 

performance, assuming a quadratic relation.  We include interaction terms with a measure of 

disagreement, and our conjecture is that the interaction terms should carry negative 

coefficients.  The results are presented in tables 6 and 7 for two traditional performance 
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measures, the CAPM alpha and the Fama-French three-factor alpha, respectively.    

There are four panels each in tables 6 and 7, reflecting the two disagreement 

measures and two alternative assumptions about the variation in disagreement over time.  

One assumption is that the disagreement for each fund is fixed over time.  The alternative 

assumption allows for time-varying disagreement, where we use rolling estimation over the 

past 36 months up to but not including data for the current quarter.   The tables show that 

the coefficients on the control variables are similar to what previous studies find.   The 

coefficients on the interaction terms between lagged performance and disagreement are 

negative in each of the four panels, and statistically significant in all but one case.  The effects 

of disagreement have larger t-ratios in the linear terms than in the quadratic terms, with t-

ratios in the linear terms exceeding 8.3 in absolute value in each of the eight examples.   The 

results for the quadratic terms are somewhat stronger when using the Fama-French alphas 

in Table 7, but still weaker than the linear terms.  Thus, higher levels of disagreement about 

alpha are associated with lower levels of fund flows for a given performance measure.   

We repeat the experiment in Table 6 using conditional alphas following Ferson and 

Schadt (1996).  The t-ratios on the interaction terms between alpha and disagreement range 

from -5.13 to -6.20.  The coefficients on the interactions with the quadratic terms are 

insignificant.  Thus, disagreement about alpha is associated with a lower level of flow 

response to a given performance, when measured by the conditional alpha. 

Our second, nonparametric approach replaces the quadratic functional form 

assumption with dummy variables for the ranked levels of performance.   The performance 

measures for the funds are ranked and each fund is assigned values for two dummy 
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variables indicating the performance rank.   PMH  is equal to 1.0 if the fund‟s performance 

falls in the top third, PHM is equal to 1.0 if it falls in the middle third, and the bottom third is 

the reference.  In the A and B panels of tables 8 and 9, these performance ranks are 

interacted with the measures of disagreement.   The tables show stronger negative effects of 

disagreement on flow response to performance in the PMH group, using either the CAPM 

alphas in Table 8, or the Fama-French alphas in Table 9.    

In the C and D panels of tables 8 and 9, we assign dummy variables to the ranks in 

which a fund‟s measure of disagreement lies and retain the quadratic functional form in 

performance.   Here we find negative interaction coefficients in most of the cases, and 

strongly significant for the high-disagreement funds.  The coefficients allow a graphical 

representation of the flow-performance relation for the low, medium and high-disagreement 

groups, as shown in Figure 1.   Here the fitted values of the fund flows include the control 

variables and are fitted with a cubic spline.  The graph illustrates the economic magnitudes 

of the differences in flow between the high, medium and low-disagreement funds.  For 

example, a lagged performance one standard error above the cross-sectional mean CAPM 

alpha is associated with an increase in expected fund flow of 0.20% for the high-

disagreement group, compared to 0.89% for the low-disagreement group.  Thus, investor 

heterogeneity leading to disagreement about alpha has an economically significant relation 

to fund flows.  

One potential issue with the cross-sectional analysis is the influence of estimation 

error on the results.  If the variation in the disagreement measures across funds is driven by 

variation in the funds‟ residual volatilities, the regression results could be driven by the 
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volatilities, which are highly correlated with estimation error in the funds‟ alphas.  In this 

case, the effect we measure in the panel regressions could reflect estimation uncertainty and 

not the disagreement effect that we have in mind.  Funds with high estimation uncertainty 

in alpha could also experience a muted flow response to a given alpha estimate.  To address 

this concern we conduct a number of experiments.   

In the first set of experiments we modify the two disagreement measures by setting 

the residual volatilities to equal 1.0, so the measures reflect only the cross-state variation in 

the electricity correlations for a given fund.  These results are summarized in Table 10 for the 

CAPM and FF3-factors alphas, both in unconditional and in conditional form following 

Ferson and Schadt (1996).    In the unconditional CAPM the t-ratios on the interaction terms 

are negative and larger than four in absolute value using the first measure and negative but 

only significant on the quadratic term using the second modified measure of disagreement.  

Stronger results with negative t-ratios are found using the unconditional FF3 alphas.   The 

conditional FF3 model produces similar results, but those for the conditional CAPM are 

weaker, and in one case for this model an interaction term between flow and disagreement 

receives a significant positive sign.  Overall, however, the results strongly support our 

conclusion that high disagreement funds have a muted flow response to a given traditional 

alpha. 

In the second set of experiments we orthogonalize the disagreement measures to 

estimation uncertainty in alpha.  We run cross-sectional regressions, across funds, of the 

disagreement measures on the White (1980) standard errors of the alphas estimated from 

time series regressions, and construct the orthogonalized disagreement measures as the 
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intercept plus the residuals from the cross-sectional regression.  We repeat the flow 

performance regressions using the orthogonalized disagreement measures in Table 11.  

There are eight cases, with four measures of alpha and the two disagreement measures.  

The coefficients on the interaction between disagreement and lagged performance are 

negative in five cases, with t-ratios between -1.86 and -5.12.  The three positive coefficients 

have smaller t-ratios, but the largest is 2.27.  The coefficients on the interaction between 

the orthogonalized disagreement and squared performance are negative in all but one 

case, with five of the t-ratios between -3.45 and -4.91.  The single positive coefficient is not 

significant.  These results show that the attenuating effect of disagreement on the flow 

response to fund performance is not driven by estimation uncertainty in the funds‟ alphas. 

In summary, the relation of fund flows to recent performance measures varies 

significantly with the extent to which investors are likely to disagree with the performance 

measure.   Funds with greater disagreement due to investor heterogeneity experience a 

weaker relation of their flows to past measured performance.  We conclude that the effects 

of investor heterogeneity are of economic and statistical significance. 

8. Conclusions 

The ambiguities in the interpretation of alpha that plagued the early literature are largely 

resolved when alpha is defined relative to the client's preferences, and proper 

performance evaluation is inherently client specific.  In evaluating managed portfolios, 

one size does not fit all.   This paper evaluates the effects of investor heterogeneity on 

investment performance measurement and finds that heterogeneity is both statistically 

and economically significant.  This has important implications for the existing literature, 

for practical investment evaluation and for future research. 



 
 

 35 

  The traditional alphas used in much of the existing literature can be interpreted as 

signals to buy or sell in special circumstances.   This occurs in our model when the 

traditional factors completely capture the covariance of a fund‟s return with the client‟s 

marginal utility.  Our upper bound for the difference between a client‟s alpha and the 

traditional measures is comparable in magnitude to various measures of the ambiguity in 

the traditional alphas.  In particular, disagreement with the traditional alphas can be 

similar in magnitude to the sensitivity of alpha to the choice of benchmark (e.g., Roll, 

1978).  Disagreement effects can be similar in magnitude to the estimation errors in 

traditional alphas.  We find that funds for which investors are more likely to disagree with 

traditional alphas display a muted flow response to performance measured by traditional 

alphas.  This is a separate effect from uncertainty about the true value of the traditional 

alpha. 

  While our analysis indicates that investor heterogeneity is economically 

significant, it likely understates the case.  We use iterated expectations to integrate out 

clients‟ different information sets.  We do not consider taxes or transaction costs.  These 

are additional sources of potential disagreement about alpha across investors. 

  The implications of our results for the practical evaluation of investments are 

important.  One client is likely to view the performance of a given fund differently from 

another client.  If the client‟s life situation is idiosyncratic, he is likely to view the 

performance of a fund as idiosyncratically different.   

  Our results suggest an important avenue for new research on investment 

performance evaluation.   If the client-specific nature of alpha is important, then studies 

should develop client-specific measures, or more realistically, clientele-specific measures 

of fund performance.    
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Appendix 

Proof of Proposition 1: 

The first order condition for an optimal response that maximizes the lifetime utility 

implies: 

 

  - uc(Ct-Δ) + E{βJw(W(Δ)) [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] |Zt} = 0.                           (A.1) 

 

Assuming regular utility functions, we can use the mean value theorem to represent 

 

   uc(Ct-Δ) = uc(Ct) - ucc* Δ and           (A.2) 

   Jw(W(Δ)) = Jw(Wt+1) + Jww* [W(Δ)-Wt+1],  

 

where * indicates that the functions are evaluated at points in the intervals (Ct-Δ,Ct) and 

(W(Δ),Wt+1) respectively.  Substituting (A.2) into (A.1) yields: 

 

        uc(Ct) -ucc*Δ=E{β [Jw(Wt)+Jww* (W(Δ)-Wt+1)] [Rp,t+1 + (Wt-Ct)(x(Δ)/Δ)'R]}.           (A.3) 

 

Substituting in (W(Δ)-Wt+1) = ΔRp + (Wt-Ct)[x(Δ)-x]'R, where x(Δ) is the new optimal 

portfolio weight vector for the N base assets, normalized to sum to 1.0, and x is the old 

optimal weight vector, and using the first order condition E{β Jw(Wt) R}=1uc(C) and the 

fact that x(Δ)'1=1 implies (x(Δ)/Δ)'1=0, and using the definition of αp, (A.3) reduces to: 

 

       uc(Ct) - ucc*Δ = (1+αp)uc(Ct) + Δ Q,                                                (A.4) 

    Q = E{β Jww* [Rpt+1 + (Wt-Ct) (x(Δ)/Δ)'R] [Rpt+1 + (Wt-Ct) (x(Δ)-x)/Δ)'R]. 
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Solving for the optimal Δ we have: 

    Δ = αp {uc /(-ucc* - Q)},         (A.5) 

and the conditions of the theorem guarantee that Q<0, which establishes the result.  QED. 

 

Proof of Proposition 2: 

When J(.) is quadratic in wealth, then Jw is a linear function and using the first order 

conditions again we have E{β [aJw(WI) + (1-a)Jw(Wu)] [Rp - Ru]|Ω} =  

E{β(1-a)Jw(Wu) [Rp - Ru]|Ω} = (1-a)uc αp > 0, implying that alpha is positive.  QED. 

 

Review of the Second Fundamental Question 

The second Fundamental Question is whether an informed manager will generate a 

positive alpha.  Mayers and Rice (1979) argued for an affirmative answer.  They assumed 

complete markets, quadratic utility and the CAPM.  They also assumed that the manager 

either has no information about the market return (i.e., no timing information) and that 

either the expected conditional beta is the unconditional beta (generally not true) or that 

the agent's optimal consumption is unaffected by the information.  Dybvig and Ingersoll 

(1982) showed that you can't marry complete markets with quadratic utility because it 

leads to negative state prices, and Verrechia (1980) gave a counterexample with quadratic 

utility to the more general proposition that the informed earn higher returns than the 

uninformed expect, based on the Mayers and Rice set up.  Dybvig and Ross (1985a) 

generalized the Mayers and Rice result to avoid the complete markets assumption (their 

Theorem 2) but assumed that the manager has no information about the mean or variance 

of the uninformed client's portfolio. 

  Connor and Korajczyk (1986) work in an APT setting, assuming that the 
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idiosyncratic components of returns, єi, are pure risk in the sense of Rothschild and Stiglitz 

(that is, E(εi)=0=E(εi|f), where f are the common factors).  They also assume that the 

informed manager gets a signal about only one asset return.  They shown that alpha, 

defined as the summed covariance of the manager's optimal portfolio weights with 

idiosyncratic returns, will be positive.  They also show that under constant absolute risk 

aversion (their Theorem 4) that this alpha divided by its standard error orders informed 

managers' information sets in terms of managers' expected utility.  This may be the best 

positive answer to the second Fundamental Question in the current literature.   

  Grinblatt and Titman (1989) also get close to a general positive answer to the 

question of whether an informed manager will generate a positive alpha.  They use a 

single period model under the assumption of normality, and thus, mean variance 

preferences.18  They consider alpha measured relative to a benchmark that is mean 

variance efficient given the uninformed client's information.  Sadly, they find that alpha 

can be negative for an informed manager, even assuming that the manager has 

nonincreasing Rubinstein (1976) risk aversion.  Grinblatt and Titman also introduce a 

positive period weighting measure.  The positive period weighting measure is a set of 

scalars {wt} that are strictly positive, sum to 1.0 and are bounded in the sample size T: 

|plim(Twt)|<.  The alpha for a portfolio with excess return rt is defined as Plim(Σt wtrt).  

A positive period weighting measure produces a zero alpha for a portfolio rEt that is mean 

variance efficient conditioned on the uninformed client's information set: Plim(Σt wtrEt) = 

0.  Grinblatt and Titman show that alphas relative to this measure will be positive if the 

informed manager has constant Rubinstein risk aversion (their Proposition A1) or has no 

                                                                                                                                            

     18 They do allow for nontraded human capital, and thus a hedging demand related to human 

capital.  The informed agent's optimal portfolio in their set up is conditional multifactor minimum 

variance efficient (Ferson, Siegel and Xu, 2006) given the client's information.  With the additional 

assumption of normality, that will also be the case in the model developed here. 
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timing information, or has selectivity information that is independent of both the 

benchmark and the weighting measure and optimally increases beta when receiving a 

positive timing signal about the efficient portfolio (their Proposition 2). 

  It seems that the conditions under which a manager with superior information 

will generate a positive alpha are fairly special, and there are examples where it won't be 

true.  Dybvig and Ross (1985a) and Grinblatt and Titman (1989) show that a manager that 

is a positive market timer can generate a negative alpha.  Dybvig and Ross (1985a) and 

Hansen and Richard (1987) show that a manager's portfolio can be mean variance efficient 

given the manager's knowledge, but appear inefficient to the uninformed client.  In 

general, the answer from the previous literature to the second Fundamental Question is 

negative.   
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Table 1 

 

Summary Statistics 

 

The table reports summary statistics for actively managed mutual funds and benchmark returns.  

The data are from January of 1984 through December of 2008.  We exclude from our analysis 

using unconditional (conditional) models funds with less than 12 (48) monthly returns.  The 

benchmark assets include a stock market portfolio (market), the Fama French three factors (FF 3 

Factors), six equal-weighted portfolios of index mutual funds grouped according to their 

benchmarks (Index MFs), their equal-weighted average (EW Idx), a set of ETFs (ETFs), and an 

equal-weighted portfolio of ETFs (EW ETFs).  Index MFs are classified into six categories based 

on their target benchmarks as indicated below.  ETFs reflect eight asset classes: SPY (large cap), 

MDY (mid cap), IJR (small cap), QQQQ (Technology), EWJ (Japan), EFA (MSCI non-US), 

XLE (Energy), IYR (Mortgage/Real Estimate).  Mean is the sample mean, Std Dev is the sample 

standard deviation, Min is the sample minimum, Max is the sample maximum, AR1 is the first 

order sample autocorrelation, and SR is the sample Sharpe ratio.  All statistics are computed on 

excess returns.  The excess returns are measured net of the one month return on a three-month 

Treasury bill.  The columns for the actively managed mutual funds are sorted separately on each 

statistic shown.  Monthly percentage figures are reported in the first four columns. 

        

 Mean Std Dev  Min Max AR1 SR 

FF 3 Factors       

Market 0.457 4.468 -22.977 12.386 0.098 0.102 

SMB 0.027 3.273 -16.850 21.990 -0.031 0.008 

HML 0.353 3.075 -12.370 13.870 0.114 0.115 

       

Index MFs       

S&P 500 0.476 4.218 -16.852 16.468 -0.030 0.113 

S&P MidCap 0.540 4.762 -21.724 11.538 0.084 0.113 

SmallCap 0.387 4.976 -19.706 9.252 0.019 0.078 

Russell 0.444 4.668 -20.436 10.058 0.089 0.095 

MSCI 0.566 4.482 -19.263 11.532 0.100 0.126 

Others 0.394 4.465 -19.204 10.977 0.058 0.088 

EW Idx  0.467 4.269 -18.254 13.234 0.020 0.109 

       

ETFs       

EFA 0.165 4.893 -20.871 10.073 0.358 0.034 

EWJ -0.384 5.982 -16.835 20.742 0.126 -0.064 

IJR 0.263 5.369 -19.798 10.783 0.115 0.049 

IYR 0.441 6.076 -31.352 14.251 0.097 0.073 

MDY 0.545 5.126 -21.584 12.181 0.146 0.106 

QQQQ -0.375 8.825 -26.599 23.046 0.105 -0.043 

SPY 0.297 4.152 -16.555 9.211 0.087 0.072 

XLE 0.678 6.491 -18.836 16.552 -0.040 0.105 

EW ETFs 0.386 4.472 -20.014 12.029 0.130 0.086 
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  Mean Std Dev  Min Max AR1 SR 

Active MFs – with at least 12 observations    

Bottom 1% -3.491 1.908 -35.609 3.124 -0.308 -1.830 

Bottom 10% -1.353 3.250 -24.947 4.980 -0.058 -0.416 

Bottom 25% -0.461 4.109 -21.187 6.920 0.031 -0.112 

Median 0.034 4.956 -17.707 9.553 0.102 0.007 

Top 25% 0.378 6.080 -13.665 13.323 0.173 0.062 

Top 10% 0.663 7.738 -9.191 20.237 0.242 0.086 

Top 1% 1.671 12.412 -3.629 37.454 0.361 0.135 

Mean -0.169 5.323 -17.529 11.416 0.094 -0.032 

       

Active MFs – with at least 48 observations    

Bottom 1% -0.962 2.117 -36.096 4.165 -0.145 -0.454 

Bottom 10% -0.388 3.382 -25.250 6.567 -0.006 -0.115 

Bottom 25% -0.114 4.108 -21.655 8.503 0.050 -0.028 

Median 0.161 4.858 -18.233 10.660 0.105 0.033 

Top 25% 0.416 5.804 -14.954 14.876 0.164 0.072 

Top 10% 0.640 7.421 -11.472 22.508 0.226 0.086 

Top 1% 1.236 11.082 -5.525 39.133 0.316 0.112 

Mean 0.148 5.176 -18.469 12.996 0.106 0.029 
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Table 2 

 

Mutual Funds’ Traditional Alphas and Residual Volatilities 

 

This table summarizes the cross-sectional distribution of alpha estimates, their standard errors, 

and the volatility of the idiosyncratic residuals for actively managed mutual funds.   Mkt is the 

market portfolio, FF3 denotes the three Fama-French factors, Idx MFs are the six equal-weighted 

portfolios of index mutual funds, EW Idx MFs is their equal-weighted portfolio, ETFs are a set 

of eight ETFs, and EW ETFs is their equal-weighted portfolio.  The symbols rp and rj denote the 

fund excess returns and the vector of benchmark excess returns, respectively. Z denotes the public 

information variables – the lagged one-month Treasury Bill, the lagged dividend yield, the lagged 

term spread, and the lagged default spread.  All figures are in monthly percentage units.   The 

sample period is January, 1984 through December, 2008.  Panel A shows unconditional results 

using the following regression: 

  

rp = ap + Bp’ rj + εp,                                          
                       

and Panel B shows conditional results following Ferson and Schadt (1996) using the regression: 

 

rp = a0p + B0p‟rj   +Bp„(rj     Z)+ εp.         

 

Alpha is the intercept, ap, or aOp.  Std is the White (1980) standard error of the alpha and σ(εp) is 
the standard deviation of the fund residual.  The unconditional (conditional) specification uses 

only actively managed mutual funds with at least 12 (48) monthly returns.  Each column of 

statistics is sorted separately on that statistic. 

 

Panel A: UNCONDITIONAL MODELS 

 

Benchmark:  Mkt     FF3  

Fractile Alpha std σ(εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -1.699 0.062 0.492  Bottom 1% -1.674 0.057 0.422 

Bottom 10% -0.549 0.110 0.896  Bottom 10% -0.522 0.096 0.751 

Bottom 25% -0.256 0.164 1.362  Bottom 25% -0.271 0.135 1.087 

Median -0.043 0.248 2.118  Median -0.090 0.209 1.697 

Top 25% 0.180 0.378 3.042  Top 25% 0.087 0.321 2.492 

Top 10% 0.480 0.608 4.457  Top 10% 0.371 0.523 3.564 

Top 1% 1.642 1.388 8.162  Top 1% 1.492 1.238 7.146 

 

Mean -0.035 0.322 2.455  Mean -0.086 0.276 2.001 
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Benchmark  6 Idx MF     EW Idx MFs  

Fractile Alpha Std σ(εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -1.720 0.042 0.300  Bottom 1% -1.714 0.066 0.574 

Bottom 10% -0.572 0.097 0.649  Bottom 10% -0.548 0.115 0.983 

Bottom 25% -0.279 0.139 0.990  Bottom 25% -0.226 0.165 1.416 

Median -0.069 0.212 1.601  Median -0.004 0.248 2.164 

Top 25% 0.124 0.330 2.404  Top 25% 0.222 0.388 3.096 

Top 10% 0.379 0.544 3.456  Top 10% 0.535 0.630 4.640 

Top 1% 1.379 1.366 6.556  Top 1% 1.716 1.441 8.407 

 

Mean -0.076 0.284 1.892  Mean -0.003 0.330 2.541 

         

         

Benchmark:  8 ETFs     EW ETFs  

Fractile Alpha Std σ (εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -3.310 0.000 0.000  Bottom 1% -1.888 0.091 0.693 

Bottom 10% -0.582 0.073 0.490  Bottom 10% -0.776 0.153 1.233 

Bottom 25% -0.304 0.108 0.745  Bottom 25% -0.454 0.198 1.671 

Median -0.117 0.161 1.076  Median -0.206 0.269 2.271 

Top 25% 0.047 0.242 1.587  Top 25% 0.025 0.400 3.152 

Top 10% 0.281 0.380 2.342  Top 10% 0.284 0.628 4.577 

Top 1% 2.384 0.997 7.847  Top 1% 1.338 1.464 8.279 

 

Mean -0.173 0.209 1.473  Mean -0.229 0.349 2.655 

 

Panel B: CONDITIONAL MODELS 

Benchmark:  Mkt     FF3  

Fractile Alpha std σ(εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -0.952 0.060 0.487  Bottom 1% -0.969 0.051 0.377 

Bottom 10% -0.410 0.104 0.948  Bottom 10% -0.418 0.083 0.697 

Bottom 25% -0.208 0.148 1.396  Bottom 25% -0.247 0.117 1.009 

Median -0.036 0.222 2.093  Median -0.094 0.177 1.543 

Top 25% 0.162 0.316 2.968  Top 25% 0.077 0.254 2.218 

Top 10% 0.432 0.462 4.226  Top 10% 0.322 0.373 3.053 

Top 1% 1.185 0.928 7.413  Top 1% 0.926 0.764 6.303 

 

Mean -0.007 0.262 2.398  Mean -0.072 0.211 1.792 
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Benchmark:  6Idx MFs     EW Idx MFs  

Fractile Alpha std σ(εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -1.373 0.043 0.226  Bottom 1% -0.974 0.060 0.551 

Bottom 10% -0.468 0.089 0.521  Bottom 10% -0.383 0.104 0.998 

Bottom 25% -0.229 0.125 0.796  Bottom 25% -0.172 0.149 1.416 

Median -0.034 0.189 1.276  Median 0.008 0.220 2.104 

Top 25% 0.141 0.277 1.914  Top 25% 0.211 0.317 3.026 

Top 10% 0.375 0.423 2.706  Top 10% 0.482 0.476 4.457 

Top 1% 1.234 0.919 5.301  Top 1% 1.261 0.973 7.605 

 

Mean -0.041 0.234 1.512  Mean 0.033 0.266 2.464 

         

         

Benchmark:  8 ETFs     EW ETFs  

Fractile Alpha std σ(εp)  Fractile alpha std σ(εp) 
 

Bottom 1% -1.192 0.000 0.000  Bottom 1% -1.253 0.082 0.736 

Bottom 10% -0.416 0.076 0.313  Bottom 10% -0.608 0.147 1.327 

Bottom 25% -0.215 0.105 0.485  Bottom 25% -0.377 0.184 1.754 

Median -0.060 0.145 0.709  Median -0.162 0.235 2.292 

Top 25% 0.110 0.212 1.032  Top 25% 0.034 0.326 3.120 

Top 10% 0.328 0.301 1.429  Top 10% 0.243 0.471 4.380 

Top 1% 1.183 0.693 2.868  Top 1% 0.823 0.921 7.663 

 

Mean -0.044 0.178 0.831  Mean -0.171 0.283 2.641 

 

 

 

Panel C: Range of Mutual Funds’ Traditional Alphas Across Six Benchmark Models: 

 

Fractile Unconditional  Conditional 

 

Bottom 1% 0.119 0.086 

Bottom 10% 0.240 0.211 

Bottom 25% 0.323 0.307 

Median 0.433 0.434 

Top 25% 0.658 0.616 

Top 10% 1.062 0.911 

Top 1% 5.375 2.052 

 

Mean 0.690 0.548 
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Table 3  

 

Bounds on the Effects of Investor Heterogeneity in Unconditional Models 

 

This table summarizes the distribution of the upper bounds on the effects of heterogeneity on 

alphas using different benchmark assets.  Mkt is the market portfolio, FF3 is the three Fama 

French three factors, Idx MFs are the six equal-weighted indexes of index mutual funds, EW Idx 

MFs is their equal-weighted portfolio, ETFs are a set of eight ETFs, and EW ETFs is their 

equal-weighted portfolio. The symbols rp and ri denote the fund excess returns and the vector of 

benchmark excess returns, respectively. The form of the regression for actively managed mutual 

funds is: 

 

rp = ap + Bp’ rj + εp  

 

SRmax is the maximum unconditional Sharpe ratio, adjusted for finite sample bias following 

Ferson and Siegel (2003).  The upper bounds are calculated as the product σ(εp) SRmax.,  where 

σ(εp) is the unconditional standard deviation of εp.  The figures are in monthly percentage units. 

 

Benchmark: Mkt FF3 Idx MFs EW Idx MFs ETFs EW ETFs 

 

Bottom 1% 0.050 0.078 0.061 0.060 0.000 0.060 

Bottom 10% 0.092 0.138 0.132 0.103 0.143 0.106 

Bottom 25% 0.139 0.201 0.201 0.152 0.217 0.144 

Median 0.216 0.313 0.324 0.233 0.314 0.196 

Top 25% 0.311 0.460 0.487 0.337 0.463 0.272 

Top 10% 0.455 0.657 0.700 0.510 0.683 0.395 

Top 1% 0.834 1.318 1.329 0.942 2.288 0.714 

 

Mean 0.251 0.369 0.383 0.276 0.429 0.229 

       

SRmax 10.2 18.4 20.3 10.9 29.2 8.6 
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Table 4 

 

Bounds on the Effects of Investor Heterogeneity on Alphas using Conditional Models with 

Homoskedasticity and Linear Conditional Means 

 

This table summarizes cross-sectional distributions of the upper bounds on the effects of investor 

heterogeneity on alphas using alternative benchmark assets.  Mkt is the market portfolio, FF3 is 

the three Fama French factors, Idx MFs are the six equal-weighted indexes of index mutual 

funds, EW Idx MFs is their equal-weighted portfolio, ETFs are a set of eight ETFs, and EW 

ETFs is their equal-weighted portfolio. The symbols rp and rj denote the fund excess returns and 

the vector of benchmark excess returns, respectively. Z denotes the public information variables – 

the lagged one-month Treasury Bill, the lagged dividend yield, the lagged term spread, and the 

lagged default spread.  The regressions for the active funds are: 

 

rp = a0p + B0p‟ rj + B1p‟ Z + ep 

                          

Avg SRmax is the average of time-varying conditional maximum Sharpe ratios after finite sample 

bias correction, based on the fitted conditional mean excess returns of the benchmarks and their 

residual covariances in regressions of the benchmark returns on the lagged Zs and a constant only. 

The sample residual covariance matrix is the expected conditional covariance matrix, on the 

assumption that the conditional covariance matrix is constant over time.  The bounds are 

calculated as σ(ep) SRmax.   where σ(ep ) is the standard deviation of ep.  Avg SRmax is in decimals 

and the other numbers are in monthly percentage units. 

 

 

Benchmark: Mkt FF3 Idx MFs EW Idx MFs ETFs EW ETFs 

 

Bottom 1% 0.098 0.159 0.239 0.092 0.228 0.105 

Bottom 10% 0.184 0.280 0.484 0.166 0.398 0.186 

Bottom 25% 0.273 0.399 0.709 0.236 0.531 0.246 

Median 0.412 0.607 1.069 0.353 0.724 0.326 

Top 25% 0.579 0.861 1.561 0.503 1.022 0.444 

Top 10% 0.813 1.177 2.156 0.738 1.401 0.625 

Top 1% 1.423 2.370 4.083 1.287 2.911 1.095 

Mean 0.466 0.693 1.245 0.411 0.859 0.375 

       

Avg. SRmax 0.189 0.344 0.636 0.162 0.655 0.140 
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Table 5 

 

Bounds on the Effects of Investor Heterogeneity on Alphas using Conditional Models with 

Heteroskedasticity 

 

This table reports the cross-sectional distribution of estimates of the upper bounds on the effects of 

investor heterogeneity on alphas for various benchmark assets.  Mkt is the market portfolio, FF3 

is the Fama French three factors, Idx MFs are the six equal-weighted indexes of index mutual 

funds, EW Idx MFs is their equal-weighted portfolio, ETFs are a set of eight ETFs, and EW 

ETFs is their  equal-weighted portfolio.  The symbols rp and rj denote the fund excess returns and 

the vector of benchmark excess returns, respectively. Z denotes the lagged public information 

variables – the lagged one-month Treasury Bill, the lagged dividend yield, the lagged term spread, 

and the lagged default spread.  The econometric model  for the mutual fund returns in panel A 

has linear conditional means and conditional heteroskedasticity: 

rp,t = a0p + β0 p‟Z + β p‟(rj Z ) + ε p,t  

sqrt(π/2)|ε p,t |= a1p + β1p’Z + e p,t       

For panel B the GARCH(1,1) model is used: 
r p,t = θ0 p + Г0 p‟Z+ Г p‟(rj  Z ) + u p,t ,  u p,t ~ N(0,h p,t)  
h p,t+1= θ1p + λ u2 p,t+ φh p,t                                 

The conditional means and variances of the benchmark excess returns are estimated using  

similar models, except the conditional means of the benchmark returns are assumed to be linear 

in the lagged variables, Z.  In Panel A the conditional volatility, σ(εp|Z) is computed as a1p + 

β1p’Z.  In the second model it is the fitted value of hpt.  Avg. SRmax is the average of the 

conditional maximum Sharpe ratios, SRmax(Z), after adjustment for finite sample bias following 

Ferson and Siegel (2003).  The conditional Sharpe ratios assume that the benchmark returns have 

linear conditional means, that their conditional standard deviations are the fitted values above, 

and that their conditional correlations are the sample correlations of the residuals from their 

regressions on the lagged Zs.  The bounds are calculated as the sample mean of  {σ(εp|Z) x 

SRmax.(Z)}.  Avg. SRmax is reported in decimals and other numbers are in percentages. 

 

Panel A: 

Benchmark: Mkt FF3 Idx MFs EW Idx MFs ETFs EW ETFs 

Bottom 1% 0.069 0.126 0.196 0.062 0.137 0.101 

Bottom 10% 0.138 0.240 0.386 0.112 0.276 0.178 

Bottom 25% 0.211 0.352 0.563 0.161 0.398 0.225 

Median 0.311 0.529 0.868 0.237 0.563 0.281 

Top 25% 0.448 0.752 1.282 0.332 0.812 0.361 

Top 10% 0.635 1.036 1.768 0.464 1.115 0.480 

Top 1% 1.246 2.172 3.456 0.894 2.202 0.875 

Mean 0.364 0.613 1.022 0.271 0.664 0.314 

       

Avg. SRmax 0.234 0.447 0.686 0.162 0.762 0.140 
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Panel B: 

 

Benchmark: Mkt FF3 Idx MFs EW Idx MFs ETFs EW ETFs 

Bottom 1% 0.070 0.167 0.313 0.055 0.129 0.111 

Bottom 10% 0.135 0.308 0.677 0.102 0.440 0.195 

Bottom 25% 0.201 0.435 1.062 0.146 0.685 0.249 

Median 0.297 0.647 1.669 0.211 1.156 0.312 

Top 25% 0.414 0.908 2.570 0.290 2.190 0.414 

Top 10% 0.580 1.262 3.907 0.408 4.329 0.557 

Top 1% 1.054 2.695 9.724 0.765 12.451 0.985 

Mean 0.337 0.751 2.171 0.240 2.008 0.353 

       

Avg. SRmax 0.187 0.404 1.017 0.136 0.995 0.148 
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Table 6 

 

Quarterly Panel Flow-performance Regressions Using CAPM Alphas  

 

The panel regressions are for January, 1984 through December, 2008.  The net flow is defined as 

the quarter-to-quarter growth in total net assets (TNA) in excess of fund returns.  The 

performance measure (PMp,t) is the unconditional alpha from the CAPM.  Two measures of 

disagreement about alpha are used: 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                              

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 
 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s 

electricity consumption growth and σG[.] denotes the cross-sectional standard deviation across 

the electricity consumption growths for the 50 states and the District of Columbia. 

The symbol rj* denotes the maximum correlation portfolio in a given set of benchmark returns, in 

this case the Sharpe ratio of the market proxy.  The control variables include the lagged age (the 

natural logarithm of months since inception (AGEt-1), the lagged size (the natural logarithm of 

TNA, SIZEt-1), the expense ratio plus one-seventh of the front-end load (EXPENSEt-1), the lagged 

net flow, the lagged performance measure (PMt-1), the lagged fund total return volatility (TVOLt-1), 

cross terms and other lags as shown.  Panels A and B assume that DISAGREE is time-varying 

and uses the rolling standard deviations of fund residuals over the previous 36 months at each 

quarter t.  Panel C and D assumes that DISAGREE is constant over the sample period.     

 

Panel A: Rolling DISAGREE1p  
 

 Coeff Std T-value 

Intercept 0.08 0.06 1.49 

PMt-1 0.80 2.41 0.33 

PMt-1xDISAGREE1t-1 -186.98 20.99 -8.91 

PMt-1
2
 54.65 174.34 0.31 

PMt-1
2
xDISAGREE1t-1 -3654.13 1358.63 -2.69 

PMt 4.75 0.40 11.78 

PMt-2 0.80 0.54 1.47 

PMt-3 -0.82 0.41 -2.02 

PMt-1xAGEt-1 -0.11 0.40 -0.27 

PMt-1
2
xAGEt-1 -2.23 29.47 -0.08 

AGEt-1 -0.01 0.02 -0.69 

SIZEt-1 -0.02 0.00 -8.33 

EXPENSEt-1 0.96 0.44 2.19 

FLOW t-1 0.15 0.01 15.77 

TVOLt-1 -0.21 0.11 -1.97 
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Panel B: Rolling DISAGREE2p  

 Coeff Std T-value 

Intercept 0.08 0.06 1.46 

PMt-1 1.12 2.42 0.46 

PMt-1xDISAGREE2t-1 -176.34 21.32 -8.27 

PMt-1
2
 60.49 174.90 0.35 

PMt-1
2
xDISAGREE2t-1 -2699.56 1397.74 -1.93 

PMt 4.75 0.40 11.77 

PMt-2 0.80 0.54 1.47 

PMt-3 -0.82 0.41 -2.01 

PMt-1xAGEt-1 -0.19 0.40 -0.47 

PMt-1
2
xAGEt-1 -6.09 29.51 -0.21 

AGEt-1 -0.01 0.02 -0.67 

SIZEt-1 -0.02 0.00 -8.29 

EXPENSEt-1 0.95 0.44 2.16 

FLOW t-1 0.15 0.01 15.77 

TVOLt-1 -0.19 0.11 -1.82 

 

Panel C: constant DISAGREE1p  
 

 Coeff Std T-value 

Intercept 0.08 0.06 1.51 

PMt-1 1.73 2.41 0.72 

PMt-1xDISAGREE2t-1 -210.79 22.03 -9.57 

PMt-1
2
 82.88 176.04 0.47 

PMt-1
2
xDISAGREE2t-1 -2829.09 1471.12 -1.92 

PMt 4.82 0.40 11.94 

PMt-2 0.73 0.54 1.34 

PMt-3 -0.80 0.41 -1.97 

PMt-1xAGEt-1 -0.25 0.39 -0.64 

PMt-1
2
xAGEt-1 -11.58 29.28 -0.40 

AGEt-1 -0.01 0.02 -0.72 

SIZEt-1 -0.01 0.00 -8.25 

EXPENSEt-1 0.95 0.44 2.18 

FLOW t-1 0.15 0.01 15.72 

TVOLt-1 -0.27 0.11 -2.54 
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Panel D: constant DISAGREE2p  
 

 Coeff Std T-value 

Intercept 0.08 0.06 1.47 

PMt-1 1.96 2.43 0.81 

PMt-1xDISAGREE2t-1 -202.24 22.58 -8.96 

PMt-1
2
 68.52 177.10 0.39 

PMt-1
2
xDISAGREE2t-1 -1871.63 1549.95 -1.21 

PMt 4.82 0.40 11.93 

PMt-2 0.73 0.54 1.34 

PMt-3 -0.80 0.41 -1.96 

PMt-1xAGEt-1 -0.31 0.40 -0.78 

PMt-1
2
xAGEt-1 -11.81 29.37 -0.40 

AGEt-1 -0.01 0.02 -0.68 

SIZEt-1 -0.01 0.00 -8.23 

EXPENSEt-1 0.95 0.44 2.18 

FLOW t-1 0.15 0.01 15.73 

TVOLt-1 -0.25 0.11 -2.34 
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Table 7 

 

Quarterly Panel Flow-performance Regressions using Three-factor Alphas 

 

 

The performance measure (PMp,t) is the alpha from the Fama-French factors:   

 

tpthmlhmltsmbsmbtmktmktFFptp rrrr ,,,,3,,    

 

where all the r,t are excess returns.  The panel regressions are for January, 1984 through 

December, 2008.  The net flow is defined as the quarter-to-quarter growth in total net assets 

(TNA) in excess of fund returns.  The performance measure (PMp,t) is the unconditional alpha 

from the CAPM.  Two measures of disagreement about alpha are used: 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                              

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 
 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s 

electricity consumption growth and σG[.] denotes the cross-sectional standard deviation across 

the electricity consumption growths for the 50 states and the District of Columbia. 

The symbol rj* denotes the maximum correlation portfolio in a given set of benchmark returns, in 

this case the Sharpe ratio of the market proxy.  The control variables include the lagged age (the 

natural logarithm of months since inception (AGEt-1), the lagged size (the natural logarithm of 

TNA, SIZEt-1), the expense ratio plus one-seventh of the front-end load (EXPENSEt-1), the lagged 

net flow, the lagged performance measure (PMt-1), the lagged fund total return volatility (TVOLt-1), 

cross terms and other lags as shown.  Panels A and B assume that DISAGREE is time-varying 

and uses the rolling standard deviations of fund residuals over the previous 36 months at each 

quarter t.  Panel C and D assumes that DISAGREE is constant over the sample period.     

 

   

Panel A: Rolling DISAGREE1p  

 Coeff Std T-value 

Intercept 0.04 0.06 0.77 

PMt-1 1.07 3.01 0.35 

PMt-1xDISAGREEt-1 -262.34 30.70 -8.55 

PMt-1
2
 -18.09 207.82 -0.09 

PMt-1
2
xDISAGREEt-1 -6279.68 1865.95 -3.37 

PMt 4.77 0.47 10.09 

PMt-2 1.32 0.66 2.01 

PMt-3 -0.53 0.48 -1.11 

PMt-1xAGEt-1 -0.17 0.50 -0.35 

PMt-1
2
xAGEt-1 15.23 35.58 0.43 

AGEt-1 0.00 0.02 -0.07 

SIZEt-1 -0.01 0.00 -7.65 
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EXPENSEt-1 1.24 0.44 2.82 

FLOW t-1 0.15 0.01 16.01 

TVOLt-1 -0.26 0.11 -2.45 

 

Panel B: Rollng DISAGREE2p  

 Coeff Std T-value 

Intercept 0.04 0.06 0.75 

PMt-1 1.55 3.01 0.51 

PMt-1xDISAGREEt-1 -267.64 31.93 -8.38 

PMt-1
2
 -3.35 207.71 -0.02 

PMt-1
2
xDISAGREEt-1 -5937.93 1944.43 -3.05 

PMt 4.78 0.47 10.09 

PMt-2 1.32 0.66 2.01 

PMt-3 -0.52 0.48 -1.09 

PMt-1xAGEt-1 -0.25 0.50 -0.50 

PMt-1
2
xAGEt-1 11.79 35.52 0.33 

AGEt-1 0.00 0.02 -0.05 

SIZEt-1 -0.01 0.00 -7.66 

EXPENSEt-1 1.22 0.44 2.77 

FLOW t-1 0.15 0.01 15.98 

TVOLt-1 -0.24 0.11 -2.24 

 

Panel C: constant DISAGREE1p  

 Coeff Std T-value 

Intercept 0.04 0.06 0.75 

PMt-1 3.37 3.03 1.11 

PMt-1xDISAGREEt-1 -285.23 32.07 -8.90 

PMt-1
2
 77.85 210.51 0.37 

PMt-1
2
xDISAGREEt-1 -4688.70 2028.06 -2.31 

PMt 4.82 0.47 10.19 

PMt-2 1.28 0.66 1.95 

PMt-3 -0.64 0.48 -1.34 

PMt-1xAGEt-1 -0.52 0.50 -1.05 

PMt-1
2
xAGEt-1 -7.68 34.99 -0.22 

AGEt-1 0.00 0.02 -0.02 

SIZEt-1 -0.01 0.00 -7.60 

EXPENSEt-1 1.24 0.44 2.83 

FLOW t-1 0.15 0.01 16.01 

TVOLt-1 -0.31 0.11 -2.91 

 

Panel D: constant DISAGREE2p  

 Coeff Std T-value 

Intercept 0.04 0.06 0.72 

PMt-1 3.84 3.04 1.26 

PMt-1xDISAGREEt-1 -298.86 34.15 -8.75 

PMt-1
2
 77.27 211.18 0.37 

PMt-1
2
xDISAGREEt-1 -4503.22 2174.06 -2.07    
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PMt 4.82 0.47 10.19 

PMt-2 1.28 0.66 1.95 

PMt-3 -0.64 0.48 -1.33 

PMt-1xAGEt-1 -0.58 0.50 -1.17 

PMt-1
2
xAGEt-1 -8.24 35.01 -0.24 

AGEt-1 0.00 0.02 0.01 

SIZEt-1 -0.01 0.00 -7.62 

EXPENSEt-1 1.23 0.44 2.81 

FLOW t-1 0.15 0.01 16.00 

TVOLt-1 -0.30 0.11 -2.76 
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Table 8 

 

Quarterly Nonparametric Panel Flow-performance Regressions Using CAPM Alphas  

 

The panel regressions are for January, 1984 through December, 2008.  The net flow is defined as 

the quarter-to-quarter growth in total net assets (TNA) in excess of fund returns.  The 

performance measure (PMp,t) is the unconditional alpha from the CAPM.  Two measures of 

disagreement about alpha are used: 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                              

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 
 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s 

electricity consumption growth and σG[.] denotes the cross-sectional standard deviation across 

the electricity consumption growths for the 50 states and the District of Columbia. 

The symbol rj* denotes the maximum correlation portfolio in a given set of benchmark returns, in 

this case the Sharpe ratio of the market proxy.  The control variables include the lagged age (the 

natural logarithm of months since inception (AGEt-1), the lagged size (the natural logarithm of 

TNA, SIZEt-1), the expense ratio plus one-seventh of the front-end load (EXPENSEt-1), the lagged 

net flow, the lagged performance measure (PMt-1), the lagged fund total return volatility (TVOLt-1), 

cross terms and other lags as shown.   

 

Panel A and B use dummies for the ranked performance measures.   At each quarter t, the funds’ 

performance measures are ranked and funds are classified into high (H), medium (M), and low 

(L) performance groups.  For example, PMH,p,t-1 refers to a dummy indicating that the fund is in 

the H group.  The panel regression is: 
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Panel C and D use dummies for the ranked measures of disagreement.  For example, 

DISAGREEH,p,t-1 is equal to 1.0 if the fund’s disagreement measure falls into the top third at quarter 

t-1.  The panel regression is: 
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Panel A: 

 Coeff Std T-value 

Intercept 0.07 0.06 1.30 

PMH,t-1 0.03 0.00 7.76 

PMM,t-1 0.01 0.00 3.56 

PMH,t-1xDISAGREE1t-1 -1.59 0.72 -2.19 

PMM,t-1xDISAGREE1t-1 -1.45 0.87 -1.66 

PMt 4.57 0.40 11.41 

PMt-2 0.68 0.54 1.26 

PMt-3 -0.98 0.41 -2.40 

PMt-1xAGEt-1 -0.45 0.10 -4.61 

PMt-1
2
xAGEt-1 -3.71 1.61 -2.30 

AGEt-1 -0.01 0.02 -0.77 

SIZEt-1 -0.01 0.00 -8.16 

EXPENSEt-1 0.92 0.44 2.11 

FLOW t-1 0.15 0.01 15.93 

TVOLt-1 -0.12 0.11 -1.08 

 

Panel B: 

 Coeff Std T-value 

Intercept 0.07 0.06 1.30 

PMH,t-1 0.03 0.00 7.62 

PMM,t-1 0.01 0.00 3.55 

PMH,t-1xDISAGREE2t-1 -1.28 0.72 -1.78 

PMM,t-1xDISAGREE2t-1 -1.42 0.90 -1.58 

PMt 4.55 0.40 11.37 

PMt-2 0.68 0.54 1.25 

PMt-3 -0.99 0.41 -2.41 

PMt-1xAGEt-1 -0.46 0.10 -4.73 

PMt-1
2
xAGEt-1 -3.78 1.61 -2.34 

AGEt-1 -0.01 0.02 -0.75 

SIZEt-1 -0.01 0.00 -8.14 

EXPENSEt-1 0.93 0.44 2.12 

FLOW t-1 0.15 0.01 15.95 

TVOLt-1 -0.13 0.11 -1.16 

 

Panel C: 

 Coeff Std T-value 

Intercept 0.09 0.06 1.59 

PMt-1 2.80 2.62 1.07 

PMt-1
2
 307.80 209.07 1.47 

PMt-1xDISAGREE1 H,t-1 -2.75 0.68 -4.06 

PMt-1xDISAGREE1 M,t-1 -1.11 0.73 -1.53 

PMt-1
2
xDISAGREE1 H,t-1 -11.31 112.28 -0.10 

PMt-1
2
xDISAGREE1 M,t-1 -36.40 114.35 -0.32 

PMt 4.67 0.40 11.56 

PMt-2 0.77 0.54 1.41 
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PMt-3 -0.98 0.41 -2.40 

PMt-1xAGEt-1 -0.40 0.40 -1.00 

PMt-1
2
xAGEt-1 -53.54 28.88 -1.85 

AGEt-1 -0.01 0.02 -0.85 

SIZEt-1 -0.01 0.00 -8.12 

EXPENSEt-1 1.00 0.44 2.27 

FLOW t-1 0.15 0.01 16.14 

TVOLt-1 -0.12 0.11 -1.10 

 

Panel D: 

 Coeff Std T-value 

Intercept 0.09 0.06 1.57 

PMt-1 2.47 2.55 0.97 

PMt-1
2
 331.15 201.32 1.64 

PMt-1xDISAGREE2 H,t-1 -2.89 0.66 -4.39 

PMt-1xDISAGREE2 M,t-1 -1.06 0.71 -1.50 

PMt-1
2
xDISAGREE2 H,t-1 -30.68 101.04 -0.30 

PMt-1
2
xDISAGREE2 M,t-1 -70.84 103.93 -0.68 

PMt 4.69 0.40 11.61 

PMt-2 0.77 0.54 1.41 

PMt-3 -0.96 0.41 -2.34 

PMt-1xAGEt-1 -0.34 0.40 -0.84 

PMt-1
2
xAGEt-1 -54.32 28.82 -1.88 

AGEt-1 -0.01 0.02 -0.83 

SIZEt-1 -0.01 0.00 -8.14 

EXPENSEt-1 1.02 0.44 2.32 

FLOW t-1 0.15 0.01 16.03 

TVOLt-1 -0.12 0.11 -1.08 
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Table 9 

 

Quarterly Nonparametric Panel Flow-performance Regressions Using Three-factor Alphas  

 

The panel regressions are for January, 1984 through December, 2008.  The net flow is defined as 

the quarter-to-quarter growth in total net assets (TNA) in excess of fund returns.  The 

performance measure (PMp,t) is the unconditional alpha from the Fama-French three-factor 

model.  Two measures of disagreement about alpha are used: 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                              

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 
 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s 

electricity consumption growth and σG[.] denotes the cross-sectional standard deviation across 

the electricity consumption growths for the 50 states and the District of Columbia. 

The symbol rj* denotes the maximum correlation portfolio in a given set of benchmark returns, in 

this case the Sharpe ratio of the market proxy.  The control variables include the lagged age (the 

natural logarithm of months since inception (AGEt-1), the lagged size (the natural logarithm of 

TNA, SIZEt-1), the expense ratio plus one-seventh of the front-end load (EXPENSEt-1), the lagged 

net flow, the lagged performance measure (PMt-1), the lagged fund total return volatility (TVOLt-1), 

cross terms and other lags as shown.   

 

Panel A and B use dummies for the ranked performance measures.   At each quarter t, the funds’ 

performance measures are ranked and funds are classified into high (H), medium (M), and low 

(L) performance groups.  For example, PMH,p,t-1 refers to a dummy indicating that the fund is in 

the H group.  The panel regression is: 
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Panel C and D use dummies for the ranked measures of disagreement.  For example, 

DISAGREEH,p,t-1 is equal to 1.0 if the fund’s disagreement measure falls into the top third at quarter 

t-1.  The panel regression is: 
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Panel A: 

 Coeff Std T-value 

Intercept 0.04 0.06 0.79 

PMH,t-1 0.03 0.00 6.76 

PMM,t-1 0.01 0.00 2.57 

PMH,t-1xDISAGREE1t-1 -1.59 0.72 -2.22 

PMM,t-1xDISAGREE1t-1 -1.09 1.03 -1.06 

PMt 4.72 0.47 10.08 

PMt-2 1.29 0.65 1.97 

PMt-3 -0.60 0.48 -1.25 

PMt-1xAGEt-1 -0.54 0.12 -4.51 

PMt-1
2
xAGEt-1 -0.92 1.98 -0.47 

AGEt-1 0.00 0.02 -0.27 

SIZEt-1 -0.01 0.00 -7.61 

EXPENSEt-1 1.20 0.44 2.72 

FLOW t-1 0.15 0.01 16.25 

TVOLt-1 -0.18 0.11 -1.70 

 

Panel B: 

 Coeff Std T-value 

Intercept 0.05 0.06 0.80 

PMH,t-1 0.03 0.00 6.75 

PMM,t-1 0.01 0.00 2.81 

PMH,t-1xDISAGREE2t-1 -1.59 0.74 -2.13 

PMM,t-1xDISAGREE2t-1 -1.47 1.05 -1.40 

PMt 4.72 0.47 10.08 

PMt-2 1.29 0.65 1.97 

PMt-3 -0.60 0.48 -1.25 

PMt-1xAGEt-1 -0.54 0.12 -4.55 

PMt-1
2
xAGEt-1 -0.98 1.98 -0.50 

AGEt-1 0.00 0.02 -0.27 

SIZEt-1 -0.01 0.00 -7.61 

EXPENSEt-1 1.19 0.44 2.71 

FLOW t-1 0.15 0.01 16.25 

TVOLt-1 -0.17 0.11 -1.58 

 

Panel C: 

 Coeff Std T-value 

Intercept 0.05 0.06 0.95 

PMt-1 5.11 3.25 1.58 

PMt-1
2
 371.28 250.03 1.48 

PMt-1xDISAGREE1 H,t-1 -3.13 0.79 -3.97 

PMt-1xDISAGREE1 M,t-1 -0.90 0.83 -1.08 

PMt-1
2
xDISAGREE1 H,t-1 -1.62 134.88 -0.01 

PMt-1
2
xDISAGREE1 M,t-1 -64.52 138.03 -0.47 

PMt 4.76 0.47 10.03 
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PMt-2 1.26 0.66 1.92 

PMt-3 -0.60 0.48 -1.25 

PMt-1xAGEt-1 -0.82 0.50 -1.62 

PMt-1
2
xAGEt-1 -62.50 34.39 -1.82 

AGEt-1 0.00 0.02 -0.26 

SIZEt-1 -0.01 0.00 -7.54 

EXPENSEt-1 1.16 0.44 2.64 

FLOW t-1 0.15 0.01 16.17 

TVOLt-1 -0.21 0.11 -1.97 

 

Panel D: 

 

 Coeff Std T-value 

Intercept 0.05 0.06 0.92 

PMt-1 5.62 3.21 1.75 

PMt-1
2
 237.57 243.57 0.98 

PMt-1xDISAGREE2 H,t-1 -3.48 0.78 -4.49 

PMt-1xDISAGREE2 M,t-1 -1.24 0.82 -1.51 

PMt-1
2
xDISAGREE2 H,t-1 109.47 121.14 0.90 

PMt-1
2
xDISAGREE2 M,t-1 7.26 125.36 0.06 

PMt 4.78 0.47 10.08 

PMt-2 1.30 0.66 1.98 

PMt-3 -0.59 0.48 -1.22 

PMt-1xAGEt-1 -0.85 0.50 -1.70 

PMt-1
2
xAGEt-1 -58.33 34.43 -1.69 

AGEt-1 0.00 0.02 -0.22 

SIZEt-1 -0.01 0.00 -7.61 

EXPENSEt-1 1.16 0.44 2.65 

FLOW t-1 0.15 0.01 16.09 

TVOLt-1 -0.22 0.11 -2.04 
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Table 10 
 
Quarterly Panel Flow-performance Regression with the Correlation Component of the 
DISAGREE measures 
 

The panel regressions are for January, 1984 through December, 2008.  Two measures of 

disagreement about alpha are used: 

 

DISAGREE1p =  σG[|ρ(εp,G)|], and                                                               
 DISAGREE2p =  σG[|ρ(εp,G)/ρ(rj*,G)|], 

 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s electricity 

consumption growth and σG[.] denotes the cross-sectional standard deviation across the electricity 

consumption growths for the 50 states and the District of Columbia.  The symbol rj* denotes the 

maximum correlation portfolio in a given set of benchmark returns, for the CAPM  the market 

proxy excess return.  The control variables include the lagged age (the natural logarithm of months 

since inception (AGEt-1), the lagged size (the natural logarithm of TNA, SIZEt-1), the expense ratio 

plus one-seventh of the front-end load (EXPENSEt-1), the lagged net flow, the lagged performance 

measure (PMt-1), the lagged fund total return volatility (TVOLt-1), cross terms and other lags as 

shown.  Panel A and B use the unconditional alpha from the CAPM as the performance measure 

(PMp,t).  Panel C and D use the alpha from the Fama-French factors.  Panels E-H use the Ferson 

and Schadt (1996) conditional alphas.  Panels E and F use conditional CAPM alphas and panels 

G and H use conditional Fama-French factor alphas.  The public information variables include 

the lagged one-month Treasury Bill, the lagged dividend yield, the lagged term spread, and the 

lagged default spread.    

 

Panel A: DISAGREE1 p with Unconditional CAPM alphas 
 

 Coeff Std T-value 

PMt-1 0.08 0.06 1.36 

PMt-1xDISAGREEt-1 3.61 2.71 1.33 

PMt-1
2
 -18.30 4.48 -4.08 

PMt-1
2
xDISAGREEt-1 742.56 192.04 3.87 

PMt -1107.88 241.15 -4.59 

PMt-2 4.63 0.40 11.47 

PMt-3 0.75 0.54 1.38 

PMt-1xAGEt-1 -1.00 0.41 -2.44 

PMt-1
2
xAGEt-1 -0.31 0.40 -0.77 

AGEt-1 -91.07 29.64 -3.07 

SIZEt-1 -0.01 0.02 -0.68 

EXPENSEt-1 -0.01 0.00 -7.83 

FLOW t-1 1.08 0.44 2.46 

TVOLt-1 0.15 0.01 16.27 

 -0.31 0.11 -2.82 
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Panel B: DISAGREE2 p with Unconditional CAPM alpha 
 

 Coeff Std T-value 

PMt-1 0.08 0.06 1.44 

PMt-1xDISAGREEt-1 -0.89 2.68 -0.33 

PMt-1
2
 -3.01 4.05 -0.74 

PMt-1
2
xDISAGREEt-1 599.72 195.82 3.06 

PMt -588.90 241.73 -2.44 

PMt-2 4.62 0.40 11.42 

PMt-3 0.76 0.54 1.40 

PMt-1xAGEt-1 -1.01 0.41 -2.46 

PMt-1
2
xAGEt-1 -0.05 0.40 -0.12 

AGEt-1 -84.82 30.04 -2.82 

SIZEt-1 -0.01 0.02 -0.80 

EXPENSEt-1 -0.01 0.00 -7.84 

FLOW t-1 1.11 0.44 2.53 

TVOLt-1 0.15 0.01 16.31 

 -0.19 0.11 -1.76 

 
Panel C: DISAGREE1 p with Unconditional Fama-French alphas 
 

 Coeff Std T-value 

PMt-1 0.04 0.06 0.68 

PMt-1xDISAGREEt-1 4.61 3.33 1.39 

PMt-1
2
 -26.18 5.20 -5.04 

PMt-1
2
xDISAGREEt-1 763.23 231.61 3.30 

PMt -1482.12 320.73 -4.62 

PMt-2 4.72 0.47 9.96 

PMt-3 1.37 0.66 2.09 

PMt-1xAGEt-1 -0.81 0.48 -1.68 

PMt-1
2
xAGEt-1 -0.35 0.50 -0.70 

AGEt-1 -82.72 35.69 -2.32 

SIZEt-1 0.00 0.02 0.00 

EXPENSEt-1 -0.01 0.00 -7.51 

FLOW t-1 1.28 0.44 2.91 

TVOLt-1 0.16 0.01 16.51 

 -0.38 0.11 -3.48 

 

Panel D: DISAGREE2 p with Unconditional Fama-French alphas 
 

 Coeff Std T-value 

PMt-1 0.04 0.06 0.65 

PMt-1xDISAGREEt-1 1.96 3.34 0.59 

PMt-1
2
 -15.12 5.25 -2.88 

PMt-1
2
xDISAGREEt-1 860.28 239.91 3.59 

PMt -1407.05 355.14 -3.96 

PMt-2 4.75 0.47 10.01 

PMt-3 1.39 0.66 2.11 
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PMt-1xAGEt-1 -0.76 0.48 -1.57 

PMt-1
2
xAGEt-1 -0.23 0.50 -0.47 

AGEt-1 -101.32 36.16 -2.80 

SIZEt-1 0.00 0.02 0.03 

EXPENSEt-1 -0.01 0.00 -7.65 

FLOW t-1 1.27 0.44 2.90 

TVOLt-1 0.16 0.01 16.55 

 -0.30 0.11 -2.82 

 
Panel E: DISAGREE1 p with Conditional CAPM alphas 
 

 Coeff Std T-value 

PMt-1 0.08 0.06 1.47 

PMt-1xDISAGREEt-1 0.06 2.43 0.02 

PMt-1
2
 -4.14 4.08 -1.02 

PMt-1
2
xDISAGREEt-1 303.01 129.62 2.34 

PMt 110.00 155.54 0.71 

PMt-2 3.09 0.35 8.88 

PMt-3 -0.74 0.48 -1.53 

PMt-1xAGEt-1 -0.59 0.35 -1.67 

PMt-1
2
xAGEt-1 0.17 0.36 0.48 

AGEt-1 -59.03 19.76 -2.99 

SIZEt-1 -0.01 0.02 -0.80 

EXPENSEt-1 -0.01 0.00 -7.73 

FLOW t-1 0.86 0.44 1.96 

TVOLt-1 0.16 0.01 16.35 

 -0.25 0.11 -2.25 

 

Panel F: DISAGREE2 p with Conditional CAPM alphas 
 

 Coeff Std T-value 

PMt-1 0.09 0.06 1.58 

PMt-1xDISAGREEt-1 -3.95 2.44 -1.62 

PMt-1
2
 8.95 3.99 2.24 

PMt-1
2
xDISAGREEt-1 389.48 135.00 2.88 

PMt -121.77 169.76 -0.72 

PMt-2 3.06 0.35 8.78 

PMt-3 -0.73 0.48 -1.51 

PMt-1xAGEt-1 -0.64 0.35 -1.82 

PMt-1
2
xAGEt-1 0.44 0.36 1.23 

AGEt-1 -66.26 20.25 -3.27 

SIZEt-1 -0.01 0.02 -0.92 

EXPENSEt-1 -0.01 0.00 -7.80 

FLOW t-1 0.88 0.44 2.02 

TVOLt-1 0.16 0.01 16.43 

 -0.21 0.11 -1.90 
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Panel G: DISAGREE1 p with Conditional Fama-French alphas 
 

 Coeff Std T-value 

PMt-1 0.05 0.06 0.89 

PMt-1xDISAGREEt-1 3.94 2.72 1.45 

PMt-1
2
 -20.00 3.78 -5.29 

PMt-1
2
xDISAGREEt-1 298.32 165.08 1.81 

PMt -973.98 210.06 -4.64 

PMt-2 2.35 0.33 7.17 

PMt-3 0.87 0.43 2.04 

PMt-1xAGEt-1 0.08 0.32 0.23 

PMt-1
2
xAGEt-1 -0.23 0.41 -0.57 

AGEt-1 -18.00 25.30 -0.71 

SIZEt-1 -0.01 0.02 -0.39 

EXPENSEt-1 -0.01 0.00 -6.90 

FLOW t-1 1.27 0.44 2.90 

TVOLt-1 0.17 0.01 17.70 

 -0.29 0.10 -2.75 

 

Panel H: DISAGREE2 p with Conditional Fama-French alphas 
 

 Coeff Std T-value 

PMt-1 0.05 0.06 0.90 

PMt-1xDISAGREEt-1 1.38 2.73 0.51 

PMt-1
2
 -13.00 4.14 -3.14 

PMt-1
2
xDISAGREEt-1 441.74 167.79 2.63 

PMt -1220.09 230.05 -5.30 

PMt-2 2.26 0.33 6.89 

PMt-3 0.83 0.43 1.93 

PMt-1xAGEt-1 0.03 0.32 0.11 

PMt-1
2
xAGEt-1 -0.03 0.40 -0.06 

AGEt-1 -37.04 25.50 -1.45 

SIZEt-1 -0.01 0.02 -0.37 

EXPENSEt-1 -0.01 0.00 -7.18 

FLOW t-1 1.31 0.44 2.97 

TVOLt-1 0.17 0.01 17.85 

 -0.24 0.10 -2.29 
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Table 11 
 
Quarterly Flow-performance Regressions with Orthogonalized Disagreement Measures 
 

The panel regressions are for January, 1984 through December, 2008.  We first run cross-sectional 

regressions of the disagreement measures on the White standard errors of mutual fund alphas 

from their time series regressions, and construct the orthogonalized disagreement measures as the 

intercept plus residuals from the cross-sectional regression.  Two measures of disagreement about 

alpha are used: 

  DISAGREE1p =  σ(εp) σG[|ρ(εp,G)|], and                                                              

  DISAGREE2p =  σ(εp) σG[|ρ(εp,G)/ρ(rj*,G)|], 
 

where ρ(εp,G) is the time-series correlation between a fund’s residual return and a state’s electricity 

consumption growth and σG[.] denotes the cross-sectional standard deviation across the electricity 

consumption growths for the 50 states and the District of Columbia.  The symbol rj* denotes the 

maximum correlation portfolio in a given set of benchmark returns, which for the CAPM  is the 

market proxy excess return.  The control variables include the lagged age (the natural logarithm of 

months since inception (AGEt-1), the lagged size (the natural logarithm of TNA, SIZEt-1), the 

expense ratio plus one-seventh of the front-end load (EXPENSEt-1), the lagged net flow, lagged 

performance measures (PMt-j), the lagged fund total return volatility (TVOLt-1), cross terms and 

other lags as shown.  Panels A and B use the unconditional alpha from the CAPM as the 

performance measure (PMt-1).  Panels C and D use the alpha from the Fama-French factors.  

Panels E-H use the Ferson and Schadt (1996) conditional alphas.  Panels E and F use conditional 

CAPM alphas and panels G and H use conditional Fama-French factor alphas.  The public 

information variables include the lagged one-month Treasury Bill, the lagged dividend yield, the 

lagged term spread, and the lagged default spread.    

 

Panel A: DISAGREE1 p with Unconditional CAPM alphas 

 

 Coeff Std T-value 

Intercept 0.07 0.06 1.28 

PMt-1 1.41 2.67 0.53 

PMt-1xDISAGREE1t-1 -11.69 4.20 -2.79 

PMt-1
2
 722.60 191.38 3.78 

PMt-1
2
xDISAGREE1t-1 -1006.54 223.43 -4.51 

PMt 4.62 0.40 11.44 

PMt-2 0.75 0.54 1.38 

PMt-3 -1.02 0.41 -2.49 

PMt-1xAGEt-1 -0.17 0.40 -0.42 

PMt-1
2
xAGEt-1 -93.36 29.91 -3.12 

AGEt-1 -0.01 0.02 -0.61 

SIZEt-1 -0.01 0.00 -7.77 

EXPENSEt-1 1.09 0.44 2.49 
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FLOW t-1 0.15 0.01 16.29 

TVOLt-1 -0.28 0.11 -2.55 

 

Panel B: DISAGREE2 p with Unconditional CAPM alpha 

 

 Coeff Std T-value 

Intercept 0.08 0.06 1.51 

PMt-1 -2.61 2.74 -0.95 

PMt-1xDISAGREE1t-1 2.02 4.19 0.48 

PMt-1
2
 750.47 202.08 3.71 

PMt-1
2
xDISAGREE1t-1 -828.58 240.22 -3.45 

PMt 4.61 0.40 11.41 

PMt-2 0.76 0.54 1.40 

PMt-3 -1.02 0.41 -2.50 

PMt-1xAGEt-1 0.09 0.41 0.23 

PMt-1
2
xAGEt-1 -104.79 30.95 -3.39 

AGEt-1 -0.01 0.02 -0.85 

SIZEt-1 -0.01 0.00 -7.90 

EXPENSEt-1 1.08 0.44 2.47 

FLOW t-1 0.15 0.01 16.32 

TVOLt-1 -0.17 0.11 -1.57 

 

Panel C: DISAGREE1 p with Unconditional Fama-French alphas 

 

 Coeff Std T-value 

Intercept 0.04 0.06 0.71 

PMt-1 3.55 3.32 1.07 

PMt-1xDISAGREE1t-1 -23.04 5.43 -4.24 

PMt-1
2
 823.55 230.27 3.58 

PMt-1
2
xDISAGREE1t-1 -1576.33 326.91 -4.82 

PMt 4.73 0.47 9.97 

PMt-2 1.39 0.66 2.11 

PMt-3 -0.81 0.48 -1.67 

PMt-1xAGEt-1 -0.30 0.50 -0.60 

PMt-1
2
xAGEt-1 -92.92 35.69 -2.60 

AGEt-1 0.00 0.02 -0.03 

SIZEt-1 -0.01 0.00 -7.54 

EXPENSEt-1 1.27 0.44 2.89 

FLOW t-1 0.16 0.01 16.55 

TVOLt-1 -0.36 0.11 -3.35 

 

Panel D: DISAGREE2 p with Unconditional Fama-French alphas 

 

 Coeff Std T-value 

Intercept 0.04 0.06 0.72 

PMt-1 0.51 3.32 0.15 

PMt-1xDISAGREE1t-1 -9.98 5.38 -1.86 
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PMt-1
2
 896.27 236.91 3.78 

PMt-1
2
xDISAGREE1t-1 -1459.51 355.14 -4.11 

PMt 4.76 0.47 10.04 

PMt-2 1.40 0.66 2.12 

PMt-3 -0.74 0.48 -1.54 

PMt-1xAGEt-1 -0.17 0.50 -0.34 

PMt-1
2
xAGEt-1 -109.27 36.13 -3.02 

AGEt-1 0.00 0.02 -0.03 

SIZEt-1 -0.01 0.00 -7.68 

EXPENSEt-1 1.26 0.44 2.87 

FLOW t-1 0.16 0.01 16.56 

TVOLt-1 -0.28 0.11 -2.63 

 

Panel E: DISAGREE1 p with Conditional CAPM alphas 

 

 Coeff Std T-value 

Intercept 0.08 0.06 1.50 

PMt-1 -1.25 2.36 -0.53 

PMt-1xDISAGREE1t-1 0.23 3.85 0.06 

PMt-1
2
 307.05 130.32 2.36 

PMt-1
2
xDISAGREE1t-1 89.68 150.35 0.60 

PMt 3.08 0.35 8.83 

PMt-2 -0.74 0.48 -1.53 

PMt-3 -0.61 0.35 -1.72 

PMt-1xAGEt-1 0.25 0.36 0.72 

PMt-1
2
xAGEt-1 -58.97 20.00 -2.95 

AGEt-1 -0.01 0.02 -0.84 

SIZEt-1 -0.01 0.00 -7.74 

EXPENSEt-1 0.86 0.44 1.95 

FLOW t-1 0.16 0.01 16.38 

TVOLt-1 -0.22 0.11 -1.99 

 

Panel F: DISAGREE2 p with Conditional CAPM alphas 

 
 Coeff Std T-value 

Intercept 0.09 0.06 1.65 

PMt-1 -3.99 2.44 -1.64 

PMt-1xDISAGREE1t-1 8.63 3.80 2.27 

PMt-1
2
 336.23 138.20 2.43 

PMt-1
2
xDISAGREE1t-1 -14.33 162.89 -0.09 

PMt 3.07 0.35 8.83 

PMt-2 -0.73 0.48 -1.52 

PMt-3 -0.63 0.35 -1.77 

PMt-1xAGEt-1 0.46 0.36 1.27 

PMt-1
2
xAGEt-1 -60.80 20.80 -2.92 

AGEt-1 -0.02 0.02 -0.98 

SIZEt-1 -0.01 0.00 -7.80 
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EXPENSEt-1 0.84 0.44 1.92 

FLOW t-1 0.16 0.01 16.41 

TVOLt-1 -0.20 0.11 -1.85 

 

Panel G: DISAGREE1 p with Conditional Fama-French alphas 

 

 Coeff Std T-value 

Intercept 0.06 0.06 1.01 

PMt-1 2.42 2.70 0.90 

PMt-1xDISAGREE1t-1 -16.86 4.17 -4.04 

PMt-1
2
 326.99 159.53 2.05 

PMt-1
2
xDISAGREE1t-1 -1051.38 205.21 -5.12 

PMt 2.32 0.33 7.08 

PMt-2 0.87 0.43 2.04 

PMt-3 0.06 0.32 0.18 

PMt-1xAGEt-1 -0.12 0.40 -0.30 

PMt-1
2
xAGEt-1 -24.28 25.04 -0.97 

AGEt-1 -0.01 0.02 -0.51 

SIZEt-1 -0.01 0.00 -6.97 

EXPENSEt-1 1.32 0.44 2.99 

FLOW t-1 0.17 0.01 17.81 

TVOLt-1 -0.29 0.10 -2.77 

 

Panel H: DISAGREE2 p with Conditional Fama-French alphas 

 

 Coeff Std T-value 

Intercept 0.05 0.06 0.94 

PMt-1 0.68 2.72 0.25 

PMt-1xDISAGREE1t-1 -10.76 4.40 -2.45 

PMt-1
2
 364.66 161.61 2.26 

PMt-1
2
xDISAGREE1t-1 -1084.03 220.66 -4.91 

PMt 2.27 0.33 6.94 

PMt-2 0.85 0.43 1.99 

PMt-3 0.03 0.32 0.10 

PMt-1xAGEt-1 -0.01 0.40 -0.02 

PMt-1
2
xAGEt-1 -31.44 25.17 -1.25 

AGEt-1 -0.01 0.02 -0.42 

SIZEt-1 -0.01 0.00 -7.18 

EXPENSEt-1 1.29 0.44 2.94 

FLOW t-1 0.17 0.01 17.85 

TVOLt-1 -0.25 0.10 -2.39 
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Figure 1: Fund Flow-performance of High/Medium/Low Disagreement Funds 

 

 

 

 


